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Gaps between values of positive definite quadratic forms

by

and D. J. Lewis* (Ann Arbor, Mich.)

- 1. Jarnik and Walfisz [6] proved the following: Let # =5 and let
A1y -vay A, be positive real numbers whose ratios are not all rational. Let -
N(z) denote the number of solutionsg in integers of the inequality -

-y
Then

N(z) = O™+ o(x? ).

They showed also that “o” eannot be replaced by any specific funetion.
The constant ¢ is simply the volume of the ellipsoid 4,27+ ... + 4,45 <1
and hence 0 = Cy(4, ... 4,)°}, where ¢, is a simple function of » alone,

Tt is natural to conjecture that a similar result holds true for a general

positive definite form 3 Ay, provided, once again, that not all ratios
ik
of the coefficients are rational.

A particular deduction from the theorem of Jarnik and Walfisz is
that for any fixed ¢ > 0,

N(é—}-a)*—N(w)NO-a-(—g—)w?*l a8 & -» co.

In particular, the gaps between successive values of the quadratic form
3 2,2% at integer points must tend to 0. One expects a similar result for
g'eneml positive dofinite quadratic forms in 5 variables. In the pregent
state of knowledge, one would be satisfied to prove this for a general
form in n variables under the assumption that » is very large. This specific
question was put to one of us some years ago by Professor T. Betermann,

* Work on this paper was begun while T was visiting Campridge in the spring
of 1989 shortly before Professer Davenport’s death. Only new hawve [ had the oppor:
tunity to complete it. While working on this paper, X have been partially supported
by the National Science Foundation and by the Ingtitute of Science and Technology,
University of Michigan. I also wish to thank the Fellows of Trinity College for their
generous hogpitality. D.J.1.
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In this paper we partially resolve this question regarding gaps. We
prove:

THROREM. There ewists an infeger n, (absolute) with the following prop-
erty:

Leat @) =Q2y, ..., 2
real coeffwiems and suppose that n = ng. Them, if a7, .
with max Jwf | sufficiently large, there ewist integers wy, ...

) be « positive definite quwdmtic Sform with
oy By are inlegers
s By, ol all zero,

such ﬁmt
(1) 1 (x+a™) —Q (") < 1.

Clearly the inequality (1) can be replaced by 1Q (- #") —@ (2")] < &,
where & is any small positive real number, by applying the theorem to the
form &71Q ().

Our result ig imperfect in two ways: (2) it may be that Q(w + ™)
= ("), and indeed this may well happen if € reprosents an integral
form in 4 variables; (b) even if this situation does not oceur, no deduetion
can be made about the gaps since the result does not prevent the values
occurring in clumps with decidedly large gaps between the clumps.

Our proof uses the Flardy-Littlewood circle method and the proof
of & key proposition is modelled after a paper of Birch and Davenport [1],

An estimate for the size of n, conld be obtained from our work. How-
aver, since such an estimate would be exceedingly large compared to
the anticipated value of 5, we have been content to demonstrate the
existence of #,. Accordingly, we have often used. very crude inequalities
when sharper ones could have been obtained.

In the case where the quadratic form is mdefu:nte, reasonably satiz-
factory results are known. In a long series of very complicated papers,
Birch, Davenport and Ridout, separately and jointly (see [5] for full
list of references) proved that an indefinite quadratic form. in 21 or more
variables takes on arbitrarily small values at integral points. It then
follows from work of Oppenheim [7] that the values of any real indefinito

" quadratic form in 21 or more variables are either digerete (when the form

is proportional to a form with integer eoeffmmnbﬂ) or are everywhere
denge.
2. We can write

Qw) = D iyom; = A,
e

Wwhere 4 = (4;) is a positive definite symmetric matrix and & = (@, ..
«vy @), Then
. »
Q@ +a")— Q") = edn’ + 20" A2 = @ () +-2 Z_Ajm,, _
. gm1
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where 4; = ZAi,m’f‘. On - relabelling we may suppose |[4;] = max{4,],

and - by replacmg x* by —x* if necessary, we may luppose A< 0.

“We set

= —24,, By = —24,,..., B,= —24,.

Since  is nonsingular and the 4; = X 4,7, it follows that P and max |u]]
are of comparable gize. Hence, in the proof of the theorem we may assume
P to be fixed, but arbitrarily large. In the course of our argument, the
notation X « ¥ shall mean X < ¢¥ where ¢ i3 a constant independent

of P.

