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on =-adic completions of GF(g,x)"
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CaRL G, WAGKNER (Knoxville, Tenn.)

1. Introduection. Tnt 1944 Dieadonné [7] proved an analogue of the
Welerstrass Approximation Theorem for continunous functions of a p-adic
variable. In 1958 Mahler [8] sharpened this result by exhibiting a series ex-
pansion for continnons functions defined on the p-adie integers. He showed
that every such function f is the uniform limit of an interpolation series

(1.1) i) = jin(,ﬂ)

#=0
where the coefficients 4, are uniquely determine'd by
(1.2) A, = A"f(0) = ‘(_].)fﬂ(;z) Flu—1).

s
k=l

In the present paper we choose an irreducible element = from the
polynomial ring GF[q, #] over the finite field GF(g) and use it to equip

the function field GF({q, 2) with a =m-adic absclute value. We denote by

F, the completion of GF{g,x) for this absolute value and by I, the
valuation ring of F_. The aforementioned theorem of Diendonné may
easily be seen to generalize to the case of a locally compact non-archi-
medean field. Hence, every continuous funetion f: K —» F_, where K
is a conipact subset of F, is the uniform limit of some sequence of poly-
nomialg over F,. Our aim in this paper is to prove some Mahler type
theorems for such functions.

We nienfion that Amice [1] has already constructed a certain type
of series approximation for continuous fanctions defined on lecally compact
non-archimedean fields. In the process, Amice characterized those sequen-
ces (“suites trés bien réparties™) in the domain of a continuous function
with respect to which a Newton type interpolation procedure will yield

* This research was supporfed in part by the National Seience Foundation,
under Research Grant GP — 7855. '
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a uniformly convergent series approximation for that funcfion. In partie-
ular, the nonnegative rational integers, ordered in the nsual way, constitute
such a sequence in fhe p-adic integers, and so Mahler’s result appears
ag & special cage of Amiee’s Interpolation Theorem [1].

In what follows, we exhibit a “snite trés bien répartie” in I, denoted
{m}, consisting of a special sequential ordering of GT[q, #]. Specializing
Amice, we prove (Theorem 4.4) that for every continnous function
fi I, F, there exists a unique sequence {4,} in #, such that

(1.3) & = > 4.0:0),

where ¢;(t) is the ith Newton interpolation polynomial for the interpola-

tion sequence {m;}, and (1.3) converges uniforinly on I.. We add that

{4;} is always a null sequence, i.e., lim 4; = 0. Moreover, the above
1—=00

result may be extended to continuous functions f: K =¥, where I¥

is any compact subset of F., by employing & Urysohn type theorem

for totally disconnecied spaces due to Dieudonndé [7].

We niay regard the foregoing approsch to constrocting function -

field analogues of Mahler’s result as deriving from. the observation that
the polynomials (;) are the Newfon interpolation polynomials for the

. nonnegative rational integers. From this standpoint, the crucial problent,
completely solved by Amice, is that of identifying those sequencesy in
I, for which the associated Newton polynomials yield interpolation series
for continuous funections.

If, instead, one regzurd_é the sequence {(;)} merely ag an  ordered
basis of the @ ,-vector space Q,11], then one i3 led to ask which ordered
ba.ses.of the .lf‘,,~vector space F_[?] yield interpolation series for continuwous
funetions on I,. Tn this connection, it is of interest to recall that the

t
sequence {(ﬂ)} bag the further property of being an ordered basis of the

- Z-modvule of polynomials over ( which map Z into # (and also of the
Zy-module of polynomials over @, that map Z, into Z,, where Zy is the
valuation ring of Q).

The. function field analogue of the latter property is that of Leing
an. ordered basis of the I_-module of polynomials over B, that map T,
into I,. Let {H,(#)} be such a basis. We prove {Theorew 4.5) that for
every continuous fumction f: I, — I there exists a unique null gequence
{B;} in I, such that

(1.4) = X B,

where (1.4} converges uniformly on I.
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The above theorem may be applied to a sequence of polynomizls
{G;(1){g;} introduced in 1918 by Carlitz [4]. This leads to the following
characterization (Theorem 5.1) of continuons linear operators on the
GF (¢)-vector space I,: Let f: I, — I, be continuons. If the (uniqgue)
interpolation series for f constructed from the Carlitz polynomials is
given by

T Gl
(L.5) = M a=t

1

i=1

then f is a linear operafor on the GF(g)-vector space I, if and only if
A; =0 for ¢ s ¢°, where &> 0.

