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ACTA ARITHMETICA
XIX (1971)

On the probability that » and () are relatively prime I
R. R. Harn (York)

Let f(n) be an additive function and set

Ty = > 1.

nET
{n, foy)=1

Our ultimate object iz to find the weakest conditions on f which
ensure that

In the preceding paper [1] we showed that in the particular case
w fny = D',

pln
we have

&
T@® = m_HJ( (1ogaw)1“(10g4$)3’4)

where we use the familiar notation log,# for iterated logarithms. Our
immediate object is to extend this resul_t, and we are able to replace the p
in (1) by a class of functions of p which include the polynomials as a
gpecial case.

The integer valued. funetion g{n) will be called & pseudo-polynomial if

g{n-t+k) = g(n)mod k

for all » and k. Every polynomial with ihteger coefficients iz 2 pseudo-
polynomial, but not all pserdo-polynomials are polynomials, and I am
grateful to Dr. Woodall at Nottingham University for constructing an
example, which will be described later. We have

TEEOREM 1. Lef g{n) be ¢ pseudo-polynomial, For each prime p define
n
B(p) = max E "1

=b=sp—1 a—1
wl{ey=0mod p

and suppose that g satisfies the following conditions:
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1) For each square-free q there exists an a, prime to g, for which
g ’

gla) == ¢t mod ¢.

R (B(m )f
=7\
%8 convergent; and '

(i) ]0g(l+ [g(n)u = O (n-tomny
Suppose thal

(i) The series

flm) = 3 g(p).
Pl

Then there exists an absolute constant €, independent of gy such that

o » )
r@ = 3 1 :%a}'—{—()(m D %(M.B;_P)) + *"__)

( (Rt pClogge ]/10 Lq
7, finy)=1

Two qnestions naturally present themselves:

(a) Does every polynomial satisfy these conditions?

(b} Is there a pbeudo—polynonnaﬂ which satisfies the conditions and
is not a polynomial ¢

The answer to (a) is no, even if we restrict ourselves to polynomials
whose coefficients have highest common factor 1. For example, g(n}
= nf+3n-+2 does not satisfy condition (i) for ¢ = 6. However, with
# slight modification we are more successful:

TarorEM 2. Let g*(n) be any polynomiosl with integer coefficients.
Then there exists a conslant m = m(g*) depending on g*, such that the new
polynomial defined by .
‘ gn) = g*(n)-+m(g*
satisfies the conditions of Theorem 1.

I am unable to provide the answer to question (b). However, it will
be. shown that the Woodall psendo-polynomial can be congtructed to
satisfy the first two conditions.

I am grateful to Professor Erdos for finding the proof of Lemma 2
during his visit to Nottingham in 1J69

Proofs of the Theorems. We give plooE of Theorem 2
shorter.
Suppose that g* is of degree d; thus for any choice of m,

g(n) = 0(n)

first, ag it is

and for every p, .
' B(p)< 4.
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Thus conditions (ii) and (iii) are satisfied, and in fact are very weak
for polynomials.
The number of solutions of

g{n) = g*(n)-+m = 0mod g

iz at most &9, whatever the cholce of m, since ¢ is square-free. Since

it follows that for each 4 there exisfs a constant @ = Q(d) such that for
44,
2} - &P < plg)

51’16. hence that every polynomial of degree 4 satisties eondition (i) except
perhaps for some values of ¢ less than Q{d).
We can choose m = m(g*) such that

g(1l) = g*(1)+m == 0 mod p

for every prime p < @, by the Chinese remainder theorem. It follows
that for g < ), there is at least one @, namely a = 1, such that

(@, g} =1,

and for g = ¢ the conclusion follows from (2). This completes the proof.
Proof of Theorem 1. We only give those details of the proof which
ditfer materially from the proof contained in [17].
Lemva 1. For p < Vo and all &,

DU lutm)) -”w(ﬁ@ i 2 )

P logz)’

g{e) &£ 0mod g,

ML
Fim)=a mod p
This is proved ag in [1]; ax Defore our next step is to replace this
estimate over squave-free m by a similar one for all m. The following
lemma replaces Lemma 3 of the previous paper, the proof being due to
Professor Brdos.
. In the next paper of this series we prove rather more: for each fixed »
we have