Qince < is positive definite,

iz >0, i:""lr_"'i_w’)

and hence we can write

>l i=1,..,%.

If we satb _
Fl@) = Qz+z")—Q(x"),
then )
(@) F(x) = X by~ Py — Byt — ... —Br2,,
where A = (A;) is a positive definite symmetric matrix and
3 I k>l i=1,..,mn
(4 P = |Byl, 1.7 =2, .0
We seek to show the existence of integral o # 0 such that
| \F(x)] < 1.
Luvua 1. Suppose n > 4m2 = 16 and that Ly, ..., Ly, are m linear
forms in @y, ..., T, SGY
‘ n
Lizzyijmj3 i=1,...,m.

=1
Then, for each positive real number P 2 4, there emist integers ©1y ..., Ty
not all 0, such that
oy < 2P, G =1, ...,y

and

n
[Tyl < 22\%’;']13("”“)_47
i=1
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Proof. Let @ == (24, ...,%,) run through all integer points in the
n-dimensional cube: |z < 32" 41. The number of such points exceeds
P5™, Tor each such point we obtain a point L = (Ly(i), ..., Ly (%)) in
the m-dimensional box: |L; < 2 y (BP™1). Divide ‘rhls box into

equal subboxes by dividing the mnge of each coordinabe into [P+ .11
equal parts. For each 7, the length of the side of the subboxoes is less than

S gl (P 2P0 < Zry PO,

Since the number of subboxes is less than 1?5"", gome yubhox will contuin
at leagt two distinet points &, 2™, and the point 4 = & —x® gatisfies
the conclusion of the lemma.

Lemya 2, Let F(x) be as in (2) and suppose n 2z L76, Then there emisls
an integral linear transformation T empressmg Loy ooey Byt terms of 4y, o0vy ¥
suoh that rank T =6 and

(8) H(y) = H(Yyy ... Yg) = F{Ty)
. 6 :
= 2 W+ 2 &Yy — LY ”“Z%Jln
1 Rt~
where
{6) eyl €P7,  IKi<ji<
(7) lex] €P% 2L k<6,
and '
® pr=ta, 1€ p €PN 2<i<6,
whence ) _
. &
(N ' 1€ nlui & pin,
Y ‘

Proof. Since § is positive definite, the values of () at non-zero integral
points 2 must be positive and bounded away from zero. In fact (=)
= O(max|z;|*). For otherwise there would exigt an infinity of rational
points ) lying on the boundary of the eube: |z,| < 1 for which Q (&%) - 0,
But the points 2% have an accumulation point 2% also on the boundary
of this cube and Q(2) = 0; contrary to @ being pusmwc definite.

If 4 is an integral matrix, then the coefficient of 1 ¥i in @(4y) i the
value of @ at '), where e iy the ith column vector of A. Hence the
coefficient of each 4% in Q{Ay) is > 1.

We now proceed to determine the integral matrix specified in the
Lemma. We do so using Lemma 1 and a method introduced by Birch
and Davenport [2]. Tet P be a large real number (> 4). We shall choose
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in succession 6 integer points e, ..., a® in n-dimensional space which
shall be the 6 column vectors of 7. We take a® = (1,0, ..., 0). To defer-
mine a?, we apply Lemma 1 (with m ='2) to the linear forms

Ly = Poy+ Byty+ .. + Byt

k(3 .
L = Zy,jmj = a¥ A,
Fo1
so that

(711? LR ] ?m) = tl';(l)/i,
By Lemma 1, there exists a non-zero integral point @/ guch that
a(ﬂ)i <P10ln je=1,
|L (a(v))l <9 (P+2]B l)-P —4+(2/n} <P—5/z

1Ly (@®)] < 2( Y lpigl) P4 < 2( Y|P < P

For the choice of a¥ we apply Lemma 1 with Lo, L, as abdve and
I, = a® Ax'. We obtain a non-zero- integral point a® such-that

la®| <P, j=1,...,m,
\Lo(@®)] = |Pa® + ByalP + ... +B,al) < 2nP3 0 L P58,
Ly (@®)] = ja® Aa' < opAP=+HEm g pm
Ly (a®™)] = Ia‘z’./la‘a)l < AP Pt & P“”ﬂ

where A = max |i;!. *
‘We continue inductively, applying Lemma 1, to find &
such that

35
) g, g

af < P¥, v =1,..,6;j=1,...,n
(10) . 1PaP+Byal) + ... 4 Byal)| P,
(11) | ‘a("}Aa(ﬂ)‘[ £P T 1< r< u<b.
Then we alse have
(12) 1< (e Aa"] <1>1°vm y=2,...,6.

