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with § # &, % contains no subsequence «, b, 4. Similarly if aeC), beC,
or aeC;, b = x, with k 7,7+ 1. In the renwining cases the maximal
subsequence of & formed from 4 and b is

by by, ay b, bya, 0,0 I acl;, b =y,

Gy @, 0,0, ..., 0, 8,a,b,...,6 if aer? b o=,

with the first or the last o missing in both cases if § = 1 orl, resp'ectively,
a,a,b,b,b,0,a,8,b,6 i a=dcf, b=d",

a, @, o, b, b,a,a,0,b,b if

Wy @y @, Gy Dy a,0,0,0,0 if a=d, b=clt i =h,

o= of), b = OgiHl): i< h,

Gy @, @, @, @y b, 0,0, 0,0 a=d) b= s>

with the first or the last term missing in all four cases if j =1 or 1, -

respectively.

Kone of the above sequences contains either a, b, a, b, ¢ 0r b, @, b, a, b,
which completes the proof.

Proof of Corollary. Taking ! =1, m =n— 1 we get
() Nn)z=bn—8.
Taking | =2 we get

N(@m-4-1) = 11m—~—8.

For w26 we have 1lm—8 >[(2m-+1)—8, henee the equaliby sign

is excluded in () for all 0dd » = 13. For even % = 18 we use the inequality
N(n) = N{n—1)+3 and obtain

Nm)z Nom—1)4+33 11(kn—1)—5 > bn—8.

Note added in proof Mr. Z. Kolba lias recontly showi that N(@m)e 11m—13,
‘thus N () > Sn—8 for all a3 12
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Density inequalities for a restricted sum
of sets of lattice points
by '
Berry Kvarpa GaArrigoN (San Diego, Calif.)

§ 1. Introduction. Let @ be the set of all 2-dimensional lattice peints
{z, %) such that z and y are nonmegative integers and either » or ¥ is
positive. Addition and subtraction of elements of ¢ will be done com-
ponentwise, :

Let a set B of positive integers be 8 basis of order & for the positive
integers. Then clearly any subset of ¢ confaining all points (b, 0) and, (0, b)
with beB is a basig for ¢, and iy of order no more than 2%, if addition
of subgets of @ iz done as in [2]. For example, Schnirelmann hag shown
([31, p. 680) that the set consisting of 1 and all positive primes 4{+3
is & basis for the positive integers. Therefore the seb P consisting of 1, 4,
and the Gaussian primes p--gi where (p, 9)e @ Iz o basis for the set of
all Gaussian integers a-+bi where (u, b e Q.

However, it might bhe of interest to know whether these Gaussian
integers can be written as sums of elements of P in some less trivial way
than ag sums of elements on the axes. More specifically, we might ask
which subgets A of ¢ have the property that each point (z, y) of § can
be written as a sum of no more than % elements of 4, and in such a
way that no two of its summands are on different axes. This question
leads us to make the following definition of sums of sets in @. These
restricted sum sets are not only smaller than the sum sets used in [1] and
[2], but this addition of sets is not, in general, assoeciative. In particu-
lar, we cannot assuine kd-4-4 = (k4 1) 4.

§ 2. Definitions and notation. For any % subsets 4,,..., 4, of ¢
let 4,4...+4; be the set of all ¢, +...+a, iIn ¢ such that (1) each
a;ed; U {0, 0)}, and (2) if two of the summands have the forms ¢, = (a, 0}
and @ = (0,%) then one of them is (0,0). If 4, =... =4, =4 we
write kA ingtead of A—4-...4-A.

For any p and ¢ In @,p<<q if and only i g—pe@. TLet Lg
={pe@: p< g} We will also use the definitions and notation of [2], ex-
cept that sums of sets are as defined above. For any subset 4 of @ the
density of A, as defined in [2], will be denoted by d(4).
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§ 3. Theorems and their corollaries. In the following Theorem 1 and
Corollaries 1,2, 3, we let 4 and B denote subsets of ¢ with densities
a and B, respectively, and let ¢ = A+4B.

TuroreM 1. If ge §—C and if a8 > 1 then

Ly € -
{Lg) al i1

Proof. Suppose g = (¢, go)e @—C. I aed N Lg then y—aecly—B8,
or a = (g, 0)elg, or @ = (0, g.)eLg. Also ¢¢B, and g—a 5= g for any
aed N Ly, Therefore

B(Ly) < @(Lg)— A(Lg)—1+2,
or
A(Lg)+ B(Lg) < @(Lg)+1.

