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and so for every B > 2V2/log2, we have that
V() = O(n(zx)exp{B l/loglog'w—}).

This completes the proof.
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Waring’s problem in GF[g, )
by

Wrirram A. Wese (Pullman, Wagh.)

I. Introduction. Throughout this paper ¢ =»”,p a prime greater
than k, ¢ a positive integer; GF(q) denotes the finite field of ¢ elements;
and GF[g, «] denotes the ring of polynomials over GF(q).

‘Waring’s problem is that of expressing an element of an algebraic
system as & fixed number of elements of that system which are kth powers.
In [11] and [12] Schwarz and: Tornheim deal with Waring’s problem for
systems ineluding GF (g). In [10] Paley treats Waring’s problem in GF [¢, )],
and in {21, [3], [4], [p], [6] and. [7], Carlitz and Cohen consider several
problems where the powers are restricted to squares.

In Paley’s work, the degree of the summands is not restricted, while
in the work of Carlitz and Cohen it is. This makes the problem quite
different. Also, Carlitz and Cohen obtain formwulas for the number of
ways & polynomial in GF [¢, ] may be written as a sum of squares, whereas
Paley’s method yields only existence.

In this paper we wish to show that K = 4%+... +4% always has
a solation for a fixed s and all K, where deg A* — deg K. It is convenient
to restrict the A, to be primary (i.e; have leading coefficient of 1), so we
will actually treat the following slightly more restrietive problem.

Let E,(K) denote the number of solutions of

(1) K — 8, A% ... 45, 4%

where deg K = nk; degAd; = u; 4; primary; J,¢ GF(q), 6; = 0, and &,
a kth power in GF(g); and 8, + ... + §, = gignum K (signum K = leading
coefficients of K). (By [11] if s>k it is possible to pick the 4; to be kth
powers and have é,+ ... + 4, = signum K. It is then possible to absorh
the §; into the .45 to get a solution of the original problem.) We will obtain
an agymptotic formula for R, (X) and in doing so show that B (K)> 0
for & of a certain magnitude. ‘

Although there are many possible analogs of Waring’s problem for
GF[g, z], the above iy one of the most natural and clogest to Waring’s
problem for the rational integers. It should be noted that allowing the
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degree of the summands to be greater than the degree of the element:
expressed in an additive problem in GF[g, 2] offen makes the problem
significantly different and much easier, as can be seen by comparing [8]
and [9]. g

Actually the method we will use in this paper is gnite general. That
many other problems with different regtrictions on the 4, can be handled
similarly should be obvious. It should also be nofed that this method
ean deal with problems where we use polynomial functions of the A, other
than just kth powers.

. Preliminary results., The method we will use to solve Waring’s
problem in GF[q, 2] i an analog of the Hardy-Littlewood method. This
type of Hardy-Littlewood method was first used by Haves [9], where
he treats the Goldbach three prime problem for GF[g, z].

We will adopt the following notation used in the Hayes paper.

GF(g, ) denotes the field of rational funetions over GH(g). If A/B
e GF (g, #) and we define v(A/B) = degB —deg 4, then v iy a valuation
on GF(gq, z). The completion of GF (g, ) with respect to this valuation,
denoted K, consists of all elements of the form:

o= Xal)
et
where ¢ is any integer and a;e GF(g). »{g) = ¢ and the related absolute
value i§ ja}, = ¢, ‘
If we define 6(a,b) = |a—0b|,, then § iy an ultra-metric on Ky,
We let
¥ (@) = {te Ky v(E—a) > m}.

The ¥,,{a) are the open halls of XKy)z. They are also closed and have the
property that Whenevel two balls intersect, one must be contained in
the other.

We let & = ¥7,(0), and &, = &, # iy called the unit interval and is
a eompact topologmal group under a.ddl‘mon Hence, there is a Hcmm inte-
gral on # which we denote [dg. We then have

f 1dg —_—-._q'"j.

ledPy

Let 1 be a fixed non—princiia&l character on the additive group of

GE{g)- It ac K, and « is the coefficient of 1/z in the expansion of a,
define B;(a) = B(a) = A(a). Then F is a eharacter on the additive topo-
logical group K. _

The following results concerning the character ¥ may also be found
in the paper by Hayes [9] (Theorems 3.6 and 3.7 ).