Let T be the » by 6 integral matrix whose »th column is a*. Then
H(y) = F(Ty)

has the form (5) where u, = Ay, & = a® Aa®) &, =20 Aa? and

= Pal"+ ... +B,af.

The relations (11), (10), (12) imply the relations (6), (7), and (8).
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Now .
iy Fers oo o
TAT# — %5124 f“z s %526

.........

and ginee w; > 1 and je; <P~ it follows that 74T, and hence T,
has rank 6. This completes the proof of the lemma.

Since T' carries non-zero integral points into non-zero integral points,
it follows that if :

|F ()] = 1@ (o + " ) —Q ("
for all non-zero integral o, then

|H (y)] = IF(T )21

)21

for all non-zero integral w. :

ProposrtioN 1. Suppoese H(y) safisfies the conditions specified in
Lemma 2 and suppose |H(y)| = 1 for all non-zero integrol y. Then, if P iy
sufficiently large, there is mo solution of

(13) ‘ . Wl ?/1

in integers Yy ..y Ys, with y; # 0. .
Proof. If there Wore:suoh a solution y of (13), we should have y, > 0,

o kel —Pyyl <}

and
lu‘l:rﬁ. < -Pyl"l’ ‘%‘,
‘whence o ‘
0 <y €P;
and : :
palat oo Fpels € Py, <P
whence .
‘ Y €Py k=1,..,0
But then

legyeysl €P~F and gyl €P7Y

and if P is sufficiently large, wo have [H (y)| < 1;

contrary 1o our hypotho-
§ig.

3. It follows from (9), on taking » sufficiently large, indepondently
~of P, that we can assume :

(14) : P> ( )%

where U is a suitable absolute constant to be determined 1aj:or._
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v In view of Proposition 1, it sufflces, to prove our “theoren, to show

that the assumpmon

i+ ‘i'ﬂe% 4??!1[ =% _
for all integers.y; #.0, ¥s, ..., Ys; Where g, > 1 and P satisfies (14), leads
to a confradiction. Wo ghall show that this assumptlon leads to a real a
such that agy, ..., ag, are each very well approximable by rational num-
bers (Proposition 2), and then, in Bection 11, we show that this leads
to a contradiction.

ProPORITION 2. Suppose

j ‘”:_27 wery 67

(13) 1<€u K1, 1<y,

and N

(16) P> (#1 )”‘“’

for a suitable constamt & < 1]10. Suppose fwthw thot

(17) i+ o+ ugys— Pyl = N

for all integers y, # 0, Yoy ..o, Y. Then there ewists o real number o with

(18) P fax P
such that, for § =1, ...; 6, ' '

(a;, ;) =:17‘

R T
(19) op; = ?J.+ﬂja a; # 0,
J
@) Pt
and
(21) ' |B;] L P,

The proof of Proposition 2 uses the Hardy-Littlewood circle method
and is modelled on a paper by Birch and Davenport [1]. The proof consists
of & sequence of lemmas and we shall refer to that paper for proofs of
a number of the lemmas. Throughout this sequence of lemmas, the hypo-
theses of Proposition 2 are assumed even if they are not explicitly stated.

4. Let

(22) M =maxu, m=ming and = ...

We define exponential SUmMs .

(23) 8i(a) = D> elawyil, j=1,...,6,
mel ﬂ,<u,<l°12#§ t‘?

and

{(24)  T(a) = 6[0(/&41@/1 —Pyy)] = e[~ 0P2/4M1]S1 a),

9P {Ldpy <y <Pluy
where e[6] = ¢
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LuMMA 3. For each positive integer k, there ewists a real function K (a)
of the positive real variable a, sotisfying - .
(25) |K (@) < O(k)min(1, a by,
[O(k) @& constant depending on k] with the following property. Let

(26) $(f) = ﬁfe[ﬁa]ff(a)da;
then '

(27) 0yl for all real 8,
(28) p(8) =0  for |6]=4,
(29) p(6) =1 for 10] << ¢-

Tor a proof, see [3], Lemma 1.
CorROLLARY. We have

oo

(30) ‘ # [ T(a)8y(a) ...

