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Introduction. It is known that the Dedekind zeta function of an
imaginary quadratic field can be expressed as the produet of the Riemann
zeta funetion and a Dirichlet L-series and also as a sum of Epstein zeta
functions. In symbols, if {_4(s) denotes the Dedekind zeta function of
the imaginary quadratic field having discriminant —d, d > 4, then

—a(8) = £(8)L_a(s) = D Z(s; a, b, ¢),
where ’

L_a(s) = Z”(—dm)vr* (Res >0)
and -

Z(s;a,b,0) = Z(s) =} D) (am?+ bmn+ en)™* (Res >1).
The summation in Z(s) is over all pairs of integers (m, n) except (0, 0),
(—d|n) is the Kronecker symbol, and @ is the set of reduced mtegral
solutions of —d = b2—4ac. In symbols,
dac, —a<b<a<cor0<

Q={(’a,b,c)}-—d=bﬁ_ bga:o;

a,b, ¢ are integers}.
The purpose of this paper is to investigate the bebavior of L_s(s)

for real s between 0 and 1 by working with the analytic continuations
of the Epstein zeta functions. Now P. T. Bateman and E. Grosswald [1]
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found a very accurate approximation to Z(s) in the critical strip near
the real line. They showed that

k=Y (ak[x)’ T(s)Z(s) = f(s)+f(1—s)-+H(s; a,b,¢),
where

fls) = B R[mFI()EEs), b = d/(2a),

I'(s) is the gamma function, and H(s; a,b, ¢) is an “error” function.
Let us define
a(a) = loga+log(8re™”)— tlogd
and
by = (2"—1)&(n)[n-+2"B,,,
where )

log{(s—1)2(s)) = DH=1"als—1)"  (Is] <3).
We then show that
F(9) = —3(h—9)exp{(—s)ala)+ D bu(3—s)"}.

N2

Now {f(sH— f(1—5)} has a removable singularity at s = 4 and it is easily
seen that the value there is —a(a). We prove the following theorems:
TurorREM 1. If n > 2, then b, > 0.
THROREM 2. If —d is a fived fundamental discriminant, and if

(i) D e a(a) >0,
Q

(i) Dl a a(@)—~H(s;a,b,0} >0  (0<s<1),
Q

D07 gt @204 1)) 20 (03 1),
Q

then L_g(8) >0 for s > 0.

TemorEM 3. If d < 593000 and condition (i) of Theorem 2 holds,
then (iii) holds.

THROREM 4. If 0 < s <1, then
Hs;a,b,e) < 2k~ ™" 00g (b [a) + (0.04) b=~ |cos (b /a)| .

 In pirticalar, we find that H(s;a,b,0) < 0.005. Thus when
@ < 593000, .Theorems 2 and 3 essentially tell us that if L_4(%) > 0, then
‘I_i(s)>0foralls >0 = o : i

m@
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We used the IBM 7094 at the University of Illinois to investigate
conditions (i) and (ii) of Theorem 2, using Theorem 4 whenever necessary.
We found that condition (ii) held for all d < 1000000, and condition (i)
held for all d < 1000000 with the exceptions of d = 115147 and d — 636184.
Thus our main result is

TeeOREM 5. If —d is a fundamental discriminant and d < 593000,
then L_g(s) (and hence ¢_4(s)) has no real zeros for real s > 0 with the possible
ewoeption of Li_j1514q(8).

It is possible to verify condition (iii) for individual d > 593000.

If T means true, F means false, and U means unknown, we have the
following tabulation for fundamental digcriminants — d.

d (i) (ii) (did)
1<d<115147 T T T

d = 115147 F T T

115147 < d < 593000 T T T
593000 < d < 636184 T T U
d = 636184 F T T

636184 < d < 1000000 T T U

We give a detailed description of the programs written for the TBM
7094 and the machine analysis of one of the two exceptional cases that
do not satisfy condition (i).

The previously best known results analogous to Theorem 5 are due
to J. Barkley Rosser who showed in two published papers [2], [3] and
in two other unpublished papers that if d < 986, then L_g4(8) has no real
zeros. However, Rosser also considered positive discriminants as well.