L2
<
==}

Wearing's problem in GF[q¢, %]

LeMMA L. If be P, § 20 and & = {t< P: v(t—b) > i} then
¢l Bab) i v(a)> —j,

[ Blatydo =
Z, 0  otherwise.

Luvma 2. If ae and n = 0 then

2 BaB) — l”E( &) i vie)>n,

deghl=n otherwise

(where 3" will demote @ summation over primary polynomials).

We also have that B(4A/H) = E(B/H) if 4 = B(mod.H),

As in the usual Hardy-Littlewood method, the wunit interval must
be divided into small arcs. In order to do this for # we make the following

Drervmion. It &, HeGR [q, =], we say G/H iz primordial with respect
to 2(k—1)n if

(1) degl << degH,

(it (&, H) =1; (G, H) denotes the greatest common divisor of G

and H,

{(iii} H is primary,
{iv) b = degH < (k—1)n.
Subsets of # of the form

Ugm = {4eP: v(i—GH) > h+(k—1)n}

are called primordial subsels, and the collection of all primordial subsets
with respect fo 2(k—1)n forms an open disjoint covering of 2 ([9], Theo-
rem 4.3).

I, The Hardy-Littlewood method. [ this section we develop an
analog of the Ha-rdy—-Littlewood mathod,

Let
DB A’

(ILgA =1
Then

[9(8.2)g(8:1) .. g(6,H) B( ~ Kt)dg
]

= D [ B((6, A v s, Akt . b, AE— K)o
degAl—- e degdg=n &

Now
v(0, 45+ o 0, AE—K) = —deg(8, 45+ ... + 8,45~ K) > 0

if and only if 6,45+ ... 48, 45— K = 0. Thus by Lemma 1 the above
integral is 1 or 0 according as §;.4%+ ... 4-8,4% is or is not equal to K.
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Hence, the above expression counts the number of golutions of (1) and so

(2) RJAE) = [g{0:0)g(8a1) .. g(88) B(— K1) dg.
&

We now divide # into major and minor arcs as follows:
DEFINITION. %gy 18 a major are if degH = h < . Uy 8 2 minor
are if B << hg(B—1)n.

IV. Contribution of the major arcs. Let %g)y Dbe a ajor arc and
teWUgy. Thus 1 =G[H-+y where () > b4+ (k—Lyn. Let »(y) = h+
A(k—1)n-+ 8, where 6> 0.

Now a8 @ runs over all primary polynomials of degree »—# and B
rung over all polynomials of degree less than & (so B runs over & complete
system of residues modulo H), @H 4- E runs over all primary polynomialg
of degree n. Thug

oy = N By = Y Y E((QH+R)’f(G/H+_y))

degd=n degRR<h degll=n—n
= 3 E(R'G/H) M B(QE -+ RYy)
degR<k deg Q=n-h .

sinee B{B) = 1 for any polynomial B. Also, (QH + RY* = (QH)*+ B where
»(B)> —n{k—1)—degRand so »(By)> —a{k—1) — deg B+ k- (k1) %~
+6>1+0>2 Therefore E(By) = i(0) =1, and so F({QH+E)%)
= E((QH)"y). Hence

(3) gty = > BEQH) N B(QMy).
: dngl?x:h. i deg@d=n—n
Let
(4) 8= Y BQHEYy = 3 B(Q')
deg =n—h deg=n-—5

where y, = H*, v(y,) = b+ (k=L 0 — bk == (k—1) (n— h)+ 0.

Lemma 3. Let (@) = Q°-B,0% 4+ ... + B, be o polynomial in @
such that degB,* " < degQ®, and lot »(y) = (k—Lym+0,1 <6< m.
Then .

