icm

ACTA ARITHMETICA
XVII (1970)
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1. Introdoction In this paper we prove as Theorem 1 'a result
concerning the distribution of power residues. We have two applicabions
of this theorem immediately in mind,

Let & be a positive infeger greater than 1. For each Yational prime p
which satisfies the relation p = 1(mod?%) we define »n,(p) to be the least
positive integer which is not a kth-power residue (modp). Similarly let
#.(p) denote the least prime whieh is a kth-power residue (modp). For
other primes we set #y(p) =0 = 7,(p). It was proved by Erdis [9],
that
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where ¢, is a positive constant, and a(z) denotes the number of rational
primes not exceeding the real number x. This result was generalized
in the papers [b] and [6]. There if was proved that for each rational
integer & > 1 there are positive constants ¢, so that

EM(P) ¢ (oo, k=1,2,...).
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‘Moreover, there are constants dy, e;, so that

1

@) b (>0, k=148

n<w .

The constants e, are positive, but unless % = 2 fhey ave less than 1 in
value. Similar results can be proved with any real number §< g n
place of e,. It is implicit in the proof of Erdos {9] that the estimate

1 _ ~ Alogloge .
() ém(p) - GZ+O(BXP(_' logloglog ))
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Tholds for any fixed positive value of A. A similar result can be proved
with 7,(p) in place of n,(p) (see for example [6]). As an example in the
application of Theorem 1 we shall prove a3 Theorem 2 (in § 5) that for
odd walnes of & there iz & positive eonstant o so that

e Sy (p) = oy Ofexp(—(loga)).

”(.m) pET
When % is an even integer we only establish an error term mnnlm to that
possible in Erdés’ theorem. Thus the results of this tiype are for odd
values of k far superior to those for even wvalues of Z.

As a second application we note that Theorem 1 ean also be used to
establish finite probability spaces on which the distribution of L-serios
formed with Dirichlet characters can. be studied. We shall postipone this
application to two further papers. There are also applications of results

similar in nature to Theorem 1 which are useful in sieve moethods. They

are of a slightly different quality however, and we shall not consider
them here.

There is an old conjecture of Artin which states that fhe rabional
primes for which the integer 2 is a primitive root have a positive Jimiting
fre quency wmongst the sequence of all rational primes. Recently a proof
of this conjecture by Iooley [12], conditional upon w certain hypothesis
of Riemann type, wag given. More exactly his hypothesis analogous

to the classical Riemann hypothesis was concerned with the position .
in the eomplex plane of the zeros of the Dedekind zeta fnctions of certain -

Kummer fields. By means of a representation of guch zeta functioms
in terms of L-geries defined over an appropriate cyclotomic subfield we
diseuss in § 6, the implications of this hypothesis. We also formulate
a conjecture of Large Sieve type which if true would imply the truth
of Artin's conjectured resulf.

Before stating our basic results we need some notation, and certain
definitions. Tt w111 be convenient to denote algebraic number fields which
are extensions of the rational mumber field ¢, by K, L, ... and so on,
K, L,... will then denote their corresponding rings of algebraic integers.
If o is an element of a ring [«] will denote the principal ideal ‘whicl it
generates. A typieal ideal will be denoted by a, whilst p will denote
a prime ideal, in general lying over a rvabional prime p. ¢y, ¢, ... will
denote positive constants.

Let k be a positive rational integer, a ap. algebraic 111tc,ger, and p

}c

a prime ideal of the ring Q(l/.—) which patisfies pt[a]l. We recall tha{ﬁ

the kth-power residue symbol at o iy defined by

a L ivp-1y a :
— a® mod. (—) =1,
‘ (9):: ( Pl P k
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2. Statement of the main results. _

TuroreM 1. Let k, 7, be positive rational iniegers, and lét ay, a,, ..., a,,
be v further integers. These need not necessarily be distinct. Let ¢y, .
be 7 k-th roots of unmity. We defme Nk, J) by

sos By

where in the condmon, of sumamnation § is an algabmm integer of the cyclotomic

fisld generated by 1/1
For each real number x let

S(m, kyr) =82, k5 Qg5 o0y 45 &35 4405 8)

E_
be the nuwmber of prime ideals p of Q(l/ 1) which satisfy Np < =, for which
the relations

a;

= =g f=1,...,7)
(p)k ! (J ’ 7)

are sotisfied. Then the following estimates hold:
(iit) If % is odd _
O(zexp(—ec llflogw)) if the least common
muliiple M of the
4 (=1,..0,7)
does not: exceed
Slw, kyr)— k"N (k, r)m(z) = exp{e,¥log ),

Ow(logz)™®) if M does not exceed

o loga
P\ B 6)iogloga |

(iv) If & is even

S, k1) — k"N (k,r)a(z) = Olwexp(—eVlogm))  if M does not ewvceed
some fized power of
log.

