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Since submitting this paper, the authors [3] have proved that, for 4> 5,
Xg(B) = 10d--27 or 10d—29 according as ¢ is even or odd. It is also shown thet the

normal DS sequence of length Nag . (5) i8 unique but that there are exactly two normal

DS lengths Nagei(#) and Nsg(5).

References

1] H. Davenport and A, Schinzel, 4 combinatorial problem connecled wilh
differential eguations, Amer, Journ. Math. 87 (1968, pp. 684-650.

[2] R. &. Stanton and D. P. Roselle, A4 yesult on Davenpori-Selinzel sequences,
Colloquia Mathematica Sveistatis Janos Bolyai, 4. Combinatorial Theory and
Tts Applieations. Balatonfiived (HMungary), 1860.

[8] — — Resulis on Davenpori-Sohinzel sequences, Proceedings of the Louisiann
Conference on Combinatories, Graph Theory, and Compufing (to appear).

LOUTSIANA STATE UNIVERSITY
Baton Rounge, Louisiana
UNIVERSITY OF MANITOBA
Winnipeg, Canada

Received on 29, 11. 1968

icm

ACTA ARITHMETICA
XVII (1971}

A combinatorial problem
connected with differential equations 11

by

H. DAVENPORT T

edited by a. scamvzen (Warszawa)

1. Let us eall a sequence admissible if it has no immediate repetition
and contains no subsequence of the form a, b, e, b, ¢ with & 7= b. Let
N (n) be the greatest length (that is, greatest mumber of terms) of an
admissible sequence formed from # distinet elements.

The problem of estimating N (n) has been investigated in [1] and
it has been proved there that

5n—C < N(n) = O(nlogn).

(¥ (n) was denoted by N,(n).) The aim of this paper is to improve the
above regult in both directions. We prove
TororeEM 1. We have

1
Nin) = 0,( " Oﬂ).
. loglogn
THEORE_M 2. We have
-
lim -—("‘2 = 8.
no.

TurorREM 3. For positive integers 1, m the following ine@mlity holds
N({lm+1) = 6lm—m—Bl1+-2.

Theorem 3, found in collaboration with J. H. Conway, gives in general
a weaker bound for & (n) than that which can be obtained from. the proof
of Theorem 2. It is included as useful for small values of n. In particular,
it implies ' _

CorROLLARY., We have N (n) = bn--8 and the equality sign is ewcluded
for odd » = 13 and even 7 = 18,

Tt is nteresting to note that ¥ (n) = 5n— 8 for # = 4, ..., 10 {ck [2]).
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364 H. Daveapord

9. Tet M(n) he the maximum length of a sequence formed fr—om
the integers 1, 2, ..., n with the following property: for some r ‘(0 =7 q n)
there exists an admissible sequence of which the given sequerce 15 & f:echon,
and the integers 1,2,...,# occur before this gection and the integers
r+1, ..., 5 occur atter if.

Tmnma 1. B (%) < Di.

Proof. We can write the given sequence asd

oy, By, Ay, Byy ooy Ay, Xy,

where the elements of each =7, ave from 1,...,+ and the elements of
each #; are from r+1, ..., 7, and & 0r H; may be empty but the others
are not. '

Tf we remove the &% and eliminate any immediate repetitions we
get a sequence formed from 1,...,7 of length = 2 L(s7)—s, where
L{s£)) is the length of «7;. Since this sequence is adinissible when preceded
by a sequence containing 1,...,#, it contains no a, o, my a’. Hence by
Theorem 1 of [1]

;L(Jﬂi)gs+(2w-l).

Similarly
g
DI F) < s+ (@n—2r—1),
=1

whence
Min)y < 28+2n-~2.

