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A remark on number-theoretical functions
by
I KArTA1 (Budapest)

In the following f(n), y(n) denote additive number-theoretical fun-
ctions, i.e.
flwm) = f(n)+f(m),  g(nm) = g(n)+g(m),
whenever (n,m) = 1.
P54y P1yDa, ... denote prime numbers. ¢, ¢, ¢,, ..., K denote suitable
positive constants not the same at every place.

We shall say that a sequence of natural numbers 7y < Ny < ... has
a lower density 6, and an wpper density 6, if

21 : 21

. omg< —_—
lim — =6, lim-*

T00 L—ro0

= 8.

We say that a set of natural numbers contains almost every natural
number, if its lower density is 1.

A well-known theorem due to P. Erdss states that:

If f(m) is an additive number-theoretical function such that f(n-+1)
=f(n) for every natural number n, then f(n) is a constant multiple of
logn.

I believed that the following generalization is also true:

If

* h(n) = max(f(n), g(n))
such that
hn) <h(n4+1), n=1,2,..,

then h(n) is a constant multiple of logn.

It is easy to prove that this assertion holds if both functions f(n), g(n)
are totally additive. But it is not difficult to give a counter-example
concerning the general case.

Let p, be a fixed prime number,

f(n) =logn; g(p7) = logpi+e(pl),
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where 0 < e(p?) < ¢,/p$, and let g(p®) =0 for every prime power p°,
if p is different from p,. Then

h(n) =logn, if (w,p,) =1, and k(py') >logpit.

If we choose ¢, small enough, the corresponding h(n) is a monotoni-
cally increasing function.

We can prove the following assertion.

THEOREM. Let f(n), g(n) Dbe additive number-theoretical functions
for which

h(n) = max(f(n), g(n))
is a monotone non-decreasing function. Then the following three assertions
hold:

1. h(n) = clogn-+7(n), where r(n) -0 as n—oco, and r(n) =0,
if every prime factor of n is greater than K. K is a suitable constant
depending on h(m).

2. If f(n) = g(n) for almost every n, then

fn) = clogn and g(n) = élogn—{— &(n),

where &(p®) <0, if p is large enough.

Let 8 = (py, ..., 1) denote the set of all “érregular primes”, d.e. those
primes for which there exist exponents a; such that

e@F) >0, i=1,..,1

There are three possibilities only:
(a) 8 is an emply set,
(b) 8 consists of one element only,
(c) S consists of at least two but finitely many elements. In this case

e(ph) <0, i=1,...,1
if B is large enough. .

3. If the set of the n's satisfying f(n) > g(n) has a positive upper-
density and a lower-density smaller than 1, then:

h(n) = clogn  for every m.
Further we have
f(p%) = g(p°) = clogp®, a=1,2,...

for every prime p, with the emception of at most one.
Remark. The conditions in 2 and 3 are complementary.
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2. For the proof of our theorem we need the following lemmas.
LEMIMA‘ 1 [1% If f(n) is an additive number-theoretical function,
non-decreasing monotondically, then f(n) is a constant multiple of logmn.
LeMuA 2. Let us suppose that for a sequence of natural numbers
A={n, 1=1,2,..}
Ny < My < ...
having density 1

f(ny) <f('”’i+1)s

holds. Then f(n) is a constant multiple of logn (%).

Proof. We can easily deduce this assertion from Lemma 1. Let n
be a given integer. The positive integer solutions z,y of the equation

i=1,2,..

(m+le—ny =1, (z,n+1)=1, (y,n) =1
have positive density. Flence it follows that there exist infinitely many
solutions #, y for which #,y, (n+1)s, nyeS. Then
flnt-1)a) > fony),  de  Ft-1)—f(n) = f(y)—F(@) >0,

because y =, y,wedl.

Hence it follows that f(n) is non-decreasing on the whole set of
natural numbers. Using Lemma 1 we infer Lemma 2.

The following lemma plays a principal role in the proof.

LemmA 3 [1]. If there ewist two positive constants ¢, and ¢, and
an infinite sequence i, — oo so that for every wmy there are at least ¢y my
mlegers:

Iy <o<...oy<apy =00,

for which

[fla)—fla)l <o, 1<i<j<l,

then
f(n) = elogn+1(n),
where
2
LT
n
As usual,
l Ip), when |i(p)] <1,
L)l = 1, when  |l(p)] >1

(1) The assertion of this lemma was conjectured by P. Erdds in [2].
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3. Proof of the Theorem. In the proof we distinguish two comple-
mentary cases according to the assertions 2 and 3.

A. f(n) = g(n) for almost every =.

B. The set of #’s for which f(n) > g(n) has a positive upper-density
and a lower-density smaller than one.

Case A. In this case f(n) is non-decreasing on a set with density 1.
Then f(n) = clogn by Lemma 2.