The first of the estimates in (iil) is that which will be used in the
proof of Theorem 2. The second esfimate is the more convenient for
the study of the distribution of the values of L-series formed with Dirichlet .
characters mentioned earlier, since in this case it turns out to be more
useful to have the weaker restrietion upom the size of M. In the
inequality of (iv), if M does not exceed (logz)* say, then the constant ¢,
may well depend upon A. This last estimate is non-effective, although
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an effective form could be obtained if the size of 4 is suitably restricted.
The estimates of (iii} are both effective.
TUROREM 2. In the notation of the introduction

v
Olexp|—e lﬂgm— if & is odd,
1 Z ) ! * logloge
— M (p)— G = ‘
7(@) = * i loglogax for any fiwed value
Ofoxp| — Togloglogw of 4 if & is cvon.

Similar rYesults can be proved concerned the funetions ry(p), and
indeed other functions of thig type (see for example [8]).

3. Some necessary lemmas,

Lgvva 1 (Borel-Carathéodory). Let the function f(s) be regular
i the civele |s—s,| < r and satisfy f(s,) = 0. Furthermore let f(3) satisfy
the inequality Ref(s) < M throughout this circle. Them fis) ds bounded by

4

' 7
IF(8)] < e mmx(ﬂf 0)
oy
- ingide the eir de |s—8| < vy < 7. _
Proof. As the proof of this lemuna ig ghort we give it here, In the
region |s—s;| < v f(8) has an expangion.

o

J8) = X (u, 410,

=

w)n, §—8 = Qew Ooxr,

-

so that

N .
Ref(re™) = 3 (u,cosnd—v,sinnd)r".

: =1
Then for exarmple
e, sign, == - cosnf-signt, |40 .

% f Ref(re®)[1

,4

—T;mmc (M, O)f [1-} connt-signu,]do

and thérefﬂre : o
7" < 2max (M, 0)  (n =1,2,...).
© In & similar way we prove thaﬁa '

|oq)9" < 2max(M, 0)  (n=1,2,..).

icm
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Finally if r, satisfies 0 < », <7, and s safisfies 8—sl <1y, then

n=1

x> ‘ » . A1
[F&) < X (y+0,)77 < 4max (M, O)—?i(l_i) ,
3 i

which is the desired inequality,

Lewma 2. Let K, f, L(s, ) denote respectively any algebraic number
field of degree m, any zdml of K, and any H ecke—Landaw, L-series formed
with character yx{(modf). Lel

D = ANf

where A denoles the discriminant of the field K, and Ni denotes the norm
of the ideal T taken from K down to Q. Then there is o positive constani c,
depending only upon n, so that the L-series L(a—l— ity x) has no zero in the
'regaon

¢ 3
Nezle—rmer—— > —
T T g DA ) T 4

whenever y is complex, or y is real but ¢ is not zero. For a real character 7
there may be a simple real zero in this vegion, but nevertheless there is a further
positive constant. g, depending af most uwpon n, so that it lies outside the
segment '

>1—gD™™,  §=0,

If K is considered fized, so that A is also, and only T varies, then for an, J
value of & > 0 the constant g can be adjusted so that ﬁns last fnequolity con
be @mprowd to

gzl1—gDE,

Proof. All of these results save for the last one are proved by
Fogels [10]. He points out that the exponent 2» of D in the first of the
half planes can be slightly improved as to the size of the factor 2. This -
is not of great interest in most applications however. If we assume that K

+ ig fixed then a straightforward modification, of the proof of Siegel’s theorem

for real Dirichlet characters as given by Estermann (see for example
Prachar [14]) yields the last of the assertioms. All of the inequalities
of the present lemma are effective except for the last one.

‘We shall preserve the notation of Lemma 2 for the duration of the
following three lemmas.