N B(FQ)y) = 0.
. degfl=m

Proof. We use induction on %k It k=1, F(Q) = Q- B, where
deg B, << m. Then

D B(Q@+B)y) = B(By) Y BQy)

deg =m deg Q=m
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where 1< #(9) = 0 < m. Thus ye# and by Lemma 2
2 BQy) =0
dag Q=
Hence, the lemma is true for & = 1. Now assume the result is true for all
vogitive integers less than . Then, if

8= > B(F@Q)y),

deg =

X B((F(Q)—F(@y)y).

degh=m deg@a=m

= Y N B{(FQ+)-F@Q)y)

degdf<m depQ=m

'

(5) 18|12 = 8§ =

since Q - M runs over all primary polynomials of degree m as M runs over

all polynomials of degree less than m.
Now

F(Q+M)—F(Q) = (Q+ MY+ B,(Q +MP ot ... By—
—(Q* B Q"+ ... + B
=kQIM 40 4 40y

where deg(;Q" ! < deg@*'M and M|0; for 1<i<<h—1.
Therefore

v

(F(Q+ M) —F(@QYy = F(Q)y
where y' = kMy and
| Fy(Q) =@+ B Q"+ ... B,
and
deg B,* "1 = deg(Q* "1,/ M) < degQ* 1.
Also,
vy =»(y)—degM = (k—1)m+ 0—degM.
Now if degM = 9 l
(B=2)m+6 <»(y') < (k=—L)m,

i.e.
»(y') = (k—2)m-+ 0  where 1< 8 < m.
Therefore
DU B(EQ)y)
deg Q==m
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satisfies all the conditions of the lemma and degree of F is less than %,
and so the sum is zero by the induction hypothesis. Thus by (5)

| > B{EQ)-

(6) 8 =
degd < degt)=m
Algo, o
(B2 ... +Bi)y) > —(k—TL)m-+r(y)
= —(k—L)m+(k—1)m 0 —degM
=0 —degM > 1 for degM < 0.

Therefors
BB+ ... +B)¥) =1
and so
E(F(Q)y) = B@y).
Now, since

(@) = —(k~L)m+(k—1)m+ 6 —degM = 0—degM,
( Bla-Dmyy i degM = 61
@ gy = |10 V) R e ’
1 i degM < 0-1.
By (6) and (7)
—

®) [S-[zz( D > B ny)

deg M <0—1 ﬁlegM=0~1) degfl=m

= N g+ grifap)

dog<f-1 degM=0--1

where ¢ = signum M, § = signumky (here, signum indicates the coeffi-
clent of the highest power of # appearing). Now

DMy = Y 3 Mep)y =g D Map) = —¢

dogM==0—1 asGI(g) degid=0--) we {11y}
o250 . w0
gince D} A{y) = —1 and of runs over all nonzero elemonts of GF(q) as
: yeGI(g)
D

a does. (f cannot be zero since it iz the coefficient of a power of # which
actually appears.)
Hence, from (8) we get

(9) IS = g™ 2 14 g™ (—¢™h) = qm+u-1_gmr|.0~1 = 0.

degM <6—1

Since 8|2 = 0, 8 = 0 which completes the proof of the leinma.
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Applying Lemma 3 to §;, we have
(10} 8y =0 i 0 a~h that is, if s(y) < kn.
TE »(y) > kn, B{(QHYY) = B(x™y) since »((QH)*) =1 and QH is monic.
Therefore

Si= D Bla"y) = ¢t EEy).

dog=n-.-h

Combining the results for §; we get

1) 1=K0 it vy <k,

PRy i w(y) > .

Now by (3), {4) and (11) we have

0 it w(y) < kn,
B sy) D BORGH) i »(y) > kn.

deg R<h

(12)  g(dt) =

Note that (12) holds for all fe %y where %y is a major arc.

Now by (12)
sy ] 9leng(st) g B(-K)de
Klcsd ‘
e gi—Ple Z 2 E(8, RFGIH) ... B(S,B*G/H)\E(—KG/H) %
degliy<h dogRg<h
X { B(5 9™ ... B(s,ya"™ B(— Ky)do.

U GH- it v <kn} _
Since 8, ... + 8, = signumE, deg((d;-+ ... 4 4)a™" —K) < nk, and so
o(((6F ... o)™ K)y) > 1, B8+ ... +8,)a*"—E)y) =1
and hence '

‘ E(((61+ e + ds)mk”mK)y) =g,
e G -2 v (1) <k} .