The author wishes to thank Professor Carlitz for his guidance and
encouragement doring the preparation of this paper, and of the doctoral
dissertation on which it iz based.

2. Preliminaries. Let GF(¢) be a finite field of cardinality ¢. Denote
by GF[q, ] the ring of polynomials in an indeterminate » over GF(g),
and by GF (¢, #) the quotient field of GF [q, 2]. Let #<GF[q, 2] be an
irredueible polynemial of degree d. Then every nonzero a<GF (g, ) may
be written, in essentially unigue fashion,

m,
2.1 : . Nt 5
(2.1) . o= m2)
where # is integral, and m, and m, are polynomials prime to each other
and to s
Define a function v,: GF{g,#)—{0} = Z by

(2.2) . . (a) =n,

where o Is written as in (2.1). It follows that

(2.3) o (e = v (o)t () (af #+0)
and .
2.4) - w(at+p) @ min{ola), (8} (a, B, et f # 0).

Fizing a real number » such that 0 < b < 1, define the m-adic absolute
value | |, on GF(g,=) as follows:

(2.5) 0, =0,
(2.6) lal, = 8% (a #0).

By familiar methods GF(g, #} may be embeddsd as a dense subfield
in an esgentially unigue complete field, denoted F,. With respect to the
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extendeil absolute value, ¥, is a discrete non-archimedean field. Equipped
with the metric d,, defined by
(2.7) d. (o, f) = la—filzs
F, is a metric field. In particular, polynomial functions over ¥, are
gontinuous.

Denote by I, the valnation ring of F_, ie,

I, = {ael.: la], < 1%,
Then the valuation ideal
() = faely: lal, < 1}

is maximal and the residue clags field I,/(=) is isomorphic to GF _(_q‘z),
where d = degm.

Let I" be o complete set of representatives of I, {(m) in I,. Then every
nonzero aeF. may be uniquely represented as a m-series,

(2.8) o =a" ) at,
i=b ‘
where a,el, wt @y in T, and la| =" [6]. In particular, I'may be taken
to be the set of polynomials in GI'[g, %] having degree lesy than d.
For neF, and & any integer, lot

(29) Byl = (el [f—ol <V} = {Belys [f—al, < B

Then the collection {B,(¢): k= 0} is a fundamental system of open-
closed neighborhoods of e; hence I, is totally disconnected.

Again, let I’ be a complete set of representatives of I./(s) in I..
Given ¢ > 0, let k be a positive integer such that b* < & Lot

(2‘10} A = {GEIW: o == (,);0+ alﬂ_’—'--"}“a%_lnk-—l}
where a,eI". Then 4 has ¢*® -elernents and the eollection
(2.11) (Ba): aed) _

is & pairwise disjoint open cover of I,, all of the members of which have
radius less than & It follows that I, (and, therefore, every closed and
bounded subset of F,) is compact. (In fact, the Heine-Borel Theorem
holds in all locally compaet non-archimedean ficlds, a result due to
Schébe [91.) '

In the special case = = z, the complete field F, may be identified
with the field of formal power séries over GI'(g), for by (2.8) every nonzero
aeF, may he written

(2.12) a= > aa,
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where a;¢GF(g), all but a finite numnber of the a; vanish for ¢ < 0, and
lal, =", for » the smallest integer such that @, # 0.

There would, in facf, be no loss of generality in restrieting the in-
vestigation we have in mind to the case of z-adic absolute values; for it
it known that every loeally compact Hausdorff field having nonzero
characteristic is topologically isomorphie to a field of formal power series
in one indeterminate over some finite field ([107], pp. 12-22). In the case
of the fields #', we may specialize this result as follows.