Lemwa 3. There is a positive absolute constant B so that the inequality

|L(sy ) < 66 (D4+ T -

 holds wniformly in the strip —} < o< 3.
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Proof. This inequality can be obtained on exactly the same lines
as Lemma 4 of Fogels’ paper [10].

Lemia 4. If we veplace the constant ¢ in the statement of Lemmg 2
by a slightly smaller one then we can be assured that

t

%6, 0| oos Dt )

holds in the region ', unless possible y 18 a veal charaster. When this is the

case we assert that

I

7 = aunnx(D")”,(lowl) 1+|£|)))

{8, %)

holds in the region common to I' and the helf-plane oz 1—gD™,

If K is considered fiwed, then we can set 2n == &, and ¢yn = de. In foct
by a switable adjustment of the value of g in these circumsiances, we can
veplace c,m by any fized positive real number. _

Proof. We ghall give a detailed proof for the case when y, the
character under consideration, is complex, and confine ourselves to a few
remarks concerning the modifications necebscuy in the argument when y
is real. ‘

Let ¢ == g--4¢ be a point of the region

e

logD {4+ il) ’

o=l

It =,

where we shall presently choose v to be (in some sense) a large congtant.
We shall apply Lemmsa 1 to the function f(s) = logL(s, x) L(2+it, x) ',
where the value of the logarithm is chosen so that f(s) vanishes at the
point s, = 2+ it. In the notation of that lemma we then take
: L
|“ i %(’ Py o= Qe At S
og D(4-t])’ - log D{4-+1t))

Since K is of degree n over @

. Lyt
w1l

»
: 1y . 1 2 G nt
ST TS
i s P r

This is a very wasteful arguient, and if for example K is normal over @,
then in terms of the dependence upon » & rauch better inequality can
be obtained. This aspect does not. concern us here; however. If we
choose 7 fio have a sufficiently large but otherwise fixed value, the cirele

icn
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Cle—sy L Wﬂl be confained in the zero-free region I’ guaranteed by

Lemma 2. It follows irom Lemma 3 that in this circle
RelogL{s, x) L(sy, x) 7' < ¢log D(4+8).
By the Borel-Carathéodory theorem applied to the circle |s—s)| <7y,
f(sy =logL(s, ) L(sy, 2)™" = O[log’ D (44 [1))).
Now let s be inside the slightly smaller vegion
I
log D(4411))’

‘We can asswine that s lies inside the cirele -

it = 7.

— {2. lz—s g
A 1ogD(1Tm)}

which in turn lies inside the circle {#; |2—s,| < #}. Henge it follows from
Caunchy’s theorem that (in an obvieus notation)

L' f

L s T o 3—8)2

de = O(log" D(4 -+ It])).

We have proved this result under the condition [f] = 7. Tt can be extended
trivially into the region of the zevo-free strip, provided that the congtant ¢
is smitably adjusted, by means of the maximum modulus pringiple.

If y is real, then we choose v to be exp(e,0) where ¢, it a suitably
large but fixed positive reul nummber, independent of D ant ¢, The desired
upper bound is now obbained on the same lines as for the case of a complex
character. The exponent dein the second inequality of the present lemma
can clearly be replaced, at the expense of the constant ¢ only, by any
fixed positive real number.

Lemma b. In the notation of Lemma 2
alid _foa certain constands ¢ ¢, ;.

the following inegualities are

1) If x is comples:

Owexp(—eVlogz)) if  AN]< exp(eVlog),

> xlp ~BY 7 % log
Mot Oe(logm)™®] if ANf< exp (*ﬁﬁ“'i‘@ﬁ)'

(i) If x i5 real:

2 z(p) = O(wexp —cT}/logﬁ) if AN < e (logz)V, and A may vary,
Np<e . orif Ais considered fized and § satisfies
S Nf = O((logx)?) for any fized positive

real number 4.
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These estimates are wniform tn all the complex or veal characters y {modf)
as the case may be.

The first of the two estimates invelving complex characters is to
be nsed in the proof of Theorem 2. The second inequality of (i) is, becanse
of its wealk restriction on the size of ANTY, the more useful in the study
of the L-serieg formed with Dirichlet characters alladed to in the infrodue-
tion. The condition ANF < ¢,(logz)”* demanded in the fivgt of the two
situations considered . in the situation (ii) ean be weakened, but not
essentially, however.