Therefore (13) becomes

14y [ g(8:0) ... g(aDB(—Ei)dp
Telg -

=gtk 3T Y (8, R‘G/H) ... B(6,REG|H)B(— KG[H).

dog Ry <h dog Rg<th

T -~ Acta Aritlunetica XXIT.2
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D E(R'GIH)

(15) 8(@, II) =
- deg R<h

and

ey A =g Y S(6,6,H) ... 83,6, H)B(~KG/H)

(@ H)=1

where the sum is over a reduced residue system moduio H.
Algo, let
t

(17) | & -—:%: A(H)

where the sum is over all primary polynomials.
We will need the following two results:

LeMma 4, If s = 2k-1
(18) 3 A(H) = 0g ™.

deg H=m

THEOREM 1. & = C) > 0 where (1 48 o constant.

The proofs of these results follow along the same lines as the proofs
of the corresponding statements about the rational integers [1], with
oceasional modifications, and will be omitted.

V. Contribution of the minor arcs. Let %y, be a minor arc and let
te ¥yy. Thus ¢ = G/H 4y where »(y) > h+{(k—1)n and h = degH = ».
Now

git) = Y B(AMG/H +y))

deg d=n

but »(A*y) = —kn+2(y) > —kn+(k—1)n -+ 3= 0,50 B(A%y) = B(a™y).

Therefore -

(19) g@) = Ba™y) D' B(A*G/H).
deg A=n
Lets
(20) §=8m;6,H = Y BA'e/H).
. ) deg d=n .

Although S(n; &, H) is similar to §(&, H), the sum iz no longer over
a complete gystem (mod H).

icm
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LEMMA 5. Given any > 0
7 n(lu. __i___) +£ ’
S(n; G, H) = 0(g k-],
Proof. Proceeding as in Lemma 3, we have,

1812 = 3 N B((kA*0, 4 )6/A)

Mp A

where it is understood that the summation on 4 is always over all primary
pelynomials of degree %, and summations on M; are over all polynomials
of degree < n.

By Cauchy’s inequality

Wr<(3) Y N N B(kE—1) 41,0, 0 )eyH).
3, M, 3, T4
Continning in this way we get
(21) ST g T g (R
X e X M B(RAMM, ... My =P(My, ..., My )G/H))

My Mg A4

<@ 3 [;"E((ksﬁﬂl e M) GH)

My Mg

where P(M,,..., M, ;) is & polynomial in M,,..., W, ,.
Let
¢ =k M,... M, ,G(mod H)
and deg@ < degH. By Lemma 2

| | W@ H) >,
(22) - [degéj-/;nE(_AG /H)l - l 0  otherwise.

Now »(G*/H) > # if and only if degG* < h—n.
Let » be the number of (k—1)-tuples (M, ..., M, _,) such that
M. M, | = (B!@) G (mod H)

fi—m %

where deg@* < h—mn. Clearly r < ¢" ™" where

7" = max {number of solutions of M, ... M;_, = T(modH)|.
deg<h

Now M,... M, , = T(mod H) if and only if

(23) . M,..M,,=T+XH.
Since degM, ... My, < (k—1) (a—1), degX < (k—1) (h—1)—h.
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Hence, there ate at most g D ~1=1+ different X possible in (23).
The number of solutions in M, ..., My, of equation (23) is clearly -
less than d(7 - XH)*, where d(B) denotes the number of divisors of B.

But for any >0, )
AT+XH) = 0T+ XH)
just as for real numbers. Hence

d{T'+ XH) = 0(gw)

and so

P O(Q(k—l)(n—l)--nﬂ ™).
Hence
(24) r = 0{g" ).

Thus by (21), (22) and (24)

ISlzk—l _ O(qn(zk—l—k) qﬂg(Ia—2+s)n) - O(Qntﬂk—l-ml-'re))

which proves the lemma.