It remains to estimate s. We select one element o« from each
#; and one element f# from each %;. The elements o selected from
consecutive 7, may be equal and we can enumerate all the selected
elements as -

. : . » (-v.
(*) s ﬁgl)s Oy ﬂgﬂ): cery Uy ﬁ(l 1); Gay ﬁgl): Uy ervy gy ﬁstl): veey Oy ﬁh"‘):

where possibly a; or 4% may be missing. We have
&
8§ = Vi
=

I AN =B =B,9,>1 and either i <<k or § =k, j< I < v, then
the sequence (*) containg the subsequence 8, a, §, &, which ig impossible.
Therefore, the elements 8 with j < v, are distinet and -

;-
2 =1 < n—r.

=1
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Also the sequence ay, ay,...,o, forms part of an admissible sequence
when preceded by 1,...,r whence '
h{2r—1.
Finally, we have '
sgK(n—r)+h<sntr—1,
‘whenes
Mm)<2ntr—1)42n—2.

Y

By symmetry this implies
Mn) < bn—4.

Thig proves Lemma 1. :

We now consider any admissible sequence % of length N (n) formed
from 1, ..., », and construct a partition of & depending on an arbitrary
integer m with 1 < m < n. First we take the minimal left hand section
% of & with m distinet texms, then the minimal right hand section ¥ of &
including all the elements of & not appearing in %. We now write

F o= (U, E, V).

Let for a given set A, CA be its complement, |4| its cardinality and
for & given sequence 7, & be the set of its elements. We put

m' = |77,

m, = [0F* n C¥™|,

my = %" NE* N CYT,
my = %" n ¥ N0,
my = % P gt

m; = |C¥* N 0%*|,
my = ¥ N O,

Then
W = Py~ Wy Wy My,
m’ = a4 g my,
= iy - 11; -y - g Mg .

We note that of the my-+m,+m, distinct elements of %, m, oceur
also to the left in %, and m, occur also to the right in 7, ‘and i, oceur

. in both % and ¥

Lrvma 2. N(n) < N (m,)-- N {m,)-+13n.
Proof, By Lemma 1 we have

L(#) < S(mz—!—m;—}fm,;') < Bn.
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Now enumerate the terms of ¥, picking out explicitly those that
have oceured already in # or %, the nwumber of such terms (distinet)

heing my+ g+ My = m' — . Write
¥
(4 =(a’1’5"_(1)5 ala""’a'ltg'?](fjl)} gy “Iuyim)

where aj, ..., &, are terms just mentioned (not necesgarily distinet) and
the #{) are formed from the m' distinet terms of ¥” which do not oeonr
in % or % {a; may be missing and % #) may be empty). By the arguments
used in the proof of Lemma 1

b 2(m —my)—1,

1

(n—1)<m

EZ5

Tf we remove from ¥  the a’s and elimimte any immediate repetitions
we get an admissible sequence formed from my distinet integers of length
3 3 L(FP)—r, where 7 is the number of immediate repetitions. However,
r does not exceed h since (cf. the proof of Lemma 1)

FW n g =@,

if v, >1 and either i <k or i =%, j <! <. Hence

R i

X Y LFP) < Nimy)+h

i=1 f=1
and

h
L(#) < F () het D)o < N (mi)+mi+ 2R
4=1
< N (mg) + my+ 4 (m' —my) < N (my) 4.

Similarly '

L)y < N{my)+4n

" and on zddition we obtain the result.
Levua 3. N(n) < N () + N (n—m) + (v m)--4 (fm — M) .
"~ Proof, We set

= (%7 Qs 5”%”, By oeny Oy ES'P}(':"T.:))’

where the a, are terms that have oecured in %, the & do not contain
such terms, a; may be missing and &) may be empty. Since the number
of disfinet terms available for the a, is m— m,, we have

B 2(m—m)—1.
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Ag in the proof of Lemma 2

e

(r;—1y <n—m,

.4
1
-

i v
D) ML) < N(n—m)+ k.

=1 7=1

Hence

N(n)< N(m)+ 5‘9 + v ZL(?(”)

< N(m) -|—(41,1— ji:;\;(n—m)—l—i}k
< N (m) 4 N (n-—m)+ (n—m)+ 4 (m—m,).
TeyMa 4. If 1L < b < w then .
N(n) < max(N(n—h)-+13n, N(n—nr)+N(R)+5h).
Proof. By Lemma 2,
 N(n) < N{my) -+ N(m)+130 < N (my+m)+13n.
By Lemma 3, with m =n—h,
Hn} < N(fn,—h)-l—N_(h)+k+4(m—%ml).
Put m,+m; = n—*t. Then
Wy My = My g Ty < H— My — My = L.