Proof. It is convenient to begin by estimating a sum which ig
slightly different in form froin that in the statement of the presewt lemma.
We define _

p(o) =wl@, g = 3 xld{a) (220},

Nasw
where

| loghp if a= p”‘ P pnme,
Ala) = :
0 otherwise.

This last function is the analogne for algebraic number-ficlds of von
Mangoldt’s function. We then set

€

wil@) = [ pw)dy (23 0).

0

In the'.hajlf-plane v > 1 we have the representation

1 ot ica m5.|_1 ’ ,
wo) =5z | om0

This relation can be justified by expressing the funetion

' I

g"“‘i‘(sr x)

in termgs of the series

2 xla) A{a)(Na)~*
a
which is absolutely convergent in. the half plane ¢ > 1, and integrating
term by term with respect to s. This yields the representation
1 o-+ieo y‘s L.'

p(y_)—*—z—;%—. s L

D‘-—’LGO

(8, g)ds.

Integmtlon with, respect to y over the Tange 0<y <o now yields. the
required formula.
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Let 7' be a positive real number, satisfying T > 2. We write

a+iF
@ =l | +5
Pl 27t i D

PR AL A
f,)s(s+1) 6 288 = I+ L,
i

" say, and estimate each infegral separately. The second integral is taken

over the pair of line segments Re(s) = ¢ > 1, {f| > T. Asguming that =
satisfies >3 we set o =1+ (loge)™". The neatest way to estimate
the second of these integrals is perhaps that of Haldsz [11]:
Let y be a real number, and set
Glz) = > x(@)4(a)(Ha) ™.
No<iz
Then in the region ¢>1

r

I o . '
—]--_— ('g + iy) = f G(ﬂ?) m_s-l dr = f G(ﬁ"‘") 6‘11“6*111{(1%
s L 7 ;

8o that the pair

’

WY\ ,—HE . iL .
G (eYe and SL{S—}—W)

are Fourler trangforms. An appeal to Parseval’s inequality yields the
relation

r

1 \
—gﬁf(s—i-‘b?/)

a-+i00

S

o—ioo

as| =25 [ (@ du.
]

It follows from a simple well-known inequality of Ceby¥ev that
G(xy = O Ylogp) = Oz) (5= 3),
: pEx

so that
<r+iy+%i ; otico 1 -
1%
I |5@® ) 10s) < f [ =5 Gt |
osi-li o-To

= o(of e“("—lldu) = o(cil).

We can replace the T in I, by an integer w satisfying 37 < w < T since
the condition 7' > 2 is safisfied. Hence

oy o oim+ ) "
——| |5 s Z)l |ds} < — (8 2)
a-_'_'{g s(s4+1) H L™’ :Emz'-rjw +i{n—l) L_ s
=T } 2

1
= O(T(a*n)’
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and 80 by the Cauchy-Schwarz inequality
2(c+1) 1 }
§(s41)

2

I
(8, %)

2*logax
is| = o.(-—?ﬁm).

4n* |1, < — |da|
T —..fx [s(s-F1)] D—J;!

[>T M7
To estimate the first integral I, say for a complex character % we deform
the contorr into the partial rectangle

c—iT — 1—je[logD(4+T)]" —
—~ 1—ge[log D4+ 40" ~ o--4T.

On this new contonr we appeal to Lemma 4 and so deduce that
clogz

ot Dy T Nog* D (4--T)]. -
41001)(1411))“ DU-+0)+42 Mg D (-1

I =0 (ﬂ:‘2 exp (
Altogether therefore we obain the bound

. ) . D(logm) qut)g'-’-l.z“ :
i (2) = o(m_logl) (4+1) [—w(;]jgﬁ) +GX’( log D (4--T) )])

It D satisties I < exp(e,V1ogz) we define 7' by
' {log D{4 -|—T)) = 2¢logw
and thiz yields the estimate |
(@) = O(m”exp(-—c,ﬂ/@m—))._

If on the other hand D is assumed merely to satisty the weaker
restriction (B 6)logD < ¢logz(logloga)™, then we set (B 6)log(¢4-T)
= ¢ logz(loglogy)™, so that for all absolutely large values of # the
inequality 7' > 2 is satisfied. In this case we obtain for a suitably small
real numbel cﬁ, independent of B, the emmate

() = Ofa* (loge)~ a1 ).