: 2 Gz, m) <

‘m<

and this enables us to use Hélder’s inequality in place of the Cauchy—
Sehwarz inequality in the application. Therefore the exponent 1/2 of
B(p){p in Theorem 1 could be improved to any fixed number < 1.
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LevarA 2. Let O (x,m) denote the number of inlegers n << # whose square-
free kernel, that is
[Tr:

nln
is equal to m. Then
D Qe m) <a.
e

Proof. We have

[0

Z 0z, m) = \_1}’( /_4 1= > & Z
< k=1 <
e ] Q{;nm?——-nla Q(;nm;r

50 that it is sutficient to show that for each % the number of m’s for which
Q{z, m) =k does not exceed Az/k* for some constant 4 independent
of k and z. For the m’s not exceeding /%! we make the simple eqtlma.tmn

< wfkt
. m<akt
Qfmw, m)=k
Next, let m > 2k, and suppose m hag s distinet prime factors nob
exceeding kt. If » has square-free kernel m and n < o,
n o= mPrpe .. pss, w20

and we are looking for the number of solutions of the inequality

. @
alogp+ ozlogpet- ... + alogp, < log ot o; = 0;

‘which cloes not exceed the number of solutions of
{a+ a2—|— s +o)log2 < 4logk.
Let V,.(y) be the numbe; of solutions of the inequality

|61+ﬁ2+ _!-ﬁ'r Y, ﬁf'ko.
Plainly

[4] RN

=~ 3 V=)< f ra ()t

[

V being monotonio, and sinee V() <

{y+r)

y+1 it follows by induction that

V.o <

Thug it m > ofk,

{elogk-j-5) 4
Q(m;m)g““Wngy G=10g2:
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where s i the number of prime factors of m not exceeding k4. Tf @ (z, m) >
setting s = wlogk and noting that s! > (s/e)®, we deduce that

cloghtulogh e

u
—logk
e ogd

_and so

felrglf e

Hence 2= ¢', an absolute constant which could be derived from the
value of e. Hence m must have at least ¢'logk distinet prime factors not
exceeding %*, and the number of such m’s does not exceed

5’ . \? Y 1 1 e 13\°

y LR F N 1 ‘< _— = = p—

d | d e L s! p 5 )

Pyt pokt posit | m=ma p<;4 pg;‘4
231@2.-.173!

where s is the least integer not less than ¢'logk. Now there exists an

- abgolute constant ¢’ such that

1
E —< loglog k¢

p<kt

and a constant %, such that fer & = &,,

"ogk
e(logloghk+4¢') < Gg%f

and for these % the sum above does not exceed 2kt For k < %, it does
not exceed ¢’ < Bo/k* where ¢’ and B = ¢"’k} are again absolute
constants. Putting these results together we find that the number of
m’s for which @(z, m) >k does not exceed

x| ) B & Ax
w Tmax L, B) e <os

which completes the proof.
LeMMA 3. For all p <Va and all a,

Blp) | /logp
ﬂ; 1<m(]/ P | logm)

fln)=amodp
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Proof. Denoting the sum on the left by § we have,

g = ¥
2

MELm
fimy=gmed p

1 ()| @ ;)

and so by the Cauchy-Schwarz inequality,

log
Sz<(2 Q3(iw m)( 2 [,u,(m)) {:vﬂ(B;p) N 9:‘?_)

Flin) élc;luoii P

by the last two lemamag. The result follows.
Levma 4. Under the conditions on g given in the theorem, for each
g we hove

N o (mexp((}ﬂ/&lﬂg!l))

. 1= 40 ;
= ¢ MO gy
;f(n&)?;d mod @

where Oy is an obsolute constent, independent of g.
Proof. We follew Lemmas 6 and 7 of [1]. Setting

[‘\/a.

Pufo i) = D)~ exp{2in{f g — el

==l

f

we find that

@ [2a]
2 gt g W15, Hg) = /S »E,

=1

N

"

=1
fing)=0mod ¢

Since Fy(s, 1) = {{s), the result will follow if we can show that for those
1 < ¢, I is regulay and not too large in some region to the left of the line
Rs = 1. Now

oyl D)

Fo(s, ) = Fifs, ) [ [ (265, )

‘where J’ ig regular and bounded by ¢° for Res > . It involves the prime
factors o‘i g itself. Here :

q
— > 2 irgla)ify
T,(x, 1) = _S_JIx(a)e :
=

The fixst half of the proof is 1c1e11t10a.1 to the old Lemma 7
we then used the fact that for (I, ¢) =

. Ilowevar,

.
D Ha(@) e = p(g);
g1
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in fact, all that is required is that its real part is bounded away from
»(q), that is, that no ¥, has a simple pole at s = 1. Now in the present
©ase, '

__RT(ZM' h
o (g) «r(q e

(0, =1)

under the condition of the theorem that g(a) = 0 mod g for some a prime
to ¢. The rest of the proof follows as bhefore.