[

Sg(a) K (a)da = 0.

Proof. By (23), (24), and (26), the left hand side of (30) is
Z---ZV’(.“1?/§+ cor Yo~ Py,
Y1 g

whers the summations are over the intervals specified in (23) and (24). By."

(28) and (17), the sum is 0.

Define ‘
_ Piat

(31) - I{a) :‘"-f efad?|dE.

- . F,"T,ui

- LeMMA 4. For
(32) _ 0< ax (8Puitul)!
we have
(83) Sia) = (@) +0(L), j=2,...,0,
(34) T{a) = o[ — aP* 4T 1 (a) 4 O(1).

Proof. These results are special cases of van der Corput’s lemma
(see (4], p. 65, Lemma 16). The proofs of (33) and (34) follow that given
for Lemma 2 of 1] '

Lemma 5. For o> 0 we have

(35) - | (a)] < min(P, a" P,

icm
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For a proof see {1], Lemma 3.
LeMMA 6. We have

y(eu; Turip)

(36) 2 [ T)8a)... S(a) K(a)de = N+R,
@

where

(37) - Nz B3x107 u 2Py, |R| < (MIT}P

Proof. The interval of integration in (36} lies in the interval (32),
and hence (33) and (34) hold. Furthermore, by (35),

u¥1I (@)] <€ ptmin(P, a=tPY
and the right-hand side is > 1 for all « in the iﬁterva.l of integration.
Hénce (33) and (34) give
T (a)8y(a) ... Ss{a)—e[ —aP*{dp, 11T I%(a)|
| <ﬂ-*(2y}) min (P5, a=3P~%) < (M /I)min(P5, a=3P-%).
Since |K(a)| <1, it follows that .

v(eu tartp)
oz f T(a)8,(a) ... 84(a) K (a)da

1}
1(euT ¥ ) ‘ I o
=2 [ e[~ aP4u)I(w)K (a)dat O M} [ min(P%, a5 P~*)da).

0 0

The integral in the error term is O (P*) and hence this term can he absorbed
in K. Thus it suffices to consider

yuytartp)
(38) nra f '

o

e[ — aP*du, 3 1%(e) K (a)da.

-The ertor introduced in extending the range of integration of (38)
t0 oo is

ar ]

Yyt ey
< T P~4(8u M PY
<L (MITIP,
ginece 1 <€ uy €1 and 8 < 1/10, Whence. M £P.

Pt %da
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It remains to find a lower bound for -

(39) N =117 [ o[ — aP*[4p ]I (0) K (o) da
Q
By (31) and (26), we have
Pt P o
my = | f q,;(gi_|~ o EZ’;wwm) dé, ... dE,
41,

et pd

Pl Papg ‘ P dn. . d
fw(ﬂ1+- = 1 ) e 706

__o-6
=7 (??1 AL

PRiisuy  FYaoug
The parallelepiped #:
| P uy <y < 9P (2004, J =2, -~-I: b,

Pt 1
Mt e +9?5““@‘1‘ <- 3
lies in the region of integrzu’bion. Hence, bv (29),
TN - of.. f M- 2763~ (P*/49u,)" *{Mﬁjjwl n”‘*dn}s
(my+re 7wt b g,
= 2‘5-3”1-7-(.068)5/05;213“ = B.3 % 108 ur2 Pt
This completes the proof of Lemma 6.
5. LeMma 7. We have
T wit _
(40) [ 18;(a)*du € u7*PtlogP, j=1,...,6.

0

For a proof see [1], Lemma 5. Ag an immediate consequence, wo also
have

.ufl

(41) f I7(a)*de < PHlogP.

[i]
Levyva 8. We have
ll(B,u_i m*P)
(42) [ 12(@)8s(0) ..
1/(3“;5‘1.‘1]’15) .

S(a)ida <€ (M [T} P*logP.

Proof. Since |T(a)| == |B’1( )i, we can replace the T'(a) in

42) b
Sle). - - . : ( ).y
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Let
m=>MAh<...<t =M,
where the 1, are the s in some order. Let

8 (a) = >

' 15/7;:{ a}<m<P{2ui z}

elad;2?].

Our lemma reduces to proving

vy tmipy

(43) [ 18ta ...