1. Positivity of certain power series coefficients. We define

(1) bn = (2""‘1)C("’L)/'N"}'Qnﬁn!

where

(2) log{(s—1){(s)} = 2(—1)’“5”(3——1)" (Isl < 3).

Since {(s—1){(s)} has s = —2 as the zero closest to s = 1, the radius

of convergence of the above series is 3.

THEOREM 1. b, >0 (n > 2).

Proof. We need to show that |3,/ does not get too large. It is more
convenient to differentiate (2) to get

=1 E)+L6) _ NV, qum g o gyt
(S—W_g( 1)*nfn(s—1)""".

(3)
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Now Cauchy’s integral theorem tells us that

) M
(4) Bl < —mis
where M is an upper bound for the absolute value of the function in (3)
on a cirele of rading R with center s = 1. We wish to select a suitable R
and to calculate a numerical value for M corresponding to that R.
Of course, by looking at (4), B should be greater than 1, but far cnough
away from 3 to retain control of M.

Put
By(#) = z—1%,
By(x) = a*— -+,
By(@) = 82— (5)a*+ §w.

Then from the familiar formula

L(s) = (s—1)""+ 4—s [ By(a—[a))a™*"dw  (Res >0),
1

we get by two integrations by parts that
L) = (s— 17+ d+8/12—Js(s+1) [ Byfw—[a))o™**da  (Res>—1),
1 E

1)(s+2) [ By(w—
s(s+ s+ f wm[w])m (Res>—2).

66) = (=1 + gy
Multiplying by (s—1
(B)  (s=1)Z(s)

) and collecting terms gives

= {(s4+3)—2(s—1)s(s+1) [ Byfo—[w))o~**dw}(s+2)/12 (Res>—2).
1

To maximize the left hand side of (3), we want to minimize

|(s—1)¢(s)] on an appropriate ecircle about s = 1. W(\ therefore gelect
R = 3/2 and our circle is

[s—1] = 3/2.
Since

s+ ul = ls—14+u+1] < [s—1+|ut1]|

and

joul = Js—1-tu+1] > [ls—1]— a1,
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we find that

Let ¢ = o+ it. Since

| B3 (w)] < V3/36
we have

‘f&(w— [e])a™* 'adml<'373(‘/—;2”) S

because —1/2 < ¢ < 5/2. Thus

‘2(8—1)8(3—1—1)[ Bs(w—[m])m~8'-~3dm[<35v’§/72,
1
S0

I(s—1)E(s)] = (1/8) (52 —35V3/72) > .2072

on the circle |[s—1| = 3/2. To maximize the numerator on the left hand
side of (3), we differentiate (5) to get

d((s—1)¢(s))

(s—1)L'(8)+L(s) = A

= (s-+2)/12+ (s4-3) 12—

_B=D6H+1)(+2) £ Bio—[a) s(s+1)(s+2)f°°B3(m~[m])dm_

6 53 6 J e

_(s=1)s(s+2) f°° By (w—[2])

6 o+

i E1 s(s—{—lfBax [@])

1

-

(s—1)s s+1 Y(842) fBaw [#])logz

-+ 5+3 da (o

1

If [s—1| = 3/2, we have
lf Ba(w—[w])w“""slogmdx|< (V§/36)f m“"slogmdm

1 N B

= (V3/36)(c+2)"2 l/—/81
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Thus

l(s—1) 2" () 4+ (8)] < 9/2)(V3/324) +

9/244+11/24+(3/2)(7/2)(9
+<5/2>(‘7/2)('9/2>(V3/324)+
(8/2)(3/2)(9/2 ><1/§/324>+
(3/2)(5/2)(7/2)(V3/324) +
(3/2)(5/2)(7/2)(9/2) (V3 [486)
< 1.541.
So we may take
M = 7.44 >1.541/.2072.
It is easy to show that if » > 2, then
2" —1)¢(m)fn > 2" n.
Thus for n = 6,
by = 2"—=1)C(n)[n+2"B,
> 9" n—2" (M [n)(2/3)" " = (2" /n)(1L—2"" M [3"?)
> (64/6){1—32(7.44)/243} > (64/6)(1—.98) > 0.
To show that b,, by, b,, and b; are positive, we will find numbers

bounding By, By, Bs, and f;. We know that {{(s—1){(s)} is an entire func-
tion of s, s0 we define

co

(s—1) Z

=0

Vyn(s—1"t 0! = 1+y(s).