LEMMA 5. We hove that !
xlog,z
2 1= 0(10 1?3 )
Hipar  mawm g loga,
f(mp)=0 (mod p)

provided

logH = 24 (logz)/(log,®).

Proof. Either f{mp) = f(m) or f(m)+ g(p) according to whether
plm or not. Now g(p) = g(0) (modyp) so the sunumnation condition is that
plf(m) or f(m)+¢(0); if we allow either possibility the sum will be
increased. We invert the order of summation and estimate the number
of prime factors of f(m) and f(m)+ g(0). The above sum does not exeeed

Mooy < Y n(%)ﬁ 3 Tzl o)

log &

mwf H<pgxaim msr{H msse/H
olf(sn) or f{m)+a(0} Hm)=0 or —g(0) flm)520 or —g(0)
=8+ 8,

say. Now

: ' 1
sow = St - 02 smax gt

and so fér fm) =0 or —g(0) and m < &,
log {if (m)[+ g (0)]) = O (z4/1°87)
It follows that |

& rlog,
S A/logsr =0 .
< HlogH (loglogm)

We split 8, into two
= _9(0)7

Tarts, 8 and 8, aceording as f(m) = 0 or f{m)
and if is sufficlent to treat §; the other case being similar.
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For any prime & we have

- " 1
8 < \ oo (—f/—) < ¢ _ \ﬁj i

" logH <y e

; T sy
Sovid Hom)=0 (mod @)

F(m) =0 (mod &)

sefl

flm)= 0 (mod w)

l/' ]/10,, dJ l/B(c?)) ,\_]/‘10*(303
( f logy | ¥ o} log s

Now

ady 1 V!
I — 4 — 1
) vle

f(m) () (moc‘l @) Flan}==0 (mod @)

=

<10gm+( (@ )) loom—{—]/ ) (log }
it &< V. Since the series
| N (B(p) )f
b—-f PN D

is convergent, its partial sums are bounded and for any X there exists
an @< K sueh that
B(Cf)) 1/2 o 1
& ) " \loglgk |
Hence for all K < ¥z we have

, & loga
8 =0 _ (
! (logII loglog i

-+ (tog K) (lo "j}))

and we selact
low & logw
( [ ——
8 {loglogay
Since logH > (BAloga})/logsm we obtain our regult.
Proof of the Theorem. Set

Plz) = H_'p
to-3 3

Then for all 2,

po+o Y Y
n=r gle(E) Brg  W=T
al(n, m!) »i(n, 1)

where |0 <1
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And therefore

T)= Yulgp > 1463 M1

g\ P(e) n<elq Pz mEx/p
Fng) =0 mod g p|H{mp)
#(q) *
~o S0 Yl T2l
dF 4 4'P) w<wl ¢

f(ng)=0 mod ¢

5 D RSV D

s<p=H METN H<psoe sl
Flm)=0 or —j(») mod p (ap)=e mod »

6 log
= qm—l—O( )—I—O( vexp{()‘ I/glovg———-—-g—g—x})-{-
™ logz -\ diBle) ¢

12y Ty )
+0( v ( (p)) )Jro(ml/log;r +O(w1ggam)_
P _ logx loglogx

p>z ¥

There exists an absolute coxlsta.nt C, such that every

g < e,

Thus for = = Cloglogloga and logH = (241logaz)flog,r we have

)+0( ¥ (B(p))'”‘z)_

o= logyw B P

T(z) = mx—l— 0(
: Vlocr

This completes the proof.

The Woodall pseudo-polynomial. The pseudo-polynomials form a ring,
of which the ring Z [«] of polynomials with integer coefficients is a sub-ring.
There arve several interesting questions we can ask ahout the algebraic
structure of this ring, for example, whether it is an integral domain;
all we are going to show now is that there is an infinite class of pseudo-
polynomials which are not polynomials. .

Choose (integer) values for g{0) and g(1) arbitrarily. We may then
select ¢(2) = ¢g(0) mod 2 so that it is not the value of the linear function
of » determined by g(0) and g(1).