8! (a)|da < (M [ITiP*logP.
v ey | |

We note that by Lemmas 7 and 4,

lﬁi

(44) f 18} (a)*da < 272 P log P,

(45) 87 (a) = ZE*I(aHO( ) on 0 a< (8utAP)
and in general

(46) w 187 (a)} €27 ip,

We split the interval of integration in (43) into 5 submterva.ls
(47) I Buiti PY < a < BTt AAP) T,k =1,..,5.

Ifg < k, then
< [0, (Bu P AP

and we can use (45) and Lemma 3 to estimate [S} (e)]. Since the left-hand
endpoint of I, exceeds P2, for a in I, we have

(48) 187 (@) 4P e, 1<i<k
For j>k, we use (46). Hence in I, we hanre

81(a) ... 8% (a)| €L Fa kP
Thus, provided %> 2

(49) f 187 (a

H—iPﬁ ~2k —k

(a)|da <€ [T -0 ps—# < (M},

gince P > H2 > M*
There remains the case & = 1. On I, |87 ()| still satisfies (48), and so

I8i(a)| <4 on . I,

gince 1€ 4, < gy €1, We use (46) to estimate |8% (a)]. For j =2,...,85,
and P large, we have. : e
> (8#1_ li'P)" ’

7 — Acts Arithmetica XXIL
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and hence I, < [0, 4;7%]. Hence, by (44), we have
[ 18} (a)*da < 3* P*log P,
I,
Combining these estimates with Holder’s inequality, we obtain
[18%(a) ... S5 (o)l da < (M UT#PYlogP.
13
This last inequality, together with (49), gives (43) and completes the proof
of Lemma 8. '

§=2,..,5.

6. LEMMA 9. I’m" any fized positive & < 1/10, there emscs a congtant
0,(0) such that if P is sufficiently large

el

(50) |

1y tmie)
Proof. Let |

[81(a) 8a{e) ... 8g(a) da > Gy () u T PA,

=% fmT(a)Sa(a) .Sﬁ(a)K(a)da.

By (26) and the trivial estimates for |1 (a)| and |S;(a)|, we see that

R'|< [ AP0 (kymin(l;

o ‘

Tf we choose k = [6/d]-1 and set C1(8) = C(k), 02(5) = kC (%), we obtain
(b1)- .. IR'| < Oa(8 )ﬂ&k

Using the Corollary to Lemma 3, Lemmas 6 and 8, and the estimate
(51}, we obtain

a N da = kO (k)T PSR,

. 1:‘6
(52) 1N+9¢ f
Yy Ymip)
(MM} PogP + Ca(6 5)i1- *<P‘10g1’ €
It follows from (25) and (B1) that

T(a)8,(a)... Sﬁ(a)If(a)dﬁl

(I

Pd
0 [ IT(@8(a)... Sila)|da
e i)
. .‘ P"‘ . - . . .‘“
=\ f T{a)Sala) ... Syla) K (&) dah“N opsmgl) 030484171,
II(B# mip) . L ,

Where 0, is the 1mphed consta.nt in (52) Thls inequality exceeds
B 10T A TP
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provided P > G, fTlogP and P* > €,0,(9), for suitable constants ¢, and
C,. Since P* = TV » ITH, this iz clearly the case when P is taken suffi-
ciently large. On setting C,(8) = 6-107%/C,(8) and substituting |8, (a)l
for |T(a)| we obtain (b0). '

From now onwards we shall be concerned solely with values of a in the
interval

(b3) S BuTtmiP) Tt < a < P

7. For any integers a, ¢, with g > 0 and (a, g) = 1, define

a4

(54) Sug = D, elaa?/g].
=]
Levyva 10. We have
) . - 18,40 € ¢

For a proof see [9], Chapter 2, Lemma 6.
LuxmA 11, Suppese that A > 1 and that o 8 a real number satisfying

(1]
(56) | a = —é—+ﬁ,
where
(57) (@, ) =1, 0<qg<4, 8f<g 47"
Then
. . 34
(58) Y elwt] = q7'8,, [ e(BE)aE+0(glogy).
%A.<m<§.d ) %A

Proof. If one makes allowance for the difference in the range of
summation and integration here and in Lemma 9 of [1], then the same
proof suffices.

CoRrOLLARY. Suppose that

(59) - amz?wﬁj, j=1,...,6,
7
where o
60)  (apa) =1, 0<g<Puityt SIﬂ;I < q; ‘P“ﬁqm

Then

O8] < g dogPymin Bt BB,
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. Proof. The hypotheqes of Tiemma 11 are satisfied when A = Pu;tu y
o=ty g = g, and a iy replaced by ag;. The sum. on the left in (58) be-
comes S§;{a). Hence ‘ .