VI. Principal results. We are veady to prove:
THEOREM 2. If 8 = k2" then

(25) le(K) #_t(/)gn(s—i’c)l -mlo(qﬂ(st)—an)'
Proof. By (2)
(26) B, (E) = [g(b:0) .. g(6,1) B(—Ht)de
7

= Z f g(b8) ... g(8,8) B(— Kt)do
wit L bumordisl | et

= 3 [ ata . g(anB(-Ttde
deg H(k—1)n ((LH)=1 ‘?{G”‘I

- Z" 2 fg(alt)--'g(égt)Iﬂ(—Ift)czg—i«-
deg H<n (GLH)=1 gy
oy > [ g(ad) . g(8) B{—Kt)dg

n<deg B (k—1)n (GhE)=1 gy

C= 8+ 8,
By (14), (15), (16), (i7) and (18) |
(27) § =g A =g hig— 3 am)

deg H<n dop Hzn
- =;q"(87.7°)=5" + O (qﬂ(s-k)'_n/k) .
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By' Lemma 5 and (19) .

) K= > 3 [ gt gohE(-E)de

ndeg Ha(k—1)n (GLH)=1 ¥grg

= O( y’ Z qm‘(k 2&-1—1 +s) q—h_(k_l)n)

i
n<cdeg H<(k—1p (RH)=1

{k~1)n ns(
=0 (- Ne

ld
=N

1
1— i TE)*h-—(k-l)n)

o

1

_ 0(qm(1— =1 “)) _ O(qn(s‘kpu}f.-)
for s 1= k2%, We have also used the fact that the number of primordial
G/H with degH == h, is ¢~ ¢**%, which may be found in [9].
The theorem now follows from (26), {(27) and (28).

COROLLARY 1. If s> k2%, thore exists @ constant no such that if % = %,
RE)> 0.
Proof. This follows imnediately from Theorems 1 and 2.

VIL. Sums of squares. If k = 2, we use a primordial subdivision with

) r'espect to 2n, which means that only polynomials H of degree h<n

appear in the subdivision, and so there are no minor ares {see below).
Hence, the results of Sections IV and VI lead to the following exact formula
for the number of representations of X as a sum of squares:

(29) Ey(K) = g% 3" A(H).

 degH<n

In the previous work neighborhoods of G/H for degH == were pub
in the minor ares for convenience in some of the lemmas. However, they
eonld easily have been put in the major ares, since trivially

gty = Y E(R*G[H)E(H'y) = B@"y)8(G, H).
deg B<n '

Also, the function 8(@, H) is the same ag the funetion appearing in
Section IV and not the one in Section V since B does run through a com-
plete system (mod H). Thus there is no need for minor ares in the case
of squares.

The formula (29) is essentially the same as that obtained by Carlitz
and Cohen in their papers.

VIII. Polynomials of small degree. In Section VI we found that all
polynomials of degree == n, are expressible as a sum of %th powers. In this
section we treat polynomials of degree << #,. : )

In doing Waring’s problem for the rational integers, it iy trivial to
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got all integers less than some bound as a sum of a fixed number of Eth,
power—just use all ones. It is not as trivial in GFfq, 2].
TurORENM 3. If degK = nk, n > 1, then K may be written in the form

{30) o= A% 8,45

where 0, GF (g} s o k-th power, provided s = nk?-k.

Proof. We first obtain (30) with arbitrary elements of GF(g) and
& = nk+1. Then since every element of GI'(g) can be writben as o sum
of & or fewer kth powers {11], our result follows.

For the A4; we use polynomials of the form &"--o™ 4 qe™ ' for
m=21,2,...,n and o =1,2,..., k; where it is understood fthat when
m =mn, we use the polynomials &"--ax"'. Sinee p > %, the numbery
1,2,..., %k are distinet elements of GF(q).

The kth power of o"+2™ - a™ " containg only powers of z greater
than k(m—1)—1. Thus cur procedure will be the pick the &5 which are
coefficients of the polynomials with m = 1, so as to make the two sides
of (30) agree for all powers of » less than L Then pick the & s which are
coefficients of the polynomials with m = 2, %0 as to make the next %
powers of & agree, and 30 on. At eaeh stage, none of the smaller powers
of # are changed. N

Thus it suffices to show that we can find §,¢ GI( q), such that the
coefficients of &%, &#™~2 | g*"% in the expression -

