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ACTA ARITHMETICA
XIX (1871)

Gauss sums and the matrix equation X7 =0
over fields of characteristic two*

by

JOoHN C. PERKINS (Clemson, South Carolina)

1. Introduction. Let F, denote the finite field of order g — P, p
@ prime. Let 4 and B be symmetric matrices of order n, rank ., and
order s, rank %, respectively, over Fq. Carlitz [2] has determined the
number N (4, B} of solutions X over F,, for p an odd prime, to the
matrix equation

(1.1) XAXT =B

of arbitrary rank when n = . Furthermore, Hodges [7] hag determined

‘the number N (4, B, r) of sx » matrices ¥ of rank r over #,, p an odd

prime, which satisfy (1.1)." _

One difficulty encountered in attempting to enumerate the solutions
to (L.1) over 2 finite field F,, where ¢ = 2, ig the fact that if A is non-
singular symmetrie, then 4 is not necessarily congruent to ‘a diagonal
matrix. In fact, if 4 is symmetric with zero diagonal, then 4 iz congruent

to the matrix
¢ I,
I, 0]

The purpose of this paper is to determine by nieans of Gauss snns
the nwnber N (1, 0} of golutions X over Fy, ¢ = 2%, of the matrix equation
XY = 0, which is a special case of (1.1) with 4 — I,and B = 0. N (I, 0)
is given by Theorem 4.2. _

In ancther paper (8], the author hag enunerated the s x n matrices X
ol given rank r over F,, ¢ = 2% such that X X7 — 0.

In finding N, (I, 0), we use a method similar to that used by Carlitz
to determine N, (4, B), and which employs Gauss sums over finite fields

* This paper is essentially Chapter 4, Section 1 of my docloral disseriation under
direction of John D. Fulton and submitted to the graduate faculty of Clemson
University. -
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of order g = 2%, also used by Carlitz [3]. The Gauss s over #,, g = 2%,
involve use of quadratic forms over #, dealt with ]'I].‘SGGTJIOII 2. Thrm}g}.lont
this paper, unless otherwise specified, K deno}tes & f;el@ of cha;*a)ete;’lgtlc 2,
while ¥, denotes a finite field of order g == F°. V(K denotes an a-dimen-
sional vector space over I

2. Quadratic forms on ¥V, (K}. In this section, we develop some of
the theory of quadratic forms defined on fields of characteristic two
necessary. for the understanding of the applieation of Gauss sums to the
mabrix | équdtion XX* =0 over F,. For o clagsical treatment of this
theory, the reader should examine the text by Chevalley .[41:]:' _

A quadratic form on V() is a function § from V, (K) intoc K with
the properties:

(2.1) Q) = 22Q(x) for Ae K, we V, (L),

and .
(2.2)  the mapping ¢ from V, (K)x V¥, () into IC defined by

gle, ) = Qz-ry)+{=)+Qy), (2, y) eV, (K) XV, (K)
iz a bilinear form on V, ()X ¥, (K).

Tt ix clear from the above definition that the bilinear form ¢ iz sym-
metric; that is, ¢z, ¥) = g{y, @) for all @,y in V, (K). Moreover, g(z, x)
=Qat+a)+Q») -+ (z) =0, and g is allernating. . N

Tet ¢ be a quadratic form defined on V, (K} with a‘ssocla,tec‘l b]lmt%a_m
form g. Let & = (14, ..., %,) be a basis for V, (K). By extending prop-
erties (2.1) and (2.2) throngh induction and bva,r_it_ing E = (&, ... &)
for & = &,y +... + &, 4,, we obtain the expression

I
(2.3) QUE) = DTEQu)+ D &gl w).
=1 p e Sl L7
However, if 4 is properly chosen, the expression (2.3) for @ takes a par-
ticnlarly simple form.

Dickson, ([6], § 189) implies that a speeial hasis ean, be chosen for
V,(F,). This basis gives Dickson’s canonical forms, which can be fonnd
in the following theoreni.

TaworsM 2.1. If Q is o quadratic form of rank n on V,(F,), there is
o bosis relative to which Q takes one and only one of the following forms:

(24} Q&) = § L+ &t oo 6 &ty (0= 2v41),
(2'5). Q(é) = E1§1u|-1+ 52_51-+2‘F ﬁ— f,, Egv (ﬂ == 2’1)), or
(26) Q) = Ebnthbnt o Fhaba T SR TEE (n=2),
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In (2.6), §# is any element of F, such that the polynomial itz p
ig irreducible over F,.