TumorEy 2.1, Let T, be the completion of GF(g,x) for the absolule
value | 1., where m is an irreducible polynomial of degree d. Then F, 8
topologically isomorphic to a field of formal power series in one indeterminate
over the fimite field GF(g%).

Proof. In view of representations (2.8) and (2.12), it suffices to show
that I', & complete set of representatives of I./(w) in I,, may he chosen
in sueh a way that I is & subfield of I,. .

Lot aeT,. Since I,,/(z) is isomorphic to GF (¢%), it follows that =] P a,
and hence that |

#-~-1)d nd 1)
A8 gl i

for all natural numbers n. Therefore, the series
d

(2.13) o (@@ — @)+ (e — o) 4.

. - d s
converges, i.e., lim o exists for all ael,.

H—-+00

Define a function w: I.—-1I.by

(2.14) w(a) = lim o,

it
Then % is an endomorphism of the ring I, with kernel (x), and so w(l,)
is o subfield of I, isomorphic to GF(¢®. By (2.13) and (2.14), it follows
that w(a) = a(mod=); hence we may take I' = w(l,}, as desired.

To conclude this section, we recall that, in addition to the z-adic
absolute values, GF(g, ) admits only one other non-frivial absolute
value, | |, defined by
iy

(2.15)

_ bdegmz— degmy
- *

5

My
for m,, m, nonzero elements of GF{g, #} and 0 <b <1 ([6], pp. 45-47).
The completion of GF(q,) for | |, denoted by F,, may be seen to
consists of the set of all descending formal power series over GF(g),

[=+3
a= Z.wim'*,
i=—00 )

(2.16)
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where a;eGF(g), all but a finite number of these coefficients vanish for
i< 0, and aly = b ‘. n the smallest integer such that a, 7 0.

In what follows, we shall appeal to the obvious topological isomorphism
between F, and F, to omit an explicit treatment of the problem of
approximating continuous functions in F.. There appears, however,
to be no partiewiar advantage in a similar appeal tio Theorem 2.1, and so
we shall state our results for the fields F,. :

3. A special ordering of GF[¢, #]. Let x<GF[g, «] be an irreducible
polynomial of degree d. We define a sequential ordering of GI'[g, ]
which has the property of being, in the terminology of Amice [1], “trés
bien répartie” in I,. Let {(aq, @, ..., ¢ 4 ) be a fixed ordering of the
polynomials in GF[g,s] of degree < d sueh that ey =0, a, =1, and
dega; < dega; for 1< i< j. The speeial sequence {m,}, running through
GF[g, 2], is defined as follows. If

(3.1) wo= kgt gt R (0 R < gD,
set o
(3.2) iy, == a’ko‘!* ak1”+ e U n’

THEOREM 3.1. For any dntegers s == 0 and k= 1, the s
(3.3) {m,, gz O :{ i< ¢4

is @ complele residue system (mod=®).
Proof. As there is mo “overlap” in the ¢*-adic expansions (3.1)

of i and s¢*%, it follows that

(5.4} C Mk =

Myt LA
The seb {m;: 0 <1 < §% i3 & complete residue gysbem (mod="), and this
property is preserved under shifting by the additive constant LW

Let

(3.5) - 8=y, My} (1),
and Tet .
(3.6)  glay &, m) = eard(By(a)ns,),
*with ael,, n, k> 1, and Be(a) as in (2.9). Then the following theorem

is a stra_.whtforwamd consequence of Theorem 3.1.
THROREM 3.2. For every ael,, and for oll positive integers n und ¥,

| SO | [QM] olas By m) < [”q:dl] 1.

icm
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Furthermore,

K
(38) @(m’n; k? ﬂ) = ['QTE]'
We now introduce an ordered Dbasis of the F_-vector space F_[{],
consisting of the Newton interpolation polynomials for the inferpolation
sequence {m,}, defined by (3.2). Bet

(3-9) Po(t) = 1} 'Pn(t) = (t“—-ﬂln)(t—’)’ﬂl) “ee (tm"m’n——l) {ﬂ';al)?
and
(3.10) Q) =1, @,0) =P,MNF,(m,) (nz=1).