To. erder to eomplete the proof 6f Lemma 5 we first note that

1
»(@) = [y (@) =y (o h)]4- O(hlogs) (A= 3),
and we choose a value of h in either of the cases of (i) undex consideration
§0 as to make these terms comparable in gize. Tn fact the error term -in
this lagt estimate can be replaced, using a sieve method, by O (k). Partial

- summation now yields both of the bounds stated in the gection (i) of the

present lemma. This procedure can be justified by slightly decreasing
the values of the constants o, and 6.
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In order to consider the case when y i3 a real character we need only
apply the second or third of the estimates of Lemma 4, rather than the
first.

We now specialize our interests to the eases when K is a cvelotomic

k_
field @ (V1). If m is a rational integer, then the kth-power residue symbol

at m induces a character on the ideal elass group (nod{ k2iw)]) in 0 1/ (¥1), '
as follows: b
For any ideal a of §{ 1/1 Whleh is prime to [k*m] set

[)=H5)

Then a character can be defined by

m ‘
— if o and [k*m] are coprime
x(ﬂ)=l(a):.- $ore coprime,

0 otherwise.
Our next lemma is concerned with the possibility that thlq character

be real.

. Lmwia 6. Let % be a positive rational integer, and let m be o further
rattonal integer which is a k-th-power residue (modp) for ofl but fimitely
many Tational primes p =1(modk). Then m is of the form f* with § an

integer of the field @ ( 1/1)

Proof. This result is due essentially to Trost [16]. See also Ankeny
and Rogers [2]. In fact the hypothesis can be considerably wealkened.
TP denotes the set of primes p = 1 (inodk) for which m is a kth-power
residue it is sufficient for the validity of the conclusion that '

Tl ¥ (57 =1p(k)
§—~+14 meP . n N X

CORULLARY. Let y(a) be the ideal class character (mod[k2m]) in Q(V1)
induced by the k-th-power residue symbol taken af the rational integer m.
Then y(a) is real if and only if &k is odd and m = §%, or k is even and

E_
m = i, with either §; in @ (V1).
4. Proof of Theorem 1, For each rational integer a;, and %kth root of

ity ¢ (j =1, ..., ), and each prime ideal p of Q(I/I), it is clear that

=Sl e Bl

b=t 0 otherwise.
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1t follows from T.emma 6 that in the notation of Theorem 1

S(a, By 1) — kN (6, 2) 31 =k 2 Z - 2(“llﬁi)
Ny p k

\"p TR rye=1 =1
a;l...m;fi'#ff?‘"
where 2' indicates summation over the prime idealt of the ring (V1)
which do not divide %a,...a,, and where S{x, %, r) hag the same definition
as that of &(x, &, r) in the statement of Theorem 1, save that onty rutional
primes p not dividing & are counted. In orvder to estimate tho innermost
sum over p on. the right hand side we note that if we mp]wm the kth-power
residue symbol by the ideal class character (mod[%"ajl. ~a]) which it
induees then the condition ' in the smnmation is redundmnt. ‘We note that
the induced character cannot be prineipal, otherwise a)...ayr would be
in the sense of Lemma 6 everywhere a local kth-power, and so by
Lemma 6 a global kth-power, a possibility which has been. rnled out,
Moreover this character is complex if & is odd, no matter what the valuey
of the . .
Thus we can apply the inequalifies of Lemma 5 (i), to dedunee for
example that

al:..ayr T
' (w,}__wi) == O(mexp(wcq?/logm))-
Np=a i .

In order to complete the proof of the estimations (iii) of Theorem 1 it
suffices to prove that :

2 1 = m(z) -+ O(zexp( *671/155)

Np<e

This i3 an easy matter, since

D= ZM > 1+0q)

=P R A
:Ufﬁl(mnd %)
=o® Y 1+0( 1t Pt
paiacdr) Pz s

Finally, an appllcamon of Diriehlets theorem (see for example Prachar {14],
Chapter IV, Satz 8.3), these last sums are

- w(@)+ Olzexp(— o Vloga)) -+ O (v 1f2)

Lastly, if & is even, then a similar proof can be given of the estimate (iv)
of Theorem 1.  Note that ai®...a; satisfies the condition of Lemma 6
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which is sufficient to guarantee that the kth-power residue symbol at
al”...af”® induces a real ideal class character. We must fall back therefore
upon. ’fhe wealer bounds (i) of Lemma 5. These lead to the estimate (iv)
of Theorem 1, and our proof of Theorem 1 is complete.
We note that by means of some recent results of Sokolovskii [15]
the error term in the estimates (iii) of Theorem 1 can in some respects
be improved.