We can alro obtain a corresponding theorem for quadratic forms of
rank » < n.

THEOREM 2.2. Lel  be a quadratic form on Vo (Ey) of rank r < n-
Then there is a basis relative to which @ takes one and only one. of the Jollowing
forms:

(2-7) Q(E) = & §JJ+1+ & fp;_g-l— +§p'§3”+1+ §EIJ+1 {7 . 21)_1,_1)7
2.8) QO = && it bt . L8 G, (r=2p), or

(2~9) Q(g) = ‘Sl §7H~1+ 52 Ejf}+2+ e + Epnl Ez;n—l—l' ‘Sggl_f" E}J 527)""ﬂ£§7)
‘ (r = 2p).

In (2.9), 8 is any element of F, such that the polynomial z?-- x4 8
is irreducible over F,. Henceforth, for # even, we shafl sy that @ iz of
fype T =1 or —1 according as @ hag the form (2.5) or (2.6), respectively.

In (2.3), let

Qu) = o (L<i<n),  glu,u) =a; (L<i<j<n).
The expression (2.3) for @ relative to the basiy % becomes

(2.10) RE = D &gay
1<

This s not the only expression which may be written for @ relative to the
basis #. It is true, however, that (2.10) is the unique expression for Q
relative to &, where the sum is over all %y 4, such that 1 << < j< #. Con-
sequently, (2.10) suggests that we associate with ¢ a unigue upper trian-
gular matyix 4 = [ay], with a; = 0, 1< j < 1< n. Clearly, () — EAET,
and we say that A is the matrio of Q relative to the basis B. Furthermore,
if ¢ is any upper triangular matrix over K, then relative to some bagis
the function on T, (X) defined by (&) = &0&7 is a quadratic form on
VW (K).

A symmetric matrix with zero diagomnal is called an alternate matrix.

Albert ([1], p. 397) has proved ihe following

THEOREM 2.3, Let @, and Q, be quadratic Jorms on V, (K) with matrices
Ay and A, , respectively, where A, and A5 are not necessarily upper triangalar.
Then Q) = @, if ond only if A+ A4, = N , where N is an alternate matrian.

The next theorem follows directly from Theorem 2.2,

TurorEM 2.4. If @ is o guadratic Sform of rank r < n on V. (F), then
there is ‘a basis for T, (Fy) such that the matriz of Q relative to this basis is

G2v+6 0
0 o)’
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where Qv 8 =1, Gyyy 18 (Zv 8) X (24 6) and is one of the fellowing:

0 I,
(2.11) qu--|-1 = 0 s
1
0 1]
(2-12) G:Zv :{ 0 J? o7
0 1,
0
(2.13) Gonpn = i1

A

Now let #, and &, be two bases for V,(K). Let  be a quadratic form,
on V, (K}, and let P be the nxn non-singular matrix relating the two
bases. We now prove o theorem first proved by Albert ([1], p. 398).

TrmorEM 2.5. Let @ have matriz A relative to the basis .. Then the
matriz of Q relative 1o By is D = PAPT+ N(A, P), where N (A, P) denotes
the unigue alternate matriz such that D is an upper triangular matriz.

Proof. Now Q(&) = £A&Y. Thus, if & = P, then Q(n) = pPAP 5",
Hence, if D is the matrix of § relative to #,, by Theorem 2.3, I} = PAP” 4
+ N(A,P), where N{A,P) iz an alternate matrix.

If 4, and A, are upper triangular matrices over I, we say that 4,

icm

is congruent to A, if A; = PA,PT 4 N{(4,, P), for some non-gingular matrix -

P and some unique alternate matrix N(4,, P). Let A be an n X # matrix
over K, where 4 is not necessarily wpper friangular. We say that A is
of rank # if the quadratic form defined by 4 is of rank r. Notice from
[2.11), (2.12), or (2.13) that this is not the usnal concept of rank of a matrix.
The next theorem follows directly from Theorem 2.4 and Theorem. 2.5.