Since deg @, () =n, {@,(1)} is an ordered basis of the F.-vector space
F_[t]. Hence, every polynomial g(f)eF,[t] of degree << n may be written
uniquely as

g = D' A4:0,00

D]

(3.11)

To derive a formula for the coefficients 4, let ¢,(¢) be the unique poly-
nomial of degree < 7 for which g,(m;) = g(m,;) for 0 <j<». Then

ZAjQ] (1) =

where the second equality above is the result of Lagrange interpolation.
Tt follows from (3.12) that

Py () g(my)
L’ (t—m;')P;ﬂ(mj‘) ’

(3.12)

. g {my)
(313)  gl)— g () = 4@ = {Pitm) ;’—1;5;—:’(1%)) 2.0
'Hence
' ) 1 g(my)
(3.14) A; = Py(my) A\J ]

The following two theorems imply that the sequence {Q,()} is, in
fact, an ordered Dbasis of the I,-module of polynomials over F, that map
I, into itself. In the remainder of the paper the subscript = will be omitted
from the symbols v, and | |..

TororEM 3.3. For all tel_, 1@, ()] <1

" Proof (Amiee [1]). In virtue of (2.6) it snffices to show thad

{8.15) WP, (1) = (P, (m,)).

Acta arithmetica XVIL4 [
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By (3.7),
n—1 o
(816)  o{P, (1) = ¥ w(t—my) = > klolt; kym)—e(t; B+1, n))
im0 k=1
= Motk n) > Z[ m]
E=1 k=1

Bus, by (3.8),

Ban) 2om) = Y emsbym = M|
k=1 b=

from which the desired resuit follows.
TarorEM 3.4. Let g(f)<F,[1], and write

90 = 2 A0,

Then g maps I, into itself if and only if A eI, for 0 < i< n.
Proof. Suffieiency. By Theorem 3.3, [€,(#)] <1 if [# <
141 <1, |g(?)] < 1, since | | I8 non-archimedean.
Necessity. By (8.14), it suffices to show that, for all j < 4,

(3.18)

1, so if

(3.19) o(Py(my) = v [Piya(my)).
By (3.17), -
(3.20) ofPym)) = Y [q—f’m]

We show that

oo
: ¥
(3.21) ’”(Pw-l (mi)) = [ kd:l
B=a%
Sinece :
{3.22) P:Z-f—l(mj) = (Mg — Mg} wo (M= g ) (Mhy— My 1) oo (M —00y)

inequa]ity (8.21) is obvious for j =4, so assume that j < . Denote by
8(i,j) the set SiH-—{mf}. Then,
(3.23) (P (my) = 2 v (m;— m,)

Tresq

7457
o0

2 7'ﬂ(@%ﬂ‘ﬁ(Bk(m» N 8 (5, ) — card(Buyy () 0 S(3,))

=Sca.rdBk nS(@,J j[ ;,d]
k=1 k=1

ag desired.
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4. Interpolation theorems. We require a preliminary theorem, due
to Amice [1], which specifies conditions under which certain finite subsets
of {Q, (1)} are locally constant (mods). As in the case of 4 previous theorem,
we inelude, for completeness, a specialized version of the proof given
by Amice.

TaroREM 4.1. Let meGF[g, 2] be an irreducible polynomial of degree
d, and let |z) = b. Then, for all k> L and for all i such that 0 < 4 < ¢ —1,
if tyy hel, and [t,—t,) < b, then

Qu(t) — Qi) < b.

Proof. It suffices to show that for ‘1.11 i,§ with 0 <4, < ¢™—1,
if feB(m;), then |Q1 —Q;(m;)] < b. The cases (1) j<4 and (2) j=1
are treated separabely.

(1) T j <4, then [@;(f)
that, for teB,(m,),

— @ (m;)| = [@;(1)], and so it suffices to show

(4.1) Dt M)t .o p (E— ) > v(m—my) (M),
or, as in (3.16), that

(4.2) S‘Q(t ) > Zg(m“? i).

T:rl

By Theorem 3.2,

- N A Ib.
(4.3) o(t; 7, 1) = o(mg; v, 1) = [~g—d]

When r = k, however, inequality (4.3) is striet, since

o{t; k,4) =1 and o(my; K, 4) = 0.

