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soit de mesure nulle, soit de mesure pleine. Ces conditions sont-clles
suffisantes? (Cela m’étonnerait.)

4° 8i A et B sont deux ensembles normaux, en est-il de méme de
A v B? Sinon, trouver un ensemble normal ¢ non trivial (différent de
R—{0} ou R—Q) qui contienne A u B.

5° Bst-il vrai qu’un nombre complétement normal soit nécessaire-
ment transcendant? Ce probléme, vraisemblablement trés difficile est
& Dlorigine de cette étude.
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A refinement of a theorem of Schur
on primes in arithmetic progressions III
by

J. WéJcIrk (Warszawa)

I have given in [4] a purely algebraic proof of the following specia
case of Dirichlet’s theorem on arithmetic progression: Let 12 = 1 mod m,
m == p'n, where p is a prime, » >0, pfn, I =1 or p mod %. Then there
exist infinitely many primes = 7 mod m.

The aim of this paper is to extend this result. The proof, again purely
algebraic, is hased on the well known upper estimate for the number
of genera in a cyclic field of prime degree.

Notation: @ is the rational field, m — any positive integer, B,, — the
multiplicative group of rationals congruent to 1 mod My Ly— mth primitive
root of unity, P,, = Q(&n).

For any two fields & and K , b « K, Ngj is the norm from K to J.
(K k) is the degree of K over k, |k| = (k:Q).

For any two abelian groups J and &, J < @, |G] is the order of ¢,
G[J the quotient group, (¢:J) = |G[J].
 The term group of rationals mod m prime to m denotes any set G = Q
such that 1) B, < &, 2) G is multiplicative group, 3) any element of @
is prime to m. (Clearly G/E,, is a group of residue classes mod m prime
to m.) We say that a field ¥ < P, is invariant with respect to group @
if it iy invariant with respect to antomorphism ¢, — &, of P, for any
integer ne@.

TaroreM 1. Let G, J be groups of rationals mod m prime to m and
let J be a proper subgroup of G. There exmist infinitely many primes in G\J.

Leavva 1. Let &, J be groups of rationals mod m prime to m and let J
be a subgroup of G of prime indew. Let % be a maximal subfield of Py, in-
variant with respect to G. There exists a prime ideal p in k prime to m such
that Np does not belong to J.

Proof. Let K Dbe a maximal subfield of P,, invariant with respect
to J. We have:

(B :k) = (GBp: J[By) = (G:J) = 1,
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where I is a prime.
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Hence K[k is a cyclic extension of primeldlegree. Let b be 1Ls relative

diseriminant. It is well known that d = §~*, where { 15. an ideal of %.
Let A be the group of all ideal classes of k. mod f prime to f, H; ‘be

the group of these ideal classes of k modf which contain ?he relative

norm of an ideal of K, finally, let H, be the group of th‘ese 1_(165»1 classes

of hmodf which contain the relative norm of a principal 1{1@;»1 of K.
The following inequality is well known (see [1], pp. 22-24):

1
(Hf:Hﬂ o< 'Z—(A5H1)7
where ¢ is the number of ambiguous classes.
Hence:
1
(1) 7| < 14].

Suppose that for every prime ideal p of & prime to m we have:
(2) Nped.

In each ideal class of k mod { there exists an integral ideal a prime
to m ({1], p. 63). Let

®) a=[T»,

Let a be an arbitrary integer of K. Since 1, &y, ..., £0~! form an
integral basis of P,, we have:

(4) a = h(C‘nL)y

where kb i§ a polynomial with rational integral coefficients.
Let Np = p’, where p is a prime. By (4), (2) and the definition of K
we get:

where p prime ideals.

o = h(EB) = h(Lw) = amod p.
Since the above congruence holds for every integer « of K, iti follows that
each prime ideal factor of p in K is of degree one with respoct to k, thus
P = Nz, where P is an ideal of K.
Hence by (3) a = Ngi([TP) and each ideal class of kmod § contains
& relative norm of an ideal of X, i.e. H; = 4. The obtained contradiction
with (1) proves the lemma.

LemMA 2. Let & be an algebraic mumber field. For any two integral
ideals a and ¢ of k there ewists an integral ideal % of k such that:

ab = (a), Nu >0, b=@Q(a), (b,c)=1.
Proof. Clearly there exists an integral ideal b, of % such that:
() by = (y), (by,¢) =1.
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Let B be a primitive element of k. For sufficiently large rational
integer n we have N (f+n) = Nio(f+n) = a¥L... >0.
Hence we can assume that N§ > 0. We have

B—Bi #0  (i=2,3,..., [k]).