P/z,'.'% 1«% . Ly

f e[BE|AE+ O (gilogy)-

S;(a) = q:Tl ap,
P/':',u!{ ,u?;f

We can estimate the integral ag in the proet of Lemma 5 and bownd 8.,
by (85), to obtmn
0l < g5 min(Pa, P+ dlogg,.

NOW g < Pu;t so that ¢f ¢ ‘1‘1’#; , and B £ Pl ud w0 thab
g5 < g P b |61 Hence _

[8{a)] €

and this gives (61}, since g; < .P.

7 (log ¢;) min (Puj, P 1#} 185"

. 8. Forany ¢ in the interval.#, defined in (53), and Lor aﬂ.ohy wd g e, 6,
there exist integers a;, ¢; such that

(62) (a5, ) = 1, 0 -< ;% 8Pui
and
: C o,
(63) ’ ' My == i) 4+ ﬂj}
. 2
where
(64) ‘ BT < g (BBu Y

Thus, for a in.#, (59) and (60} are satisfied, and conseq_uenﬂy (61) is valid.
- Furthermore; it should be noted that when o iy in #, none of the
are 0. For if -a; = 0, then -

#1;"'1
el = |ﬁj]< Y

contrary to (53).

Let ¢ denote the gubset of the interval consxstmg of those o for
which

(65) 18)(a)| > PVt j=1, 0,6,

LEMMA 12, We have

'66) | J 1832} ..

8(a)|da L P T
s o
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Prool. In.#—_#, one of the inequalities (68) is false, say for j = 6.
Thus

67 186(@)] < PR T4,

By Lemma 7 and the periodicity of S8;(a), with period u;', we have
Pd

[ 18,{e)*da <€ w7 P** logP.
1]

It follows from this and Holder’s inequality, thab
Pd

[ 18ata) ..

0

Sy(a)do <€ (uy ..o ) TP logP € T4 pd P+ log P,

From this, the inequality (67) and the trivial estlmate for ]Sl(a)l L Pluy,

it follows that

[ 181(a) .. Ss(a)lda € T3P+ logP,

S
whence (66) is valid.
Levma 13, The set 7 hag positive mensure and hence is a hon-empty set.
Proof. Tt follows from Lemmas 9 and 12 that

f (e

whence the meagure of # mugt be positive.

SG(O‘- Jda> 0

9. Proof of Proposition 2. By Lemma 13, the set ,# is non-empty.
Let « be an element of #. Then there exist mtegers @, Gy, With a; 5= 0,
satisfying (62), (63) and (64), hence (61) is valid. But (66) is also va.hd for
ain # and hence wo have '

P8 pr-tyt £ g7 P (log Pyprt
whenee o .
(68) - g, < P¥(log Py 1Tt € P¥, '
since

: I < P%,
It also follows from (61) and (65) that, for j =1,...,
PVt £ g7 log Pyt P BT

6, we have

whenee . .
A € PV (log P)IT i} < P2 (logP) 1T

and therefore : _
(69) - 6] LB,
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Finally, we note that since the e; # 0 and sinee § < 1/10, by (68)
and (69) we have

1 ;
(70) apy = — +ﬁ1 2 — |y 2 PP % P,
¢ 1
The inequa.lities (68), (69) and (70) imply (20), (21) and (18). This
completes the proof of the proposition.
10. LuMMA 14. Given positive integers by, ..., by, there ewisls @ pasvﬁt@'ye
integer B < O(by ... b’y wheve O is an absolule consiant, such that for all
positive integers t, the equation

(11) by @i+

is soluble in rational integers. _
Proof. We first show that there exists a positive integer N < 4b, ... by
such that for each positive integer ¢ and each prime p, the equation

.+ byl = Bi

(12) biait ... 4 bgui = NY

i3 soluble in the ring of p-adic integers.
‘ For each 7 and each prime p, let 4, ; be tho integer such that p*rii|db,.

Set
Ap = MAX Ay 4.

~ For almost all p, we clearly have 2, = 0. Set
5= []#
»

N<4b,...b; and 4b/N.