This implies

ST —<l -,
a+f ¢ (Lg) + Q(Lg)
and, since a--§ > 1,
1
Q(Lg) < P ek

CoroLLARY 1. If a-+f# > 1 then @ —( is finile.
Proof. If ¢ = (g,, gs) e §—0, then

1
Q(Lg) = (g:+ g+ 1) —1 < PR

and g,+1 and g.,--1 are pogitive integers.

OOROLLARY 2. If a+f > 4/3 then Q@—C = @.

Proof. Suppose ¢ = (g1, g3) ¢ @ —C. Then

1
1< Q(Lg) < Py <3,

50 @(Lg) is either 1 or 2. Thus ge{(1, 03, (2,0}, (0, 1}, (0,2)} DBub
a--p >4/3 and a1, < 1 imply that neither ¢ nor g is 0. Therefors
{1,0) and (0,1) are in A nB, and {(1,0),(2,0),(0,1),(0,2)} < (.

As an alternative proof for Corollary 2, it might be noted that the
1-dimengional result obtained by Schnirelmann ([3], p. 654): “If a--§ > 1
then d(€) =17 implies that g, # 0 and g, = 0. Henece (L, 1) << g and
& (Ly) = 3, which iz a contradiction.

_ CoroLLaRY 3. If e+vf>1, 0 <7< 1/2, then Q— (0 = @,
Proof. Buppose g = {g;, g2)e §—C. Then ge @— A and

AlLg) @Tp-—-1 1

QLg) ~  Q(Lg)

l—rf<ag

@{Lg)
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1 :
atf-—1 f,
at(1—7)f <1 < adrf. This implies 1—r <, or r>1/2, which ig
a contradiction. _

THEOREM 2. Let 4., ..., 4, be subsets of @ with densities aj, ..., &,
respectively., If (1,1)ed; for oll i =1,...,k—1 then

T—d(A 4+t A < (I—ap) ... (1— ).

Proof. If kE =1 the result is trivial. Agsume 1—d(d,+...4 4)
<(1—ay) ... (1—a) for some k32 2. Let 4 = 4,, leb B = A,+...+ A4y,
and let O = A,+Ay--...-+ 4. Let the densities of 4, B, 0 be a = a;,
8, and. v, respectively. We will first show .

(1) 2 atp—af.

The proof of (1) is similar to the proof of Theorem 2 of [2], with
a modification necessitated by the fact that ¢ may be a proper subset
of A 4-B. The entire proof will be presented here for the sake of complete-

Therefore, @ (Lg) > 1/rf. Thus, from Thecrem 1, P or

TEss.

TIf (1,0)¢d or if (0,1)¢4 then o =0, and (1) holds since B < C,
Hence we suppose (1,0),(0,1), and (I,1) are all in ‘4. Let E be any
fundamental set in Q. If C(R) = Q(R) then C(R)/Q(R)>= a-f—af,
gince (L—a)(1—p) =0 implies 1> a+f—af. It must be shown that
O(R)/Q(R) > a+f—af for every fundamental set R in @; therefore
we agsume that ((R) < @(R) and, consequently, 4A(R) < @(E).

Let H = R—A4, let H, be the set of all (%, 0) in H, let H, be the set
of all (0, ) in H, and let Hg be the remaining points of H. We will show
that there exist lattice points a™, ..., a® in 4 and sets L, ..., J;, with
the following properties.

(i) For each i — 1,...,8, I; # @ and I, is a subset of one of the
sets H,, H,, or H,.

(i) The sets L; = {#—a'¥: z¢L;} are fundamental sets.

(i) L; nL; = @ for ¢ #J. '

(iv) H =L, V... U L,.