We know o = v =.D077... is Euler’s constant, and Briggs [4] has com-
puted y,, v, vs, and y, and asserted them to be approxmmte]y —.073,
—.516, —.147, and .002 respectively. Now

Y(8) = yo(s—1)—p1 (s~ 1) Fya(s — 1)2—ya(s— 1 -y (s — 1)° ..,
Y2 (8) = 7o(8—1) = 2oy, (8 — 1)+ (po s+ #1) (s — 1)* —

- Voya/3+7’1?2)(3'“1)5+---a
¥ (8) = 7o(s— 1) = 3piyi (s —1)* -+ (33 s 2+ Byey}) (s — 1)° -
¥H(s8) = ¥o(s— 1) —dpf i (s —1)°+ ...,
v°(8) = v (s—1)'+

ey

icm®
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Thus

D=1 Bals—1)"

=

=log{(s—1){(s)} = log{1+y(s)}

-

=Y (&) —y2()/2+y*(s) [B—y ()[4 + 9 (s) /5 +...
Vl2 71 (8= 1Y+ (/34 yoyr + ye/2) (s —1)° —

— (Yol =+ V5714 Yoval2+ 922+ y4[6) (s — 1)+

= yo(8—1)~(

VB Vvt vt 0 val2 + 11002 F v s )6 7, /24) (s — 1) .

Unfortunately it has Leen found that Briggs’ estimates for the y,’s
are incorrect. Using the Huler-Maclaurin sum formula and an IBM 1620,
we found that

—.0729 < 9, < —.0728,
—.0098 < y, < —.00968,
000 < y, < .003,

000 < y, < .003.
Recalling that

by, = (2n___ C(77')/7'L+2nﬂ1t;~

we see easily that by, by, b,, and by are positive. However, we will need
later a lower bound on b, and bs, so we find that

By > —.017244,
Bs > —.00106,
which gives
by > 2.6668 > 83,
and

bs > 6.395.
A trivial upper bound on b, is also needed later, but clearly
b” < 211,-1-1.
2. The Epstein zeta function. Bateman and Grosswald showed that
(6) kM (alfr)* I'(8)Z (s) = F(s)+f(1—s)+ H(s; a,b, ¢),
where
F(8) = k" (k/x)"I(s) ¢ (26)
and

H(s;a,b,0) =4 Z%“1’20'1 22 (1) €08 (b1 [0) Ko _ys(27Fm)

N=1
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Here
k= d@"*/(2a),
K,(2) is a Bessel function, and o,( n = Y'm’. We are interested in these
mn

functions primarily for 0 < s < 1. In this interval f(s)-4-f(1—s) has
a removable singularity at s = } and takes the value —a(a, d) there.
‘We shall ignore the error term H(s; @, b, ¢) for the moment and concen-
trate on the main term f(s)-+f(1—s). Clearly

A
fls) = c(2s>exp{(s—%>1og<k/n)+1og-f%}

r'
3)log (k/x) +log T'(%}

If |s— 4| < 3, then using the partial fraction decomposition for the deri-
vatives of I"(2)/I'(z), we have

= }(s— 3 "'exp {log((Zs —1)£(28))+ (s —

') IMi—d , v =" v (=1)m—1)!
S R TIPS Z G+

= (y-+logd)(3—s5)+ D "= 1)¢(m)(3—2)"n.