5. Proof of Theorem 2. We recall some results from [5]. It was
proved in that paper that if ¢;, ¢,, ..., are the rational primes in increasing
order, then

(o) S(@, kyr) =8@@, by ?y @1y .05 @5 1,000, 1)
~ (1+oW)4a(@) (o oco),

where the number d, satisfies an mequa;hty d, < 6,277, Furthermore it
was shown that

(#) Sz, &, 7) < ¢y dypn ()
holds uniformly for all fhose integers r corresponding t0 which the primes g,

do not exceed a certain positive constant multiple of logx; say ¢, < ¢, log.
Finally we shall need the fact, proved in the same paper, that

1 loga
o Ly g me=0 [rexp [~ agtegay )
ny(p)==tyqlogx :

We shall consider in detail the case when % is odd. Simple modifications
will then yield the case of % even.
I ¢, is chosen to be & suitable positive constant, and g, does not

exceed c¢pVloge, then the first hypothesis of Theorem 1 (iti) i3 satisfied,
8o that k"N (k,7) = d,, and

S(z, &, r) = dun(@)+ Olrexp(— ¢, Vioge)).

Hence

1
LY ) - 5 48, b r—1)— (@, 1]
(@) Pz m(#) @<ty Tog T '
ny{p)<e 3 Viog s e

= Y g(d_,—d)+0(logz-exp(—eVloga))

gyeryVogm
_ ¢;V1oge )
=at0 (ex;p ( loglogs )

Acta Arithmetica XVILZ 3
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the last step making use of the upper bounds for d, in (). Combining
this estimate with the inequality (v}, and

1 Sq s l/lr)g ©

wi =0l 5 ui) - ofem(~ 225

(i) L P q,,.>r:]34§‘1_0g - logloga
eygVloge<ng{p)sep logx }

the proof of Theorem 2 is complete.

6. Remarks concerning Artin’s conjecture. We confine omwrselves for
simplicity (o the case when primes for which 2 is a primitive root are
sought. To estimate the numiber of those primex not é:xceediug 2 given
real nmuber 2 iy essentially the same ay congidering the prime ideal

k. k_ :
theorem in the Kummer fields (2(1/1, ¥2) generated by squarefree inte-
gers k. In his paper [12] Hooley proved that if the Dedekind zeta functions
corresponding to these fields have all their zeros ingide the critical strip
actually on the line o = § (in the usual notation), them Artin’s conjectured
result indeed holds, namely that

. - 1
Plp) = 1=(1 V) Ar(z) (@~ o0); 4 = R —
W= 3 (140(1)) An(a) (x -> <o) ”( M__l))

2 preim (mod p} .
As iz well known, if the integer 2 is replaced by anether integer, then
it is sometimes necessary to modify the definition of the constant A.

Let £y (s) denole the Dedekind zeta function associated with the

b k. -
" field Q(V1,V2), where k is a pogitive integer. Let £,(s) denote the

. k.
Dedekind zeta function associated with the eyclotomic ficld Q(V1),
and let L,.(s, v} denote any IL-series

2 xlo) Na™*

‘defined over (V1) in terms of the character on the ideal class group
(mod[2%*]) induced by the kth-power vesidue symbol evaluated at the

. I
point 2. Here the ideals a ran through the integral ideals of @(V1), and
all of the norms aré absoluté, We mainfain that the following relations
hold: o - ' : _

W@_{f 84 % then there exist ideals §, (v =1, ..., k—1) dividing (2]
in Q(V1), and for each §, a character y,, so that the characters y,(modf,),
and y"(mod¥) are equivalent, and furthermore

k-1

CK('S‘) = CI::(S) !;_!1 Llr.(87 x:r)' .
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(i) If 81k then we can find similar moduli {,, v =1,..., k/2-1,
and characters y, so thal
- kfa—1

Lrl8) = Exls) 131 Lp(s, 2

T either case each character y, is primitivé (modf¥,), and | denotes the principal -
ideal [2K].
These relations can be set in a more suggestive form; for examyple

K.
if 84k, then there is a finite set of primes p of 0(V1), dividing [2%%],
so that . :

, & o k-1 )
{g(s) = H (1‘—__2\2']5;) Ck(s)nl;k('?s%u)
_ Pl _ r=1
(le] = je(p)] = 1, each'a = a(p) a rational integer satisfying 0 < a < k—1),

and similarly if 81%k. For
. k) !'(
Li(s, 2" = Li(s, 1} H (1— ZV;)) (# =1,..., k—1),

.