Hence
N(n) < N(n—*H)4+13n
and
N{n) < N{n-—h)-} N(h)+h-+4i.

Tf £ h the former inequality gives the vesult, and if t < b the latier
~ inequality gives the result.

lo
IeMMa 5. If P(n lfglggu and h << in then
F(n)—F{n—h)> 3h- logn
loglogfn

and

F(n)—F(n—h)—F(h) > §p o217
- loglogn

for all large n.
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] logn
Proof. Put F(n) = nL(%) where L(n) = ”13@5@ We note that
1 1
Lz) = —

zlogloge ~ w(loglogz)* ’

and that this is a decreasing function and is greater than

2zloglogz
The first rvesult iy easy:
F(n)—Fn—h) = nln)—(@—hLin—h)
= a({L(n)— L(n— )+ hL(i— h)
log %

— F R (% T -
>hL(n. > ba) >4 loglogfn, '

For the second result, using part of the preee_ding chain of inequalities,
we have

F(ﬁ)—F(f;ﬁ—h) P(h)>hL(n,—h) hL(R)

& . ERaY )

*J- bﬂf Syt fdt
J J tloglowt loglogn J} ¢’

whenee the result.

Proof of Theorem 1. We suppose that N {m) < A.lf’{m) for m <,
where 4 is a suitable large constant, and prove that then this also holds

for # =m. We take
b [n _10g10gn]
logn

- in Lemma 4. It suffices to prove that
AP (n—h)4-13n < AF(n) and AF(n—h)-+ AF(B)+5h < AF(n).
By Lemma 5, the former holds if

1
1hd ogn

_10g10g% > 13m

and this is so if A4 is a sufficlently large constant. Also the second ine-
quality holds if '

1og(tn— 1))
ihd — loglogn
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Now
#—Hh 9% logn :
log > log — > log ~—->—— > {loglogn.
ST Son 310g10gn 2108708

Hence the condition is again satisfied if 4 is a sufficiently large constant.

3. Proof of Theorem 2. Consider a sequence & formed from
m? distinet terms, of length 1m?, typified by the following example

1,2,3; 3,2,1; 4,5,6;5 6,5,4; 7,8,0; 9,8,7;

T,4,1; 1,4,7; 8,8,2; 2,5,8; 9,6,3; 3,6,9.
In generul

— 7 ; & 7 G
o = (‘%’17 6’1: ey 'ﬁm: gm) gmq 1 Jm—}-ly ) éﬁ‘lm: ‘(ﬂzw))
where

By = ((h—1)ym+1, ..., Fm), Bp={bm,..., k—lm+1} (1<b<m);
By = (b—m, ..., k+m2—2m), -
Cp = (k+m2—2m, ..., k—m) [ < k< 2m).

o/ contains no subsequence a, b, a, b, a. It containg some immediate
repetitions, but they will disappear later.

The first appearances of all the integers are in the blocks &, ., ..., &y,
and their last appearances are in the blocks &, .1 Fppny o ovy Bag. WO
shall expand each of these blocks.

For this purpose we use for each block a new set U, of I infegers
w®, ..., v, where 1 m-} 1. Thus there are 2:ml new integers, and the
total number of integers

= m2-+-2mi.

For each set U, (1< k< m) we take an admissible sequence &, of length
N (1) formed from the elements of U, and arranged so that the last appear-
ance of u{*) oceurs before the last appearance of «{¥ for 4 < j. We replace
the last appearance of uf by wuf®, (E—L1)m-+j,uP, (k—1m+j for
jg=1,2,...,m Thus if m =3 and ! = 1 we can take ‘

Pro= (U, Ugy Wy, Uy, Uy, Uy, Uy, Uy, Uy, Uy, Uy, Uy)

- and this becomes

&y == (U, Uny gy Uy Upy Ly thyy 1y Uy Uy, gy Ugy 24 Uy,
29 """’45 '”’39 35 3y 3: ud.):

where fhe superscripts over u's arve omitted. &, replaceg the block 1, 2, 3.