Nz=2
Since we defined

0o

log{(s—1)¢()} = D (—=1)"als —1)",

M1

we have

log{(2s—1)¢(28)} = > 2"Bulh—
Na=l

Thus

4 o
F&) = —H3—s)"exp (@-s)log =5 +;{(2“—1>c<n>/au-~ 2“'&;}(%»4)“)
becanse f; = —y. Recalling that we defined

by = (2"—1)¢(n)/n-+2" B,
and
a(a) = a(a, d) = loga-log(8ne™?)— }logd = log%,

if we put

r =}~s,
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we geb
f(s) = —4r~texplra(a)+ 3 by 1™
rata+ Yowr)
and
(=]
f=5) = prlexp{—ra(a)+ ' (—1/"s".
Ne=2
Setting
m(r) = b ™, 1(r) =ex Y boy 7"
n-21’ a1 ¥ (7) P(ng; on 1" ),
and
g(r) = g(r; a, @) = r{a(a, d)+m(r)},
we have

F() = =4~ exp fra(@)+rm(r+ b} = —p ) expig ()

Nemal

and

Ji—s) = g~ exp (—ra(@) —m(r) + 3 br™) = prU(r)exp {—g(r)}.

N=l
Thus
F8)+f(L—s8) = —Fr 1(r) (" — ¢""} = —=*1(r)ginh {g(»)}.
Define

B = i a d) — 1 S0 g0 - o
) = hir; o, d) = 14T 4 +..._1+-g BT
Then
(7) F&)4-f(L—s) = —r~'U1r) {g(r) b(r; a, 4)}

—Ur){a(a, d)+m(r)}h(r; a, ).

From Theorem 1 we conclude that I(r) =1, m(r) >0, and h(r;a,d) > 1
Since & = d'2/(2a), we have

(8) 70-‘1/2(0/70/721)811('8) —_ ka-J/z & —011(‘ )
= al/z{dn/ 1/421/2 -8 —qu }_ a”’G(d 8)

Now C(d,s)>0if 0 <s <1 and depends only on ¢ and s and not on
a, b, or ¢. Furthermore O(d, }) = L.
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Putting (8) back into (6), we have
) 0(a, 5)%(s) = o™ P {f(s) +f (L —s)+ Hs; 0, b, 0)}-
We are now ready to prove ‘
TugporEM 2. For a fived fundamental discriminant —d, if
(i) DlaPa(a) = 0,
0
(ii) Mo a(@—H(s;a,0,0} >0 (0 <s<1),
o .
- N 2741 (u)
(iii) ‘_{;_J a” ' {bzn+1 -+ m} 20 (nz=1),
then ‘
L_a(s)>0 (s>0).
Proof. Suppose (iii) holds. Then
sl am*'l('a)
an —1/2
X {bm+1+(-~——«2n+1)l}
n=1 Q
or

2 P {bzn+1+

=1

2"

T |r| < %, then the series comverge absolutely, since b, < 2"*'. Hence

Z'rb

2’)1+1(a/ } >0
(2n+1)!

zn“
o= Zorrloo 37
= < (2n 1)1

0o om m 201
<2 ‘1/2(m(v +Z {a((iw,J;—l o )

because m(r) >0 and y***! increases with y. Thus

) = 2”{“((27?;—“"’5 P —ata)

=0

= Mg ({a(w)-|~m('r {1 T 2
Q

(a(a) + m (r)"

—__“} _ a(‘a)).

2n+1)!

m@
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Combining this with (i), we obtain

Z & {a(a)+ m(r a,(Z)?Z(f”"’a(a)>0,
¢

go that
Za—llzl(,r) {a(a)+'ﬁl(')‘)}h(7‘; a, d) > Z(I,‘J/Za(@)

Q

because I(r) > 1 and does not depend on §. Note that to multiply only
the left hand side by I(r), it must be non- -negative; hence, the requirement
of (i). (The exceptional cases listed later in Theorem 5 do not satisfy (i).)
Thus, from (7),

Za‘”"{f (8)+F(1—s)} 2@“1/"
50 that

D R (8) +f (L~ 8)+ Hs; a, b, 0)} < — D a ™ {a(a)~H(s; a, b, 0)}.
Q Q
This is negative by (ii), so by (9)

O’(d,s)ZZ(s;a,b,a) <0.
Q

Since C(d, 8) > 0 and ¢(s) < 0 in the unit interval, we have
D %(s;a,b,0) <0,
2

and from the introduction

L)L a(s) = D' Z(s;a,b,0) <0
Q

L_g(8) >0 (O <s<1).
It is well known that L_z(s) >0 if s> 1, so
L_g4(s)>0 (s > 0).