For every hin H, let 4, = {acA: (1,0) < a < &}, for every h in H,
lot 4, = {aed: (0,1)<a <k}, and for every A in H, let A4, = {acd:
(1,1)< a < h}. The gets A, are finite and nonempty, hence each A,
containg at least one lattice point which is maximal with respect to the
ordering <. Let “the” largest element in each A, be the maximal element
of A, having the largest first component, and let o, ..., be all the
distinet lattice points that are largest elements in any A4;. Let

L, = {heH: a¥ is the largest element in 4,}, i=1,...,s.
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. That (i), (iii), and (iv) arve satisfied follows immediately from this
definition of the I,. To show that (ii) is satisfied, we suppose that xeL;,
ye @, and o < y<a I yed then yed,, which contradicts the maxi-
mality of a®. Thus yeH, and if weH, (H,, H;) then also yeH, (H,, H,).
It yeL, then o <y<a, a®@ed,, o¥ =d?, and &k =4. Thus for any
g in L;,zef} and

s a—al el = a¥ < a"’—i—z @ = oVt rel, = gk,

If beB n L; then b must satisfy the conditions in the definition of
a som seb for the sets Ay, ..., Ay b = ay-...4a, ebe. Either a¥ hag
no 0 component, in which case a’+-bed NI, 2 O—A4, or one (and
only one} component of a!¥ is 0, in which case that same component
iy 0 in b, hence that same component is 0 in each of ay,..., a;, hence
a+bed NI, = O—A. Therefore,

C(B) = A(R)+ B(L)+...-+ B(Ly)
= AR) LRI+ -+ 9 (L))
= AR+ QL)+ .. +Q(L)]
== A{R)+$Q(H)

= A(R)+8[Q(R)— A(E)]
= (1—f)A(R}+ fQ(R)
2 (1—p)e@(B)+ Q(R),
and :
C(R)/Q(B) > a+f—af

for every fundamental set: B in . Thiz completes the proof of (1).
Now y = a-§-—af implieg

I—y < (l—a){(1—p),
oT
1—d{d;+.. 4 < (LT—a)(l—ay) ... (L—ag).

COROLLARY 4. If A is any subset of @ such that (1, 1)eA and a = d(A)
>0 then There ewists a positive integer m such that mAd - A4 = Q.

Proof. We have 0 < a < 1. Thus for any & > 0 there exists a positive
infeger m such that (1—«)™ < z. Theorem 2 then implies that L— d{m.4d)
< (L < % or d(md) > L= Choose & = a/2. Now a/2-+ d{md)> 1,
and md-+4 = @ from Corollary 3.

It will be seen that Corollary 4 also follows direetly from Theorem. 3.
The integer m obtained in the proof given for Corollary 4 can be expected
to be smaller in some cases than the m obtained in the proof of Theorem 3.

- THEOREM 3. If A is any subset of ) such that o« = d(4) >0 and
(1,1)e A then there exists a positive integer m such that mA = .

icm

and we may let m = i-+K,.
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Prooi. As in the proof of Corollary 4, there exists an integer %, such
that d{h,A) >1—a.

Let @y = {(x,0}e Q}, @ = {0, y)e @}. Since a > 0, the one-dimen-
sional densities of 4 N @, and A N QH are positive. Henee, from a corollary
to fhe one-dimengional Schnirelmann result quoted previously, there
exists an integer kh, such that A, 4 = ¢, U @,.

Let % be the larger of b, and h,, and let B = hd, § = d{hd). We
have a+f > a-+{l—a) = 1. Suppose g = (g1, ga) ¢ @—(h-+1) 4. Then
g¢hd. For any aed N Lg, either g—a¢B or ae (}; or 6e Q,. Hence

B(Lg) < @(Lg)— A(Lg)—1-+ 4(Lg n @)+ 4(Lg 0 Qs)
< @(Lg)— A(Lg)— 1+ g1+ ¢..
Thiz yields
A{Lg}4-B(Lyg) < @ (L) gl—l‘gz_l
s AL+BLg) | gt g
117 ZQ(Lg) ’
ey _ 1
gi+g—1  atp-1’

and

(Bt D—1_ 1
g1t g.—1 \a-l—ﬁ—l'

If for every real number K > 0 there exists (g,, 9.0 Q—(h-+1)4
(g2+1)(g.+1)—1
g1t g.—1
arbitrarily large, hence is greater than 1/(e+4 F—1) for some (g, g,} in

@ —(h+1)A, which ig a contradiction.
Thus there exists a positive real number K, such that (g, gs)e @—
—(h+1) A implies either g, < K, or g, < K,. We may suppose that
I0, is an integer. Tt will be recalled that @, U @, = hd and (1, L)ed.
Therefore {(p,g)e@: either 0K<p <K, or 0<g< K e (hit+H)A4,

such that ¢, > K and g¢,> K then ean be made
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