(B’s are the conjugates of f.)
Choose a rational integer z so large that

(6) @ # (yi—y) [N (ac) (B—$:)

Na = (Nao)" Ng-&"™+... >0, where o = y+aNac-p. By (5) ala, hence
(a) = ab. The equality ¢ = o¢; with i >1 would imply

& = (yi—y)[(Nac)(£— B:)

contrary to (6). Thus %k = Q(a). If plc, where p is a prime ideal and
p’lla, »= 0, then p’jly by (5) and P+ Nac, thus p’lle, pth. It follows
that (b, ¢) = 1 and the proof is complete.

Proof of Theorem 1. In view of the structure of the lattice of
subgroups of G we can assume without loss of generality that J is a sub-
group of G of prime index. Let p,, py, ..., Pr_; be a sequence of primes
from G\J (r>=0). We shall construct a prime P-<G\J not belonging
to the sequence. By Lemma 1 there exists a prime ideal p such that:

(7) Nped,

(1=2,38,..., k),

(p,m) =1.
By Lemma 2 there exists an integral ideal b such tha,;;:
(8) pb=(a), Na>0, Ek=@(a), (b, Np)=1.
Let u = pgmp.;, d = disee, d = d,-d,, where (d,, mND) =1 and

all prime factors of d, divide mNb. In virtue of the Chinese remainder
theorem there exist rational integers a, b satisfying the conditions:

—1 mod m(Nb)?, b — 0 mod m(ND)?,

(9) a= =
0 mod dyu; 1mod &, a >0.

Let

flz) =H(w— %a), (@) = flom(Nb)z+b)/Nb, s =K.
By (8)
(10) Na = NpNb.
By (9)

1 mod a,

(11) flam (FoYo+b) =

Namod m(Nb).
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Hence by (10):
flam (Nb)*2-+b) = 0 mod Nb,

thus g(») is a polynomial with rational integral coefficients. By (10)
and (11):
(12) ¢(x) = Na/Nb = Na mod mND

and by (7), (8), (9) and (11)

(13) for every integer x.

(¢(x), amNb) = (¢ (), admu) = 1

We have D = dise(ae) = ¢’ "d. Choose a rational integer z so
large that ¢(z) >1 and hence ¢(z) has a prime factor. If plg(z), p is
a prime then p |f(y) (y rational integer) and ptmD by (13). Let aa = L(),
where % is a polynomial with rational integral coefficients. Since & = @ (aa)
the equality A(Ewm) = h(Ch) implies in view of the definition of & that
ne@. By the theorem of Schur ([3], p. 41), pe@. It follows that ¢(w)
has a prime factor p,eG\J. Otherwise we would have ¢(z) = [[p, peJ,
p(z)ed and by (12) NpedJ contrary to (7). By (13) P uND thus p, is
different from all the numbers Py, Py, ..., Pr_1. LThe proof is complete.

Applications. Taking in Theorem 1 for @ the group of rationals
congruent to 1 or Imod m, and for J the group of rationals congruent
to 1 mod m, where 12 = 1 modm, I % 1modm, and including the well
known case I =1 modm we obtain:

TEEOREM 2. Let 1* = L modm. The arithmetic progression mz--1
(2 =0,1,...) contains infinitely many primes.

As a further application we have the classical ([2], Satz 147)

THEOREM 3. Let 4y, G, ..., 0 be rational integers such that ay"t ay'® ... ag*
is @ square only if all mi's are even. For any Sequence &, &y, ...y & (8= £1)

@ .
there ewist imfinitely many primes p such that (E’j) =g (1<14<5).
Proof. There exist infinitely many primes p = 1mod 8a,... a.

@
By the quadratic reciprocity law every such prime satisfies (5;) =2 1

(L<<i<s). This settles the case g =1 (1 <4 < s). Assume now that
not all &’s are equal 1. We take in Theorem 1 for & the group of rationals
congruent mod 8a,a, ... a; to odd integers n >0 satisfying

ay ag ay s
—)=1, ..., [—)=1 or — = vy |—) = ¢

and for J the group of rationals congruent mod 8a, @, ... a; to 0dd integers

n >0 satistying (-q“@-) =1(1<i<s).

i=m®
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It follows easily from the quadratic reciprocity law that J = G
and by Theorem 1 there exist infinitely many primes in G\J. These

. . a;
primes satisty (?> =g (1<i<s).
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