Suppose that there exists an n, for which ¢(n,) > f(n,). Let

glny) = f(n)+4, 4>0.

We shall prove that there exist at most finitely many m, coprime
to n, for which g(m) >=f(m). In the opposite case there would exist
My < My << ...y My = 00, (my, ;) = 1 for which

h(msn,) = g(msng) 2= f(mq)+g(ng) = flmng)+4.
Hence it would follow that
g(n) > clogn = f(n)

in the interval m;n; < n < (14 ¢5)myn,, with a suitable constant ¢; > 0.
But this cannot occur in the case A.

Hence it follows immediately that the set of irregular primes § has
at most finitely many elements.

Suppose now that there exist infinitely many exponents g for
which

a(p’f) >0,
and let
4 = pipi... pit,
where
0<e(p)), ©=2,..,1

Since gz-+1 has no irregular prime factors we have

1
hge) = 9(ap) = fgp)+ 3 e(pE)+e(wd) < hlgp+1) = F(gp+1),
whence
1
0 < s(pd)+ D e(m8) < o/gp.
t=2

Let now 8 —+ oo in a suitable set. Hence
1

D e(wi) =0

i=2
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follows. So there exists only one irregular prime. Further we have
lim & (pf) < 0.
B—o0

Let us suppose that there exists more than one irregular prime.
Let ay, ..., a; be the greatest powers for which e(pit) > 0. Let P = [1pé.
Every integer n can be represented in the form 1 — dny, where d|P,
(n1, 4) = 1 and d contains the p’s with the power zero or greater than a;.
Repeating the arguments used above we have g(n,d) < f(n,d) for fixed d,
if ny is large enough. So h(n) = f(n), if o is large enough, becanse the
set of the d’s is finite.

For the proof of 1 we note that if

E{h (n)—eclogn} = 4 >0,
N—>00

then g(n) >f(n) on a set having positive upper-density, which was
excluded now.

Case B. It is enough to prove assertion 3 only. Using the mono-
tonicity and subadditivity of %(n) we have

h(n) < h(n+j) <h(20) < h(n)+n1(2)

if » is an odd integer and j = 1,2, ..., n. In our case for f(n) and g(n)
there exist infinite sequences @y, x;, tending to infinity, such that the
equation

h(n)

f(n), ne(@p/2, @) resp.  h(n) = g(n), ne(si2, a})

hag at least om, resp. Sz, solutions, where 6 is a positive constant. Hence
it follows by Lemma 3 that

fn) = clogn+-gi(n),  g(n) = ¢'logn+g,(n),

St
> p

We prove that ¢=¢’. If we suppose the contrary, say ¢ > ¢', then
f(n) > g(n) for almost every s, because from (3.1) it follows, that g;(n)
= o(logn) for almost every n. But this is not our case. So ¢ = ¢'.

Let

where

(3.1)

1,2.

B (n) = max(g,(n), g.(n));
80
h(n) = clogn+h'(n).
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From the monotonicity of h(n) we obtain
(3.2) B (n4+1)—h'(n) = —K/n,

where K is a sunitable constant. N
From (3.1) it follows that there exists a suitable sequence of positive
numbers &, tending to zero monotoniecally, such that

1
< oo,

Max |g; (D) >8p
i=1,2

Tet P’ denote those primes which oceur in this sum. Let P denote
the set of primes not belonging to P’. In view of the prime number
theorem it is almost evident that there exists a monotonically decreasing
positive function ¢(z) tending to zero, and an w(2) tending to infinity as
2 — oo, such that there exist two primes p,, p,e<P such that

(3.3) @ < pips < a(l+s(@)),
It is evident that

D1y Pe > ().

ag L — o0,

B (p1ps) =0
Using the relation (3.2) and (3.3) we have
' (n) = 0.
Considering thatb .

Wi{np) < W (n)+0'(p) i p>n,
and tends to infinity with p in the set peP we have
(3.4)
for every m. Further

B (n)>0

gi(n) =limg,(np) <lmk (np) =0 for i=1,2,
DP—00 P—r00

whenece ¢;(n) <0 (4 =1, 2); consequently h'(n) <0.
Hence it follows, that
(3.5) h'(n) =0

for every n. Suppose now that there exist prime powers pit, ps2, py # D,
such that i
! 9. (p1") < 0,

Hence it would follow that

ga(p3?) < 0.

W (pips) <0,
which is & contradiction of (3.5)."
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So we have obtained
91(0%) = g:(p%) = 0
for every power of primes p, except for at most the powers of one
exceptional prime p,.
Hence the assertion 3 follows.

I am indebted to Professors

P. Turdn and P. Erdds for their
valuable remarks.
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