&

2 8, (@ + ™ amm—l)k
-}

are equal to any given set {4, ..., 8,} of elements of GF( B
The cosfficient of #™™ in (2”4 &™ 4 qg™ Y i5.
(32) - Fylo) = (fel+hyai -g_hj. \a

where the %; are elements of GF(g), not depending on «. Thus ) is a poly-

nomial depending only on j. Hence, the problem is now xeduccd to solving
the system:

(81)

(33) 5‘5 Fila) =p;, j=1,2,...k,

a=a1
for &y, ..., 0.
Ii aJl of the 8, = 0, take all the 6, = 0. If not all of the fy == 0, then
(33) has a solution provided
Fi(1) F(2). - Fy (k)
(34) ' Fo(l)y . ... Fyk)

.............
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But the determinent in (34) is equal to

(%) o. 0o l]1 2. %
N (’;) ..... ’12 91
. O I
l* _____ *]]j}gz%lk Dk b
s 1
12 3. 3
={)6E)-- (2o kL e o0

sinee the last factor iz a Vandermonde determinant which is not zero
since the elements 1,2,..., %k are distinet in GF(g).

The above procedure provides d4; and A; which make all coefficients
of powers of # less than #k in (30) equal. Now just add (sgn K — 6, ...

.+ 8, 2™ to the sum 36,4, and (30) is now satisfied.

Together Theorems 2 and 3 give us the following result:

TEmorEM 4. If degh = nk, 5> 1, then there exisis 4 constant g(%)
depending only on %, such that if & = g(&) then

K = Af4 ... +AF

8 solvable with deg d; = a. .

Remarks. (1) No attempt has been made here to make s as small
as possible. Reducing the size of s and treating some related problems will
be congidered in a later paper.

(2) The condition that » must be greater than % i3 a necessary one
in that it we allow P < k thers exist polynomials that cannot be written
a8 the sum of any number of kth powers. Such examples are easily found
if Z = p. It may be possible however, to replace p > %k by a somewhat
weaker condifion.

(8) If degK iz not a multlple of k, it is clearly 1mp0331b1e to have

- ‘ o degK
deg K = deg A¥. The best we can do is to restrict degd; = [ f ] -

Our results can easily be ecarried through in this case. Also, we could
allow deg A; < » for some of the 4,. This will also be considered in a later
paper. ‘

(4) It is also possible fo remove the “eondition that the 4, be kth
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powers. This requires modifications of some of the results leading to the
estimate of the singnlar series 7.
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On a theorem of Bauer and some of its applications
by

A. SCHINZEL (Warszawa)

The aim of thiz paper is to extend to polynomials in many variables
the results of papers [1] and [6]. It is convenient to first restate these
results in a concise form, '

Let K Dbe an algebraic number field, K| its degree, £ its normal
closure. We denote by P(K) the set of primes which have in K at least
one prime ideal factor of the first degree, and by Ny, the norm from K
to the rational field Q. We say that K has property (P) if for all but finitely
many primes ¢ and for every we K (ordgN mrlw), | K ]} = 1 implies ge P(K).
A field K is ealled Bauerian if for every (2, P(Q) < P(K) implies that £
contains one of the conjugates of K (P(£2) < P(K) means that P(Q2)\P (K}
is finite). :

Several types of Bauerian fields have been described in [6], it happens
so that all those fields have property (P)- For some of them (eubic and
quartic fields, solvable fields K with (%, 1K l) =1) thizs has been
established in the course of proof of Lemma 1 ([6]) for the others (certain
solvable fields of degree p?) it follows from Lemmsa 3 and Theorem 4

‘below. For normal fields the fact is obvious and for Bauerian fields of

"
the types desecribed in [4] (fields with property (N), fields Q(VA4) with
# 7 0mod8) it is also true {see Corollary 2 and p. 230). In Theorem 5 I give
a new class of Bauerian fields (normal estensions of quadratic fields)
which need not have property (P). : .
Aypart from the description of Baverian fields, from Theorem 1 of [1]
which has been generalized in [5] and various counterexamples the results

of papers {1] and [6] can be summarized as follows.
TEEOREM A. If K is a cyelic field or a solvable field such that I| is
K
squarefree and (_:f{—}l’ [K{) =1, f(#)c Q2] and in every arithmetic pro-
gression there is am integer x such that

Vf(‘?’?) = Ngjplw), we K,