(2) Let i < j. By hypothesis, [f—my| < b*. For all r with 0 <7 < i1
< 3§, m, # my(mod="), and so

(4.4) t—m;| € b |m;—m,],
or
(45} |(t—'mr)m(m:l_mr)l <h lm;r'“",m‘r H
or
t—m,
(4.6) . ~1]< b
Wy~ Ty

- Hence, for each 7, there is an a, eI, such that

t—m,
(4.7) — = 1-}ma,,
My~ My
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and so, there is a feI, such that

= f—m, Q.0 -
(4.8 !_—0[ my—, () = L ah.
Therefore, |
(4.9) Q?{iz).) —1|<b,

and, by Theorem 3.3,
(4.10) 1€ (1) — Qs (my)] << B [Q;(my)] <D

The interpolation theorems amnounced in the Introduction are
incinded in the following sequence of theorems.

TEEOREM 4.2. Let m, b, and d be as in Theovem 4.1. Let f: I, — 1,
be continwous. Then there is an indeger k2= 1 and a conlinuous funclion
It I, — I, such that .

gFd_1
(4.11) IR0 V HERPAGERIUR
where y; is the characteristic function of the set By, {m,)}.

Proof. Since I, is compact, f is uniformly continuous. Hence, there
is an integer % 2> 1 such that, for all 4, 0 < ¢< ¢*—1, if teB;(m,), then
[f()—f{m)| < b. Thus, there is a confinwous function #*: B.(m;) — I,
such that, for {eB,(m;),

(4.12) fit) = flmy)+-=h' (1),
Since the sets By(m,) are a pairwise disjoint open-closed cover of I,
(4.11) may be gotten by setting h(t) = R'(t) for teB,(m,).

TruorEM 4.3. Let f: I, = I, be continuous. Then thers is an inieger

k=1, a continuous function fi: I, - I, and a sequence {a;: 0 < i < ¢"%—
in I, such that

akd-1
(4.13) ) =) e tan)

Proof. Using the uniform continuity of f, determine % as in Theorem
2. By Theorem 4.1, this & is also associated with the uniform continuity
of the functions Q‘{t), 0<i g9 —1, Applying Theorem 4.2 to these
functions, we get
‘ gri_y
{4.14) Q) = D Qulmy) s () -+ 1)

=0
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Since Q;(m;) = 0 when j < i, system (4.14) is triangular. Solving for
the funetions v, (t) in terms of the Q,(2) and the ervor functions %(#), and
substituting in (4.11), we get (1.18), where f,{#) is expressed in termy of
the error functions #;(1).

TomorEM 4.4, Lel f:' I, — I, be continuous. Then there is o unique
sequence {4} in F, such thai

(4.15) F@) = D) 4,08,
i=0 :
where (L.15) converges uniformly on I,. Moreover, for all 4, 14;] <1 and
lm A4; = 0.
f-r00

Proof. By Theorem. 4.3 there is an integer %,z 1, a sequence
{ad: 0 << i< g? -1}, and a confinnous function f: In — I, such that

qkodd
(4.16) L Fm = ) A +af).
Similarly, we may write
Sy
(4.17) flt) = Z o} Qi)+ (1),
=0

Iterating and substituting in (4.16) at each stage, we get

Myq-1
(418)  fit) = > (o4 madb . a2 a Qi)+ (1),
z—U .
where
(4.19) M, | =max{g™, ¢7 ..., ¢ 1.
Define the sequence {4;} by
(4.20) . A= Yald.
F=0
The series (4.20) converges fo an element of I, for || < 1. Also
(4.21) lim 4; =0,
i->00
for if 1> M, ,, then o) = o} =... = ' =0, and so |4, <"
Let k= Mn_l 1. Then
E Mpy_3-1
(+22) |3 A:Qu(0)~ (a2 + w7 el ) lh)]
) i=0 =20

ﬁma.x{' i 4;0;(7) I: 12

t=My 3

(it a ) Q< 0"
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and by (£.18}

-
“E

(4.23)

ECR) FA %)

