icm

ACTA ARITHMETICA.
XXIT (1973)

On the values of Euler’s ¢-function

by
P. ErpGs (Budapest) and R. R. HArL (Heslington)

Introduction. Let M denote the set of distinet values of Huler’s
g-function, that iy, me A if and only if

m = @{n) :nn(l——;—)

Bln
for some positive integer n. Let my, My, My, ... be the elements of M
arranged in increasing sequence.

Our main object in this paper is to estimate the sum

Vig)= D>'1

et

from above. Note that V(x) > =(»), for M includes the sequence {p —1},
and it was shown by Erdds [1] that for each positive e,

i

THEOREM. For each B> 2V% Nog2, we have that

We prove the following

V() = O(n(z)exp{BVloglogs}).

We have not yet found a comparable estimate from below; we remark
that it may be shown that '

V(z) = 2(n(z) (loglogxy)
for every fixed 1, and we hope to study this further perhaps in a later
paper. ' .
An interesting problem is fo investigate the gaps in the sequence
{m;}. Since this includes. the sequence {p —1}, we have that

Mgy — My = O{mg)



®
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for every o > 3/5 by Montgomery’s estimate [2] for the difference between
consecutive primes, It is clear that our theorem gives

logm;

Mgy — My = .0( -—
ik exp{B l/loglogm, }

for every B > 91/2/1()&,;, and it ig possible that in fact
Wy g — My = 2(logmy),

although we cannot prove this. We now give the proof of our main result.

Lenwa 1. Lot win) denolte the number of prime factors of n counded
aceording to multiplicity. Then the number of integers n < @ for which

w(n) 2

2
022 loglogx

is O(n(w)logloga). .
Proof. Let o'(n) denote the number of odd prime factors of », (,md
v{n) the number of distinet prime factors. Then for all ¥

(L) = 2 Y (1 )=
din

where Y denotes a sum restricted to odd d. Hence for real, non-negative y,

: 1 a(d)
§ '(n) E ¥ a(d)--i(d) . ’ l Y
(14w L a (1+?/_) ‘ L (1+'“"_—1T§),

nam : d<x P p

=)

where 4 is an absolute congtant. Eaettmg ¥ = t—1 we have that

Zt"’"") < w(logaytexp ("5,:11"{)

n<ax
provided 1 <t < 3, and we deduce that for this range of values of ¢,

2 1 <@ (logm)ﬁ—l—«tlog! exp (%) )

nSe
w'(w)=tloglogx

Next, seb o =2/log2 <3. If w(n)> uleglogw and 2%in, we must
have o (n)>uloglogw k. The mumber of integers n < for which

provided'y < 2. This does not exceed

s(loga)¥exp ( 5
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k= tulogloga is O(xjloge) and so

DT YD ) 1.+0(10gw.).

Ik<iuloglogz mg::/‘zk
w (m)zulogloga—k

NED
won)z=uloglogz

Set k = hloglogw so -that » varies in the range [0, {»]. Certainly
1< u—h <3, and so the inner sum on the right is

< 5!;(.’.6‘) (legm)(u—ah)-w(uuh)log(u—k)f?ﬂog2 & W(.T)
since the maximum value of the exponent of logz is zero. Samming over

k < uloglogx we obtain our result.
Lievwma 2. The number of inlegers n <o which have no prime factor
exceeding
ml!ﬁlogloga:
i3
0 (= () loglog ).

Proof. We divide the integers # < # into two clasges. If n < V& or
w(n) = wloglogw, » belongs to the first class. Otherwise it belongs to the
second. class. '

By Lemma 1, the number of integers in the first class iz O (9: loglogfv)
If » belongs to the gsecond eclass, ifs largest prime factor p must satisfy

:puloglog:c - ]/ T.

Since u << 3 this gives the result.
Proof of the Theorem. There exists an absolute consfant ¢ such

that for all s > 1,
nfp(n} < cloglog3g(n).

Let 1 = eloglog3s, so that if ¢(n) < », then #< ml
Let m-be o value of ¢ not exceeding ». Hither w(m) > ulogloga, or
m = p(n) where n < «l and o {p{n)} < uloglogw. Therefore

Veys Y 1+ > 1.
’ maw ngzl
o(m}zuloglogs af{g(n)}<wloglogz

The firgt sum is O (:n; yloglogz) by Lemma 1, and it remains to study
the second. Note that 1> 1 for # = 1, moreover that for # > ¢%, which
we may assume, the function

mliﬁ loglogx

is increasing. We may therefore restrict our attention to those » in the
second sum with at least one prime factor larger than this; by Lemma 2
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the number of integers «# < xl not connted is

O (z(x) (logloga)?).
In the remaining sum, we may write n = mp where
< lml—al;‘ﬁloglng:n'

D> plféloglog e , e

Then

Vir)< ( )—l 0 (= (@) (logloga)?)
m{q:(;'n)}(u]ug‘log.r

oL

wfr(m)}<ulogloz e m

(leg]ogm)

We do not restrict the size of m in this sum, as the series is convergent,
as we will show.
Consider the function

=y pete(n)
g) == .
o= 57

n=1

We are only concerned with veal # in. the range 0 <z < 1, and we ghow

that for these values of # the series is convergent. Incudentaﬁly, it is there-
fore absolutely convergent, and so f(z) is well- defined, for |¢| < 1. The
behaviour of this series on the unit eircle 5] = 1 is an interesting and
complicated problem.