- THBOREM 2.6, If A is an upper triongular matriz of rank v over F,
then A 48 congruent to & matriz .

G, 0
.F,. = »

where 1 = 2v+ 6, 6 =0,1,2, &, 15 rX 7 and iz given by (
(2.12) f 8 = 0, and {2.13) ¢f § = 2.

1) if 8 =1,

The set of all non-gsingular matrices P such that PF,P* 4 N (F,, P)= F,

forms a group. We caleulate the order of this group in the next sechion.
The set of all P over F, such that

-PGmur'sPT‘I'-N(Gzn-\-d ) P) == qu—& '(‘5 = Or ]-:' 2):

iz called the erthogenal group associated with Gy, +'5, and is denoted by Oy, 5.
Dickson ([57], § 115, § 204) hag calculated the orders o.t'_Og,,i_d, §=0,1,2.
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These are given as follows:

(214) (O] = (=1 @ = 1g 0 L (g — 1)y,
@15)  10u] = 2(g— 1) (@ V1)@ FEON 1) D L (1)
(216)  [0nl = 2g'—1) (207D~ 1)@= (@9 1) @D . (P —1) g,

where g = 2%,
The next theorem will be used in Seetion 4.
THEOREM 2.7. Let F, be as in Theorem 2.6. For P and R non-stngular

matrices, '

P, PTLN(F,., P) — RF, RTLN(F,, R)

if and only if there @s a non-singular matriz B such that P = ER, whem
BF,BY L N(F,, B) —
Proof. Suppose _PF,,PT—I— N(F,, P)

= RF,R"+ N (¥,, R). Then

(2.17) B~ IPF FPUR RN (F,, P) (BN = F,+ R 'N(F,, R) (R
It we let B = R™'P, and N(¥,, B) — B~ (N(F,,P)+N(F,, B)) (R‘I)T,
then ¥ (F,,B) is alternate and (2.17) becomes BF, BY+ N(F,, B) =

If there is a B such that P = RB and BF BT+ N(F,, B) =
then,

RPF,PT{RYT

P

+-N(Iﬂr3 B) = F
Thus, :

(2.18) PF,P"} EN{(F,, R)RT = RF.E".

Let N(7,, P} be an alternate matrix sueh, that PF.PY N (F,,

P} is upper
triangular. Then (2.18) becomes

PF.P'-N(¥,,P) = RE,R*+ N(F,, P)+ BN (F,, B)R".

The matyix N(F,, K) = N(F,, P)+REN(F,, B)R* must be the umque ‘
alternate matrix sueh that RF Rl +N(F,., R) is upper triangular.

3. Gauss sums over F,. For o< F,, ¢ = 2%, let { be a mapping from B,
to F, defined by
tHa) = at-a ... L a2,
Then ¢ is & mapping from F, onto the prime subfield of F,; that ig, for
each ae F,, t(a) =m-1, m = 0,1. Here I denoctes the 111111171p1mat1ve
identity in ¥,. Also, (a8} = t(a)-+t{8) for «, B, in 7,
Define 2 mapping e from F,I to the nml’mph(,amve mbga oup {1, —1}

- of the reals by

(3.1) : e(a) = (—1)",.
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where £(a) = m - 1. It is easily seen that e{a--f) - e(aye(B) for all a, 8
in ¥,. The function (3.1) also satisties

(3.2) v !I — ,q ((1 EO)?
r?/ff"gﬁ(l) 0 (a##0).

‘ Let @ be a quadratic form on V¥, (#,), and let (w,, ..., #,) be a basis
for V,(F,), so that if & == &my ... +&,a,, then relative to this basis

Q&) = D E&by.
1= <n
Define
EeTp(Fy)

where the sum is over all & = &w - ... &2, in V,(F,). Write £ ag

(£1y-e-, &,). We note that if P is an 23 % non- .smgulihr matrix over I,
\ T
(3.3) D elREPl = > el@(4).
$eVnlFy) fe V(g

Suppose quadratic forms @, and ¢, are
] rms ), are such that @,(&) = ,(&P)
E;_Tf”n(l.%). Therefore, by (3.3), S(@,) = §(Q,). Oonfa(,qnem.]v, in the mrsuluj
ﬁ? 1;;1 of (g (9@)) IQ may be assumed to be in one of the eanonical f ormd (2.7),
n the pext two theorems Carlitz [3] h
may he evaluated. : ; 131 s shown fow 8(@)