Since C(d, ) =1 and £(3) is about —1.460, we can approximate
L_s(%) by evaluating

Za-”z{a(m—ﬂ(%; a,b,0)}.

Because L_g(}) can be estimated by directly using the definition of I _a(%),
for any particular @ we can find an independent verification for our
caleulations.
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TaEOREM 3. If d < 593000 and condition (i) of Theorem 2 holds,
then (iii) holds.

Proof. We will divide the proof into cases depending on .

Case I. n = 1. Here we want to show that

D) a7 {by+a*(a) [6} > 0.
Q

First let us work with a cubic equation.
Lemma 1. If
Fo(t) = 18/6 —2t+ b,

and t> —4, then F (1) >0. .
Proof. The local minimum of #,(¢) is taken at ? = 2, where the
value is

by—8/3.

This is positive since by > 8/3. Thus, F,() hag only one real root, and
since

Fy(—4) = —32/3+8+by>0,

the lemma follows.
I d < 593000, then

a(a, d) = loga+log (8ne™")— logd > 0+ 2.6469 — 6.6466 > — 4.
Thus, for @ < 593000,
byt a¥(a, d)[6—2a(a, d) > 0
by Lemma 1. Multiplying by o=, summing over @, and transposing gives

D a7 P byt ad(a, 4)[6) >2 Y a P a(a, d).
Q Q

But this last quantity is non-negative by condition (i), so the desired
result follows.

Case IL. n = 2. We need to show that
)_‘]a—”’{bﬁaua, @120} > 0.
[

Lemma 2. If

Fy(t) = 15/120—2.5¢+b,
and 1> —4.6, then F,(t) > 0. k

m@
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Proof. The local minimum of F,(t) occurs at ¢ = (60)*%, This is
positive since b; > 6.395. So F,(1) has only one real root, and since

Fo(—4.6) > —17.1644-11.5+6.395 > 0,

the lemma follows.
If d < 1970000 then

a(a, d) > 0-42.6469—7.2468 > —4.6.
Thus, for d < 1970000, we have
bs+ o' (a, @)[120—2.5a(a, &) >0
by Lemma 2. 8o we see, as in Case I, that

D a7 b+ (a, d)[120} > 2.5 Dl a"a(a, d) >0,
Q Q

which completes Case II.
Case III. n > 3. We must show that

Z @ P b+ e, A))2n+1)13 >0 (03> 3).
Q

Now we find as in the proof of Theorem 1 that
9241
Bonyy > Frwy {1—2"M 3™} > (27)7) (1 —2° M 3%}
= (128/7) {1~ 64(7.44)/729} > 6.34..
If d < 1320000 then
a(a, d) > 0-+2.6469—7.0466 > —4.4.
If a(a,d) = 0, then
banir+ o™ (a, @)/(2n+1)!
is trivially positive, and if —4.4 < a(a,d) < 0, then
bopia+ & (@, d) /(20 +1)! = by+a'(a, d)/T! > 6.34—6.335 >0,

which completes Case IIT and Theorem 3.

We see that Cases IL and IIT in the proof of Theorem 3 hold for d
<< 1320000. Thus, if condition (i) of Theorem 2 holds and if 593000 < d
<1320000, to verify that condition (iii) holds, we need only to show that

D am " (bt o¥(a, 4)[6} = 0.
Q

Acta Arithmetica XIV.2 ' s
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We did this in Case I by showing that every summand was non-negative.
But it is the sum that we want to be positive, and if we know the set ¢
for a particular ¢, we can verify that the sum is positive. Thus, for

d = 115147 and d = 636184, we show that condition (iii) holdxs in spite

of the fact that condition (i) does not hold for these d’s.