Clearly ,

Agis well kuown, for every prime p, the oquation b?al 4 ... +bial =0
has a p-adic integral solution a == (ay, ..., ;) With at least one coordinate,
SAY tpp), & p-adic unit. Set

j#1(p)-

Then for each positive integer ¢, there is a p-adic integer u such that

~ 5 _
Z bj Cl;a) == 4.b_r(m CLI{W)’H; T NE .
I 1I(p)

Brg = Ogpy(1-bu)y @y = oy(l—u),

Bl ..+ buh = 2u(br) o) —

Hemnee ¥ has the desn‘ed property.
It follows from a theorem of G. L. Watson [8] that J.t (72) in not
soluble in rational mtegers, then :

Nt< 0" Jbg) Byt oo byt
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where € is an absolute comstant independent of b,

. [Ul(bzn-ba) (bat .. +b5)w]
t N

.y bg, Nt. Choose

“+1
and set

B =¥,
Then for each positive integer ¢ the equation

byt + ... +h,al — Bt

is soluble in rational integers, Furthermore, without loss of gemerality,
Wo Ccall Euppose
b; = maxh,
T

and then we see that
B = Nty< 2-5%2,b, ... b,bi",
It we let ¢ =2-5"*C,, it would follow that
B O, ... b))%
This completes the proof of the lemma.
11. Proof of the theorem. For a given &, we choose

50
(73) n > 5

We saw in Sections 2 and 3 that if the theorem is false, there exist
an infinity of P, tending to oo, and g, ..., #s (depending on P and the
quadratic form) such that

1€ <1,

IT = Hy oo

1 <,Lt:f' <Pwﬂn,

e < ono,’ﬂ. < .P“, .

§=2,...,6,
whence

and such that A
it oo +uels —Pyal > %
for all integers y, £ 0, ¥,, ..., y5. But thege, along with the assumption

d < 1/10, are just the hyjpotheses of Proposition 2. Thus it follows from
Proposition 2 that there exists a real number o such that

{74) lagyyi+ - +_‘W&%‘“Pyl| >>_Pﬁ96; .
for all integers yl Z 0y Yy erey yﬂ.']:'{'ence, onputting y;, = ¢;2,7 =1, ..., 6,
we have : '

(T8} laygei+ ... +aele®i—aPqiz+ B giel+ ... +Badidi]l > P7%,

for all integers #, % 0, 24, ..., Ze.
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By Lemma 14, there exists a positive infeger
B (0 -'-“7’69.'6)3[2:
guch that for every positive integer I, we can solve

Uy Godt+ oo + agge2; = Bl

in rational integers 2,, ..., %,. We have
(78) B € (g o gl @) < PO,
If
'Bt < P2—-&76,
then
‘Z 4| < Zlﬁaiwﬁ € PrHRPIPt I g P,

also

: 11414l € P‘“’”,

provided § < e, <L P,
Hence, if we can find ‘positive integers z,, ! such that

(77} 0 < Bt < .Pz*'”",

(78) 0 <2 < P17

and _

(79) |tb1gz21 + Bt — aPq, 2, £ P,

we will have contradicted (75), and thereby demongtrated the truth of the
theorem., h
Put 2, = Bu, then the inequality (79) is equivalent to
 jayg Buttt—aPgul € BTIPT,
and it then follows from (76} that the inequality
(80) [t < @y gy Bt — aPg,u| <€ P10
implies. (79).
There exish intégers « and v such that

(81} 0<us P“"",‘  |aPgu—n| < PN,
Putb _ _ '

- (82) m ' t = v—ayq, Bud

'We now show that if '
(83) S 34861

then ¢ and 2; = By satisfy (77), (78), and (80). .

icm
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Clearly «g, P = 6, P+p5,q,P > P and a,qBu <P"™ <£P° pro-
vided (83) holds and P ig sufficiently large. Hence ¢ > 0. Also

Bt < By € BaPg,u € PY3 g pi-i1
and o
«’0“1 — B’M <P3lod <P1—-19:5,

provided (83) holds. Hence, for onr choice of 4 and {, (77) and (78) are
gatigfied if (83) holds.
Finally we note that by .(82) and {81), we have

it_"“lﬁlB’ug”‘anlu] = ['Uman‘u] <P“160!’.

Hence (80), and therefore (79), hold for our choice of 2, and V. .
Thus it follows that if we choose 6 to satisfy (83) and choose n to

satisfy (78), then the assumption that the theorem iz false for such n

leads to a contradiction. Hence the theorem iz true for sufficiently large n.
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