Since o {p(n}} is additive **0? iy multiplicative and

1) = I] (1+ NM) epo Gl

b

for 0 € 2 < 1, provided the series on the right converges,
We apply the following result of Brdés [1]. For every &> 0 there
exists a positive § = §(s) such that the number of primes p < @ for which

[#{p 1) —loglog®| = elogloga

is
®
Of ——r].
( (logz)!* )
Let % and H be positive numbers. Then

Sy ditJH# 3w

»p-l)<k p<H
V(p l)sk

icm
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We select

k
H = H(E) :expexp( )
1—e

so that in the integrand, the condition »(p 1) < & iniplies ‘sh:it

vip—1) < .
The integral is therefore convergent, and we have that for £ > 0,
1 k

1= +C(e)

(1 —z}loglogt.

A

-0k P
where (/(s) is independent of k. Therefore for 0 <z < 1,

oa

Zﬂpn—z Bﬁj_pl_z _3)25‘62‘3

=0 v(p—1}=k k=0 v{p—-lj<k

>1{ k" 2
= (1“”2)2(1_6 +0(€)Zk) ém +Cle).

k=0

Since w{p—1) 2= #(p —1), this gives

o(p—-1) #(p—1)
v z < 3 1 g ’
+ K -+ (&)
< P2 ‘“%—7 ) ;p(pkl) T-e (-2 ’

i

and so

G|
(1~a)(1 a1 for 02,

where C'(¢) and " (e) depend on & only. We are now ready to estimate

the sum
D =
ﬂ!’ ’

efp(m)}<uloglog

Fle) < €7 (e )exp{

For z < 1, this does not exceed
f(z)z~ulugloga:_

We may chooge & optimally, and we select the value which gives

(._...w)2 = (1—¢)uloglogx.

2 e 0”(a)exp'{z l/ uloglogz }

n l—e
efr(m)}<uloglegx T

Therefore
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and so for every B > 2V2/log2, we have that
V() = O(n(zx)exp{B l/loglog'w—}).

This completes the proof.
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Waring’s problem in GF[g, )
by

Wrirram A. Wese (Pullman, Wagh.)

I. Introduction. Throughout this paper ¢ =»”,p a prime greater
than k, ¢ a positive integer; GF(q) denotes the finite field of ¢ elements;
and GF[g, «] denotes the ring of polynomials over GF(q).

‘Waring’s problem is that of expressing an element of an algebraic
system as & fixed number of elements of that system which are kth powers.
In [11] and [12] Schwarz and: Tornheim deal with Waring’s problem for
systems ineluding GF (g). In [10] Paley treats Waring’s problem in GF [¢, )],
and in {21, [3], [4], [p], [6] and. [7], Carlitz and Cohen consider several
problems where the powers are restricted to squares.

In Paley’s work, the degree of the summands is not restricted, while
in the work of Carlitz and Cohen it is. This makes the problem quite
different. Also, Carlitz and Cohen obtain formwulas for the number of
ways & polynomial in GF [¢, ] may be written as a sum of squares, whereas
Paley’s method yields only existence.

In this paper we wish to show that K = 4%+... +4% always has
a solation for a fixed s and all K, where deg A* — deg K. It is convenient
to restrict the A, to be primary (i.e; have leading coefficient of 1), so we
will actually treat the following slightly more restrietive problem.

Let E,(K) denote the number of solutions of

(1) K — 8, A% ... 45, 4%

where deg K = nk; degAd; = u; 4; primary; J,¢ GF(q), 6; = 0, and &,
a kth power in GF(g); and 8, + ... + §, = gignum K (signum K = leading
coefficients of K). (By [11] if s>k it is possible to pick the 4; to be kth
powers and have é,+ ... + 4, = signum K. It is then possible to absorh
the §; into the .45 to get a solution of the original problem.) We will obtain
an agymptotic formula for R, (X) and in doing so show that B (K)> 0
for & of a certain magnitude. ‘

Although there are many possible analogs of Waring’s problem for
GF[g, z], the above iy one of the most natural and clogest to Waring’s
problem for the rational integers. It should be noted that allowing the