PR

and we may bake

We shall now justify the assertions (i) and (ii).

k__
Let p be a prime ideal of the ring ¢ (V1) which does not divide [24%].
It is an immediate corollary of Kummer’s theorem (see for example
Weiss [18], Theorem 4.9.1 and exercise 4.9.2, on p. 169) that p splits into

. k_ k_. . i .
kf! conjugate prime ideals in Q(V1i,V2) if and only if__ the polynomial

E_
#—2 splits into kf~' irreducible factors (modp) in Q(V1). Moreover,
it i¢ clear that this last eventuality arises if and only if the congruence

k__ . .
of = y*(mody) is soluble in Q(V1), whilst 2" = y*(modp) is insoluble
whenever m < f. Consider the product

1 1= () = 3, 5 S o

\31’[27-!2] »=1 r=1 v=1

E-_ . x s
where the prime ideals p are taken in Q(]/l). For each prime ideal

E_ k_ . . :
q of Q(l/l, ¥2) which lies over guch a prime ideal p we write ¢(q) for

the residue class degree of q over p. Leb flk and consider the contribution
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to the triple sum on the right hand side of the above equation which ig
made by those q with e(q) =f. Since (2/p), = 1 if and only if the con-
gruence 2" = y*(modp) is soluble, and since e(q) = f, this can only
happen. if f|7. Moreover, exactly Ef~! of these g lie over each appropriate

prime ideal p of Q(l/ 1). Thus the confiribution i

1 1
b ) d —log (1 — m-w;) .
ELRTCE a4 TRt

Summing over the values of f dividing & shows thab
—1

[l = bl

S R off2i®] ¥

. fe
where the final product ix taken over the prime ideals of QU/1,v2).

Let y, be the primitive chatacter (modf,) which is induwced by the character
(2/p) (mod[2%*]), and consider the funetion g(s) which is defined in the
reglon ¢>1 Dby

g(8) =g(s,2) = Cn(S)[ak(S‘ H Le(s, )|

In view of the above relation g(s) can be analytically continued cover
the whole plane, and all of its zeros or poles lie on the imaginary axis.

Now (seo for example Landau [13]), if ' iz any algebraic number field,
and x i a primitive character (modf), for an integral ideal § of F, then
the I-series formed over ¥ with thiz character can be amalytically
continued over the whole complex plane, and there satisfies the functional

agquation .

b2y ()

Lo(sy ) = ol DIAGP ™| 5250 | |- z(*) y
2
(]’(1*—3)

Ty _
X __.]_1_(.';) )Lﬁ(l ) X).

Here

A(f) = o e ™I (ANF)2,
2r, denotes the number of pairg of complex conjugate fields to F, 4 denotes
the diseriminant and n = 7,27, the degree of F. ¥ ig the complex
conjugate of the character y, ¢ is a rvational integer satisfying 0 < g7y,
and. finally |=(x, F)l =1. In the present ecircumstances we are only
considering fields K which contain a non-trivial eyclotomic field. Since
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. %
any such field 0{¥1) is normal, and so self-conjugate, it therefore has
no real conjugate fields, and so neither does K. In any application of
the above functional equation we can thus sef g = 0 = r,. However,
we shall not need this fact. We note that if g(s, y) is not a constant,
then it has @ zero or a pole on the imaginary axis, and not at the origin.
It is immediate from the functional equation for the L-series that one
of the L-series defining g(s, x) has a zero or a pole on the line-segments
o =1, 5 0. Since neither of these eventualities can occur (see for example
Lemma 2) g(s, y) must be a constant. Letting s — oo through real values
shows that the value of this constant is 1. This justifies the assertion (i).