THEOR;JM 3.1. Let
CQE = ) &b (bye T,
legisgiegm

be. o quadratic form of vank n on V,(F,). Then

0 (n odd),

Ml %

)

8(Q) =

(n even),
where © denotes the fype of Q.
TAEOREM 3.2, Let

Q8 = 2 .5«;57'54;; {biye Fy)

iy <n
be a quadratic form on V() of rank v < n. le'n,

0 (r oddy,
Tg(m«-r)fz

8(Q) =

{r even).

Gowss sums and the matriz equation XXT = 211

4. The determination of N (I, 0} Let 4 = [a;] be an s x s symmetric
matrix over ¥, and denote the trace of an % X # matrix H by o(#).
It follows from {(3.2) that

| FEDE (A = 0),
(4.1) o DlelodB) =) (4 =0,

B

where A is symmetric and where the sum is over all & % s upper triangular
matrices B. For every X, XX7 is symrmetrie, and from (4.1}

FETIEN (T, 0) = Z Y‘a (XX"B)),

where the first sum. is over all s s upper triangular matrices B, and the

qe(,ond qum is over all 5% % matrices X. Let B = [ gl A = ey ] and
= [x;;]. Then
. T k3 3
(4.2) AXXTB) = 3 D > g tnby-
. k=1 j=1 i=1

Let a, = (&, ..., ). Dy using the notation B(;nk) = x, Bri, we may
write (4.2) 48

Lﬂé

d(XX¥B) = > Blm).

k

1

Each upper triangular matrix B defines zome quadratic form Q.
Let 8{Qz) = S(B). Write #(B) for the rank of B. By using the properties
of e, (4.1) becomes

n

C@8) RN, 0) = 3T N [T e(Blaw)

B X k=1 .
:;'[8(3}1”= 2 BB ; (B)T
r(Byodd r(B)even

But if the rank of B is odd, by Theorem 3.2, $(B} = 0, and S(B)= e il
for B of even rank #, where v = £1 L‘Lependlng on the type of quadratic
form defined by B. In fact, 7 = 1 if B is congruent to

F 0
o ol r = 2v,

and 7 = —1 if B is congruent to

(oprn O
[{;M 0], ¥ = 2v-4-2,
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. where &, is given by (2.12) and G, ., is given by (2.13). Let n(s, r, 1)

be the number of ¢x s upper triangular matrices B of rank # and type =
We may then write

5

&
PN AT, 0y = Nafse, v, 1) (2B (-1 M oags, v, —1) (g,

d

=

r=2
n reven

=
rav

I

Since every upper trianguiar matrix B ofrank v = 2»-+ 6, § =0, 1,2
is congruent to some unique upper triangular F,., where I, is in canonical
form, n{s,r, v) iz just the number of matrices B each of which has ca-
nonical form

G0
H
0 0

where ¢, is given by (2,12} if » = 2» and by (2.13) if »r = 2 2.

If we take 2 particular ¥, of the form, {4.4) and apply all § x s non-
singular matrices £, PF,PT+ N(F,, P) will give all s X s upper triangular
matrices of rank » and type v. However, duplications may arise in thig
process. We now account for these duplications.

By Theorem 2.7, we must count the number of B’s such that BF, BT -
+N{F,, B) = T,. We proceed as in [6]. Let this number be g(s,r,7)
with # = 2» or r = 2v--2, and let

B, B,
B = )
By B,

where B, is (20-+0)x (2v+0), By in (2v+8)% [s—(2v+8)), By is (s—
— (& 8)) X (204 8), and B, is (s (2w 4 8)) X {s— (2v+ 8)). Then

(4.4) ‘ F, =

27 AT ) 7 ARNIPAXS o
(43)  BEBI+ N, B) = | BTN G By BG-GB,
0 ByG, B - N (@, By)

H

CIEF, is given by (4.4), then by (4.5)

(4.6) B G, BT+N(G,, B,) =@,
(4.7) ' B(G,+6])B] =0,
and _

(4.8)  BG,BI - N(G,, B,) =0.