Hence (4.15) converges uniformly to f on I, The coefficients .4, are
uniquely determined by f, since for each » > 0, the finite sum

X 4,0,(0)

=0

(1.24)

is the unique polynomial of degree < # which takes the same values
as f on the set {my,...,m,}. Hence, by (3.14),

fmy)

(4.25) ) Bty

A4, =P¢(WL)

In the glightly more general case of a continuous function f: T, —+ F,,
the boundedness of f implies the existence of an integer %3 0 such that
alf: I, —I,. Hence

. . . 1 kf mﬁ

4.26) f(t ( . (m T
(1.26) fit) = Z )ZPLH( ?)) ,
and so

(4.27) T = 3 49,

where A; is defined by (4.25).

In the case of & continuous function f: B,(0) — F,, where k<0,
define g: I, —~ F, by g(f) = f(a*t). Then by (4.21) and (4.27), we have,
for all il

N fim,
(4.28) Flt) = g(t) = ( 1 ) .
; )ZP%EI(W"? }
. Hence, for all te.B,(0),
(£29) ) =Flnb(at) = ( G ) ().
(7 (a*1)} - = ; Pz+1(m¢) t)

Tt follows that every continuous funciion f i K+ P, where X ig a compact
subset of F,, has a series expansion of the form .(4.29), for K < B (0)
for some k< 0 and, by a theorem of Diendonné ([7], p. 82), any such
f Bas a continuous extensmn t0 By (0).
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TEROREM 4.5, Let {H (f)} be an ordered basis of the I_-module of
polynomials over B that map I into itself. Let f: I, — I be continuous.
Then there exists o unigue null sequence {B,} in 1, such that
(4.30) fi) = D BH (),

i=0

where (1.30) converges wniformly on I,.
Proof. By Theorem 4.4,

(4.31) : fit) = _Z,:Aij(t)a
. Fou
where A;eI, and lim4; = 0. By Theorem 3.3, for all j =0, §,(!) may
be written umquel? G;:S .
(+.32) - el = Eﬂiﬂi(t),
where Dlel,. Set o
(4.33) B, = Zw'A D
=0

Since Im4; =0 and |Dj <1, (4.33) converges to an element of I,.
=0

0, let # be such that

Py }. Then DI =0 if j <#, and

Moreover, lim B, = 0, for, given any integer & =
A4 <D* i j= 7 Let i > max{ng, ...,
so |B;| < b

It > 0, let 7 be sueh that (4, < b for j 2= » and
(434 | > 4,0, 00— f(t) < b
izn
fm: sz r. If »>max{ng,...,n}, then

7 oo n
(4.35) \ N B a0m| =1 3 4.3 pim,m <
i=0 . F=0 u=r+l v=0
Then (4.34) and (4.35) yield (4.30). '
Moreover, {B,}, as defined in (4.33), is the only null sequence in I,
for which {4.30) holds. For suppose that

(4.36) iy =D GH,,
. =0
where 111'110 = 0. For all i 20, w11te
(4.37) = ZE:icz,-(t),
=0
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where HicI,. A repetition of the preceding argument yields

(4.38) f@) = ) @0 Y o.n.
Je=0 i=0
By Theorem 4.4, howsver,
(4.39) D CiB =4y (j=0),
=0

where A; is defined by (4.25). Since {C} and {4,} are null sequences,
the equations (4.39) may be written matrically,
(4.40) MO = A,

where ¢ and A are the infinite column vectors [Cy, C,,...]" and
[Ags 4y, ... 1" and M ig the column-finite matrix [m,], where

{4.41) Wy = By (1,82 0),
‘and B, is defined by (4.39).
Using (4.32) and (£.37) the matrix M may be seen to possess the two-
sided inverse ¢} = [g,.], where -
(£.42) Go =Ly (r,320),

and D is defined by (4.32). Hence the relation (4.40) determines ¢ uni-
quely, and

(4.43) 0, =B, =D 4,D,.
f=0
We stress that Theorem 4.5 asserts the unigqueness of the coefficients
B; on the assumption that {B;} is null. The unqualified uniqueness of
these coetficients (which we have been able to prove only in special cases)
is equivalent to the assertion that a series

(444) o Yamn
R " d=0

converges nniformly on I, .only it {C;} is null.