-Next, select ¢(3) = g(0)mod 3 and = ¢{1) mod 2 so that it iy not
the value of the quadratic funetion dete;mmed. by g(0), g(1) and g(2).
Proceeding indefinitely, we obtain 2 pseudo-polynomial which is not
a polynomial. Thus Z[#] it a proper sub-ring of the psendo-polynomials,
and a coset of Z[w] (regarded additively or multiplicatively) gives am.
infinite class; alternatively, each pair of values of g(0) and g(1) gives
a different psende-polynomial. '
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Remarks. At each stage of the construetion, we have to solve a con-

gruence
g{n) =lmod N

where N is the lowest common multiple of the integers not exceeding .
We may select at least one of the fixst two solutions of this congruence,
go that’ .
g(n) <o

for some fixed 4. But this iz not good enough for u‘mditi(m, (i),

Condition (1) is easily arranged Dby setting g(1) =

Condition (ii} is more difficult. Nothing in the conhbmction implies
that the numbers g{(0), ¢(1), ¢(2), ..., g(p—1) are well distributed mod p,
in fact B(p) conld be p. We can male g satisfy (ii) by selecting ¢(n) to
satisfy congruences to moduli p > n, but so far ag I ean see at the expense
of dropping condition (iii). Suppose that for n < p < ¢(n) {3c1ne increasing
function of n) we set .

g{n) ==

where t,(n) is one of the most deficient residue classes mod. p so far, Then
for all p,

o (R)Imod

B{p) < t7{p)

that is, the number of » for which g(n) is not corrected mod p. Roughly
we wanb

P
(loglogp)*
for some o = 2, so that we sghall satisfy conditions (i) and (ii) if for example

T p) <€

t(n) = n{loglogn)*.
This however, eould make log{L+-ig{n)|} too large. The conclusion is
that there are infinitely many pseudo-polynomials satistyving the first
two conditions, which are not polynomials.
I do not know of any numbepr-theoretic function which presents
itself natorally and is a psendo-polynomial. The ehances are that it would

icm

satisly our conditions, and thiz iz one way that the pwblmn could be

solved.
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O rToukax KoHeYEOT( mOPAAKA ITHOTHIECKHX KPHBLIX

B. A. Mewpamerke {CeepiroBek)

IIycre T — rpmsaa mepsoro popma 4% = xtd-az®+ b, OTIpedeleHHaA
HAT M0IEM PATHOBANLHBK Yuced; P — npomasoasHas Touxa wa T; O, —
PanMOHANENAT TOURA HA T KOHETHOId MOPALHKA 7] v,{6)— ¢ — NOKasaTeNH
wHCAA ¢; [¢] — nenas 9acTs umcna i {§} — paccrodEme oT 1 1o OmsRaiimero
Henoro 4y{eia.

Henero nacroAme#t paSorsl ABIAETCA NOHAZATENLETRO cHelyiomeit
TEOPEME :

Ecat m = p?, e20e p — npocmnoe >3, mo na kpugoii 7 —" =1, 2|
S = 1P {2t 3£ 0) aemcum He mewee Clymny PUUNOHAMBHBIT MoNer.

[TpemBapuTensHO MOKAMEM HECKOTBKO ITeMM. .

Jlmons I Hoopdumamsr moxer kP = {x,, Yot (B =1,2,..) moscuo
GBIMUCAAMD N0 CALHYIOWUNM PERYPPEHMHIM COOMHOWEHUIM :

. . : o
By = Upftyy Yp = V[, Uy = By, U = Yy, wy = 15

P 4 4 2 4, .
Uy = U= VWi, U = v — (P — 4B uf Wiy, Wy, = Dty Vgjo Wiy
npu k= 0 {mod 2)
qu
2 2 2 9 R 2
Uty = Wy Wiy — DWWy g Wiyq , Wrtty = UGy Whey —
2 2 2 2 e 2

2 2
Wppr Wrea
k4

.8 %

2 2 iy 7 2 e
B0y = Vp_y Ve — (05— 4D) %y uhyy Whr Wit
Y ) : z ) 5 T2

npu k = (} {(mod 2).

HonasarenscTro. Cornacmo (opMyIaM clIoMeHMA W BREUETALNA
Touer ma xpusoi T, mmeeM: ‘

_ ‘/I"?C[Z_ b

o ?ﬁsfz—f (a?2— 45)1’;/2
, -
2% Y

405 5 Yigs
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