Note that the last term is now not 3, so the imumediate repetition of 3 in .
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o disappears and in general the same holds for the repetition of mk
(1= k=< m).

For each set ), (m <k <2m) we take similarly an admissible
sequence &, of length N (I) formed from. the elements of U, and arranged
so that the first appearance of «{") occurs before the first appearance
of " for ¢ < j. We replace the first appearance of wf? by (j—2)m-
J—(k—m) wl®, (j-2)m+ (k—m), w® for j =2,3, ,m+1

The number of terms of the expanded block é”k is

N({H+-3m.
Of these terms, m were already present in Z,. So the length of the sequence

éﬂl! glﬂ (gm‘NLJ %m; %?JIA 1z m+i7 Tl %’ZHL’ éaz'm.

is dmt+2m{N (I)+2m). If the sequence 2 obtained from the above hy
cancelling the central term m®—m--1 (7 in the example) is admissible,
we geb

N{m2+2ml} = 8m2-2mN (1) —1
Since N (n;-1s) = N (ny)+N (1),
infinite). Choose ! = m+41. If

Nin)/n tends to a lmit (finite or

L= limN(%) < oo,
n-so0 T
then N(I) > (A— &)l and
N(m* - 2ml) - 8in? -+ 2ml (A— &) —
e+ Zanl m? - 2l

for m > my(e). Making m — co wWe get

8424
3 ?
In order to prove that & iz admissible consider two distinet elements
a and b. It aeUy, bel,, & containg no subsequence ¢, b, 4, b, @ in vieW
of the same property of &, If ael,, belU; with & # iy or b m
and b does not oceur in ¥, 2 contains no subsequence a, b, 0 If ae U,i

and b oecurs in %, then the maximal subsequence of 2 formed from
a and b is

iz

=

whence A= 8.

Gy...,0,b,8,b,b,b,0, b it E<m,
b, b,8,b,b,4,b,a,...,0 i k>m,
with one b missing it b= mt

m-1.
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Finally, if o < b<
o and b is

a,0,a,b,0,b,a,a,a,b,b,0

it [—a/m]>[—b/m] and {—a/m} > {—bim},
a,6;6,0,b,b,0,a,0,a,06,b

it  [—a/m]>[—b/m] and {—ajm} = {—bjm},
a,a,a,b,b,b,0,b,b,a,a,a

i [-—afm] >[--bjm] and {—a/m} < {—bfm},

a,a,b, b, b, 0,8,8,a,0,0,0 i [—ajm]=[—b/m]

with one letter missing if ¢ = m*—~m1-1 or b =m’—m-+1. None of
the above sequences containg either @, b,a,d,a or b,a,b, 4, s, which
completes the proof.

m? the maximal subsequence of £ formed from

4. Proof of Theorem 3. We take ! pairwise disjoint sets of m--1
integers ¢ = {c, ..., d¥ |}, where

—1y{m—1)4-4
say, and {41 other integers z, =Im—1)-% (1< k< l41). Seb

e = (j lgi<wm,1Kjigl),

&) = (%, 01 ); Tyg - av(n) 1y B1)
Ay = (5, ED, 6, o0 o g D, B e, o)
1<k,

%-1) K k1) (K
<9 Bpy c‘fn-—ljf o'}n-)—la ng—l)i o) 1y @)

&1 = (W, cgl\‘, R/ ESY) o) 1, D41l
@y = (ng:i)-l:'---: 051)) (1 <J 1)
and form the sequence %
oAy, By, Ay By, ..., oy, By, Sl
The number of distinet terms in & is .
n=im—1)+I+1 =Im4-1
and the length of &
I4+1

N = ZL(M,G)—I— EL(&’E
—202m— 1)+ (I—1) (Bm—4) F Um—1) = 6lm—m—5l+2.