5. Applications. Define the gequence of polynomials w.(f) over
GF[g, »] by '

(5.1) v =[] t-m,

, degm<yr

Yt} = t,

vc'rhere -the product in (5.1) extends over all polynomials meGF[g, ]
{including 0) having degree < r. It follows (3] that

I

(3.2) v ) =Y (——1)“'*‘[:] #,

i=0
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wheke ' :
o [ [ B
b Ly, 0 L, vl
and
F, =[lr—11F.L A, By =1,
Ly =1,

(5.4) L, =[r[r—17...[1],
‘ [r] = ' — .

Let K be any extension field of GI'(g, ). By (5.2), the functions
asgociated to the polynomials v, (1) are linear operators on the GI'(g)-vector
space K. Furthermore, vy, {a") = y.(m) = F,, for m monic of degree r,
so that F, is the product of all monie polynomials in GF[¢, z] of degree r.
On the other hand, L, may be seen to he the Le.m. of all polynomials
in GF[g, 2] of degree ¢ [2].

Following Carlitz [4], we define g,¢GF[g, #], and polynomials & (1),
Gy (t) over GF[q,x]. Let k be a positive integer, and write

(5.5) E=e+eg+-...+es (0<e¢<qg).
Define g, by
(5.6) g =P FF, q=1,
and G, (i) and GL{t) by
(5.7) Gr(l) = () - pe(l),  Go(t) =1
and _
(3.8) Gin) = []&a),
1=0

where . ‘

% (1) o for 0o g1
(5.9) o =1 !

pi(f)— I, for e =g—1.

Let K be any extension field of GF (g, x). Since deg@,,(f) = degG,, (1)

e n, the sequences {G,(t)/g,; and {6 (1) lg,} are ordered bases of the

E-vector space KT¢]. Indeed, for any f()e I [f] of degree < #, we have
[4] the unigue representations

o, ()
a t — A']‘, —
(5.10) (8 gﬂ .
and
A
5.11 = 3 A ,
(5.11) f igﬁ 7
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where 4; is uniquely determined by choosing any # such that ¢ < 4,
and setting

. , \—1 Gur_l ,m) -

{5.12) A = (-1} —f{m)  (meGI[g, 2]),

ro
dcg MT g{I 1-i

and A} is uniquely determined by 0110081110‘ any mw]l that » < ¢, and
sefbing

(3.13) ” @5_17-4‘. (m)

Al =(—1) flim)  (meGF[q,x]).

T —n
degm<r gﬂ 1-1

Note the difference hetween the defining conditions for » in (5.12) and
(5.13).

An important property of the polynomials @ ( /Q'L and @ (8/g, 1
the fact that for all m eGF [g, #], G,(m) /g, <GF [g, ] and G (m)/g, e GF g, «]
[4]. With (5.12) and (5.13), this implies that {&(f)}/g;} and {G}(t)/g.
are, in fact, ordered bases of the GF[g, #]-module of polynomials over
GF (g, #) that map GF[g, «] into itself.

Moreover, since GF[¢, #] is dense in I, and the polynomials & (¢)/y,
and & (7)/g; are, by an earlier observation, continuous functions, it follows
that ael, implies that &;(a)/g; and & (a)/g;=I,. With (5.12) and (5.13)
this implies that {&;(f}/g;} and {G(£)/g,)} =re ordered Dbases of the
I, module of polynomials over F, that map I, into itsel.