By (4.6), B, must be in the orthogonal group Oy, s relative to the matrix
G, = @y,,,;. Therefore, the number of ways to chooge B, is known. To

icm
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determine the number of Wajs to choose B,, B;, and B,, we treat the
cases r = 2v-+4, d = 0, 2, separately. Suppose » = 2v4-2. Then

0 I,
, I o0
Gr"{— G? = > 0 1

10

Consequently, @,.--G7 is non-singular, and since B; is non-singular, B,
mugt be non-singular. The matrix B, is arbitrary. The number of ways
to choose B, iz g{s—2v—2), where

Y

(4.9) k) = [ [t =,

ful

and the nwunber of ways to choose B, is ¢* )6~ Therefore,
(»‘L.l[)) Q(sa D42, —1) = iozu+2;9(3‘2”_’2)Q(EHH)(S_EVﬁE):

where |0,,,,! 18 given by (2.16).
The number o(s, 2r, 1) is caleulated in a similar manner, and

(4.11) 6(s, 29, 1) = [0y,]g(s—20) @@,

where |0,,| 18 given by (2.15).

Define a relation ~on GL (s, g), the set of all ¢ X § non-singular matri-
ces over I, as follows: P ~ P  if and only if there iz a B such fthat
BF B" - N(F, B) = F, and such that P = P'B. Tt is easily verified
that ~ iz an eguivalence relation on GL(s, ¢). Thus, ~ induces a parti-
tioning of GL{s, ¢), the sets of the partition being the eguivalence classes
under ~. Iach equivalence clags contains the same pumber of elements,
namely, p(s, 2v-+ 4, v) elements. If # .z a get composed of one element
{from each equivalence class, then the order of # iy just the number we
seel; that i,

s
ofs, 2+ 8, 7) .

We have proved the following theoreni.

THEOREM 4.1. The nwmber of mairices PF,PT4+N(F,, P) as P ranges
through GL(s, ¢), where F, ig given by (4.4), i¢ '

{8, 200, 7} =

g(8)

n(s, 2v+2, —1) =
(5, 2v+2, —1) ols, 2912, —1) ’

or
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where o(s,2v--2, —1) is given by (4.10), o(s,2v»,1) is given by (4.11),
and g(s) is given by (4.9). ‘
Hence, we have proved the following
THroREM 4.2. The number of 8 X n matrices X over F, such thot X X7 —
8 '
5

1 N7 g(s) s~y Q'(b 25-s)/a

reven * odcl
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ACTA ARITHMETICA ‘
XIX (1971}

On a problem of Schinzel concerning
principal divisors in arithmetic progressions

by
. Coarres J. Parny (Bast Lansing, Mich.)

The following problem was proposed by A. Schinzel at the A. M. 8.
Number Theory Institute held at Stony Brook, New York in July of 1969.

QuustIoN 1. Let f(x) be & primifive polynomial and & an algebraic
wumber fleld. Do there exist infinitely many integers « such that f{z) factors
into principal ideals in k% (unknown even for [ linear).

For the case that f is linear, I prove here that the answer ix yes. It
has been noted [2] for polynomials of higher degree that the following
additional assumptions are necesgary:

(i) the content of any factor of f(#) in % iz principal (MacCluer);

(ii) each fixed divisor of f(x) is principal (Schinzel).

Introduction. In the linear cage, that is, when f(x) = ma-b with
(m, b) = 1, it seems reasonable to ask the slightly stronger:

QUESTION IL. Do there exist infinitely many primes of the form mz--b
which split into principal prime ideals in kY

The following example (MacCluer) shows that the answer to Ques-
tion IT is no. (Schinzel has informed me that a similar counterexample
whs found earlier by J. Tate.)

The munber field Q(I/ 10) has eclass number = 2 and Hﬂbmt _clazs
field CF (Q (l/_) Q(l/z, V5 5). According to Arfin reciprocity, a ration-

.al prime p 3 2, 5 has non-principal divisors in Q(V10) when and only

when p splits in Q(l/ﬁ) into two distinet prime divigors, each of which
remains prime in @(V2,V5), in Legendre symbols this is equivalent to

51-6)
-—_— — —_— = —1
P »
which obtaing when and only when p = 1.3, 413 (mod 40). Thus for

instance, no prime of the form p = 4043 has principal divisors in
Q(V10).