It remains to prove that & is admissible. Clearly it contains no
immediate repetitions. Consider two elements o < b Il a =u;,b = w,
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with § # &, % contains no subsequence «, b, 4. Similarly if aeC), beC,
or aeC;, b = x, with k 7,7+ 1. In the renwining cases the maximal
subsequence of & formed from 4 and b is

by by, ay b, bya, 0,0 I acl;, b =y,

Gy @, 0,0, ..., 0, 8,a,b,...,6 if aer? b o=,

with the first or the last o missing in both cases if § = 1 orl, resp'ectively,
a,a,b,b,b,0,a,8,b,6 i a=dcf, b=d",

a, @, o, b, b,a,a,0,b,b if

Wy @y @, Gy Dy a,0,0,0,0 if a=d, b=clt i =h,

o= of), b = OgiHl): i< h,

Gy @, @, @, @y b, 0,0, 0,0 a=d) b= s>

with the first or the last term missing in all four cases if j =1 or 1, -

respectively.

Kone of the above sequences contains either a, b, a, b, ¢ 0r b, @, b, a, b,
which completes the proof.

Proof of Corollary. Taking ! =1, m =n— 1 we get
() Nn)z=bn—8.
Taking | =2 we get

N(@m-4-1) = 11m—~—8.

For w26 we have 1lm—8 >[(2m-+1)—8, henee the equaliby sign

is excluded in () for all 0dd » = 13. For even % = 18 we use the inequality
N(n) = N{n—1)+3 and obtain

Nm)z Nom—1)4+33 11(kn—1)—5 > bn—8.

Note added in proof Mr. Z. Kolba lias recontly showi that N(@m)e 11m—13,
‘thus N () > Sn—8 for all a3 12
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Density inequalities for a restricted sum
of sets of lattice points
by '
Berry Kvarpa GaArrigoN (San Diego, Calif.)

§ 1. Introduction. Let @ be the set of all 2-dimensional lattice peints
{z, %) such that z and y are nonmegative integers and either » or ¥ is
positive. Addition and subtraction of elements of ¢ will be done com-
ponentwise, :

Let a set B of positive integers be 8 basis of order & for the positive
integers. Then clearly any subset of ¢ confaining all points (b, 0) and, (0, b)
with beB is a basig for ¢, and iy of order no more than 2%, if addition
of subgets of @ iz done as in [2]. For example, Schnirelmann hag shown
([31, p. 680) that the set consisting of 1 and all positive primes 4{+3
is & basis for the positive integers. Therefore the seb P consisting of 1, 4,
and the Gaussian primes p--gi where (p, 9)e @ Iz o basis for the set of
all Gaussian integers a-+bi where (u, b e Q.

However, it might bhe of interest to know whether these Gaussian
integers can be written as sums of elements of P in some less trivial way
than ag sums of elements on the axes. More specifically, we might ask
which subgets A of ¢ have the property that each point (z, y) of § can
be written as a sum of no more than % elements of 4, and in such a
way that no two of its summands are on different axes. This question
leads us to make the following definition of sums of sets in @. These
restricted sum sets are not only smaller than the sum sets used in [1] and
[2], but this addition of sets is not, in general, assoeciative. In particu-
lar, we cannot assuine kd-4-4 = (k4 1) 4.

§ 2. Definitions and notation. For any % subsets 4,,..., 4, of ¢
let 4,4...+4; be the set of all ¢, +...+a, iIn ¢ such that (1) each
a;ed; U {0, 0)}, and (2) if two of the summands have the forms ¢, = (a, 0}
and @ = (0,%) then one of them is (0,0). If 4, =... =4, =4 we
write kA ingtead of A—4-...4-A.

For any p and ¢ In @,p<<q if and only i g—pe@. TLet Lg
={pe@: p< g} We will also use the definitions and notation of [2], ex-
cept that sums of sets are as defined above. For any subset 4 of @ the
density of A, as defined in [2], will be denoted by d(4).