_Hence, by Theorem 4.5, for every continnous function f: I, - I,
there exist null sequences {B,} and {B}} in T, such that

(5.14)

and

Z'B* :

Whele (5.14) and (5.15) Lonverge uniformly on I,.
- The coefficients B; in (5.14) are uniquely determined by f. For if n
is any positive integer, the finite sum

. (8.15)

S Gy (1)

= 4

is the unique polynomial of degree < ¢™—1 which takes the saame values

a8 f on the set of all polynomials in GI‘[q,m} of degree << . Hence,
by (5. 12)

(5.17)

(5.16)

B = (—1f @iﬁﬂﬂm_w<@.

degm<r Jar-1-i

icm

 (5.23)
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The question of the unconditional uniqueness of the coefficients B
remaing open..
Inferpolation series of the type which appears in {5.14) may be used
to characterize continuous linear operators on the GE(g)-veclor space I,,.
THROREM 5.1. Let f: I, — I, be continnous. If the (wnique) interpolation
series for f constructed from the Corlitz polynomials is given by

(5.18) - f) =

then f is & linear operator on the GE (q}-vector space I, if and only if 4, =0
for & # ¢~, where k= 0. '

Proof. Sufficiency. T A4, =0 for i 5 ¢°, where k=0, (5.18)
becomes
S t
(5.19) f(t) = Z 4,00
TR,

k=0
Sinee, by (5.2), the partial sums of (5.19) are linesr operators, it follows
immediately that f is a lnear operator.
Necessity. We require the following identities [4]:

(5.20) Guldt) = FGt)  (A<GF(g),
otk - 3 [} 66, ).

Let A<GF{q) be a primitive root of unity. Then (5.18), (5.20), and f(Af)
= Af(t), yield S
1)
St

and g0 4; = 0, unless 4 == I(modg— 1)
From (5.18), (5.21), and f{t;+1,)

(5.21)

(3.22)

= f({,)+F(i), we infer that
2 $G@ 1)+ Z;GH)ZQT'()A,,I ).

T=i

Hquating coefficients of G,(f,), we see that 4, = 0. Hquating
coefficients of &;(t)/g; for i > 0, and subtracting 4,, we get

o

(5.24) 2 i (J)A 6_q(ty) = 0.
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Hence, for all 4,j with 1 <4 <§,

(?)AJ_ —0.

It follows thaf A, =0 unless j = p%, where p i3 the c]nmc‘(ellsfle of
- GT(g). Since ot fl(modg—— 1), we must have p' = ¢", where k= 0.

(5.25)
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On the changes of sign of a certain class
of error functions
by

J. H. ProsceaN (New York, N.Y.)

§ 1. Introduction. Since its introduction by Euler in the eighteenth
century, ¢(n) and its behavior have been of great interest in numbel the-

ory [1]. During the next century G. L. Dirichlet [2} proved that Z‘ o (n)

~ 3N?/n? and F.Mertens ((6];]4], p.268) showed the error to be O(NlogN)
this has only recently been improved, to O{Nlog** ¥ {loglog ¥)*®), by A.
‘Walfisz [11]. The average order of p(n) is thus 6n/x?% and it is well
known ([4], p. 267) that limsupe(n)fn =1 and that 2l (n) = oo
for all 1)0=;1t1ve 8; there is also the theorem due to Landau [5] that

; (Lp(n) ~ (3L5Z(3)/2n*)log N,

Thess results all suppert the assertion that ¢(n) behaves agymptoti-
ea]ly very imuch like n. It is then reasonable to look ab ig’n—%l\? ? and
}—' 1-N (Which are "

Awn

bagis one Would expect E (0) 7

1N and 0) for qualitative information about the
N

errors E(N 3N2/x? and H(N) = } ¢(n)/n—G6N[=", on whieh
1

oo and H(x) very small. Sylvester

([97, [10]) conjectured that HB(z) > 0 for all ». Between 1930 and 1950

it was shown that in each of these respects p(n) differs radically from n.
Pillai and Chowla [7] proved that the average order of H(n) is 3/=* and
that of B(n) is 3n/2x% which comes up to expectation; but they also
proved that B{x) = 2(zlogloglogx). It follows that H () = £ (loglogloga)
refuting the conjecture that H{z) is small. Subsequently M. L. N. Sarma
[8] showed that H (820) is negative; in 1950 P, Erdds and H. N. Shapiro
[3] proved that H(x) = £, (logloglogloge). :
The purpose of this paper is to show that this behavior is
not peculiar to ¢(n), but is shared by a large class of functions f(n)
= n Y p(e)ple)je, where p(n) satisties certain admissibility condiftions

e

given below. The method is based on an extension of that used by Erdos