It 8|k a similar argument can be given. In this case VY2 belongs

I__ E_ k_ E__
to @ (V1) and the degree of the exfension K — Q(V1, V2) over Q(V1)
is k/2. We see that our previous statements still hold if & is replaced in
them by L/Q and 2 by V2. Thus the polynomials o* 2_11/2 are irreducible

over Q(I/ 1), and an ideal p which does not divide [k} (or therefore [2])
wplits into %/2f ideals of degree f in K if and only if the congronence

. K
(V2Y = y*"®(modyp) is soluble in @(¥1), bubt any congruence (V2™ = o
(modp) with # < f iz not. Sinee —1 =12, and ¢ = ¥ —1 belongs to

E_ —
Q(!/l),_ the relations (VZ)f =y (modp) and 2% = y*(modp) are equiv-
alent. Finally we note that

hy2 Y
(p) — (V3T = 1(modp) (b 1T,
k

go that for such prime ideals

2 2* ( ) - ]Ef(%)k

This justities the assertion (ii). The method of proof is of course clagsical.
In conjunction with these two representations we note also thab
for each value of %

Lu(s) = £(8) [1 L(s5 %)

f I < &)
where £(s) denotes the Rismann zeta funetion, and the L-series run over
all thoge defined over the rational number field by fhe non-prineipal
Dirichlet characters (inod k). Thus if & is an odd prime we can find a divisor

i of [2%7] in Q(;?I, £0 that
Lels) = 2(s) [T (s, ) ITLL(SD}’

XX
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where all of the L-series are formed with primitive characters. This iy
clearly the most important case.
In his paper [12] Hooley agsumes that the zeros of the Dedekind

k. k_
zeta Tunctions Cg(s), where K =@ (V1,V2), u*(k) =1, which lie in
the strip 0 < ¢ < 1, all lie on. the line o = 1. In order to prove a weaker
form of Artin’s conjecture, namely that there exifts an infinity of primes p
for which 2 is a primitive root, we need only assume such a conjecture
for prime values of k. For then Hooley’s argument can be trivially
modified to prove thab

3 -2

| pED
2prim (mod 1)

liminfe(z)~*

X

SPPE S L
~ 4-3  A~m(m—1) T} =

The validity of the Riemann hypothesis for the fields Q(‘:Pi_, 11;5), L
=1,2,.., implies its validity for £(s) and all of the L-functions formed
with Dirichlet characters. It would be interesting to know what wealer
hypothesis might be sufficient to prove the weaker form of Artin’s
conjecture. It was shown by Ankeny [1] that if one assumes the Riemann
hypothesis and its generalization to Dirichlet L-geries to be frue, then
g(p) the least (prime) primitive root (modp) satisfies

g(p) < ¢(2'0~Nlog plog (2@ Plogp))*.

Here v(p—1) denotes the nwnber of distingt prime divisors of (p—1).
This was improved by Wang [17] to . .

g(p) < ¢'v(p—1)log*p.

Z.L\f,[ore recently it was proved withowt any hypothesis that ¢(p) = O ({log p)“'*’e)
infinitely often for any fixed & > 0 ([4]), and later that g(p) < 475 (logp)**
holds infinitely offen ([7]). These resulty are poor in csonrpzwiadn Wit
the weak form of Artin’s conjecture, which would imply that g(p) =
iqfinit_ely often. It would be interesting to know the Dest result in this
d1.1‘e_ct10n which could be obtained by using only L-series formed with
Dirichlet characters. Finally we note that the following amalogue of
a t}}eorem of Bombieri ({3]) if true would immediately yiél(l Artin’s full
conjecture. For example, for each integer %> 1 let x(a) denote the
character indnced on the ideal class group (mod[2%*]) in Q(';c/i) by the

kth-power regidue symbol evaluated at the point 2, then it seems
reasonable to |

icm
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CONJECTURE. For each positive real number B there is a further real
number ¢ = C(B) so that for all large values of »

1 k;l o
> 22| X x| =olallogz) 7).

fenlf2 (]Ogm)—c' =l NPSIE

Indeed it might even be possible to replace the sommand by

‘max| ¥ z(p)]

x CANpsT

where y runs over all non-principal ideal class characters {mod[24%])

k__ . .
in Q(¥1). In either case the prime ideals p are to run through those
belonging to the appropriate cyelotomic field.
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