3. The error term H(s; a,b, ¢). We recall that the error term was
defined to be

§-1/2

N

H(s;a,b,¢) =4 W Oy 9s (1) COS (0D ) Ky_qp5 (27chene) .

i
st

M=
Now Bateman and Grosswald proved that if 0 < & < 1, then

1— L(s—-{-)
1670k

< 2 (k)™M K, 1 (2nkn) <1,

Sy ae(n) < 0o y(n),

n
and
g () < 3(n—1)[2  (nz2).
Trom this we will show
TuroreM 4. If 0 < s <1, then

...(.08 nb/u
. ,1/2 inke

[2eos( h [u)]

H(s;u,b,e)< 4 0.04 L2 e

Proof. If we write out the firgt two terms in the series for H and
estimate the rest, using the above upper bounds, we get
H(s) = tcos(mdfa) K, yp(2mk) 4+ 4(2° - 922 cog (2mb fu) K, ,,:(»lwlc)v}»
- 3Ok R O (] — o ¥y 2 g 2y
where |6] < 1. Cleaxly
dcos (nhfa) Ky (2nk)
< 2eos(mbja) k™ e ™ 4 |2 cos (nb fa)] |21, 1 (2nk) — K 1P

_ 2cos(ndla)  |2cos(nba)) 1—4(s—%)°
=TT g : 167k N

2¢o8(mbfa) 1 [2e08( ch/a

= kl/E Sek 'I‘TO‘ b k”" Camk?

because k = d'#/(2a) > 1/3/ . To treat the second and succeeding terms
consider two cages.

icm®
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Tirst suppose 0 < [bj/a << 1/3 or 2/3 < |bj/a << 1. Then
[cos (2nd/a)| < |cos (nb [a)|
'{md 50
425 2128 cog (2D [a) Ky _yp (Arek)] < (3V§|005(n1)/a,)]e“““k(Sk)“”“
= (3/2)e ™ |2 cos (mb [a) ™" e 2™ < (1100 (2 cos (=D ja)| kM2 e 2
Also
3Ok RO gty =2 () g -2y
< TR < T 12 0o (e fa)| et
< (1/200) |2 cos(mb/a)| e 12 e,

since [2¢0s(mbfa)| = 1. Thus the desired result follows in this cage.
Tf 1/3 < [b]/a < 2/3, we have cos(2wb/a) = — 1, so

?
4(25 B4 2170 6o (2h @) Koy (k)

‘ 1 ¢k
Ay (drk) _4( 39k ) (ék)m < TR
Here
30k 12, ﬁr:h(l__e 2nk) 2(2_0...%1;)
< (Te" ™) (P e "™y < (1/10) k2o,

Thus the desired result follows in this case since the sum of the second
and succeeding terms ig negative. This completes the proof of Theorem 4.

We can now apply Theorem 4 to find a numerical bound for
H(s; a,b, ¢). We really have condition (ii) of Theorem 2 in mind when
we prove

JOROLLARY. For @ fixed d,

D @ {a(a)— H(s; a, b, 0)} > D a " {a(a)—.005}.

Q@ CQ
Proof. From Theorem 4 we have

. 2608 (mh/a) .04 |2 cos (nb/a)]
—H(s; a,b,¢) .z — ,ci/_‘z;.’?ﬂ\/“ o ,,A_,_I;iﬁ_ez,ﬁ?/__

I8 b = af2, then —cos(nb/a) >0 and so —H(s; a, b, ¢) > 0. Thus
ala)—H(s;a,b,e) > ala) >a(a)—.005.
If b} < a/2, then ‘
4 =dac—b > 40" — ' [4 = 150’ [4.
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Thus
a < 2d*(15)" 12,

Since & = d@"*/(2a), we would have
k> (15)/4.
Hence
—H(s;a,b,0) > —(1.04)2((15)" /4)" " exp(— 27 (15)# /4) > ~.005.
So ‘
a(a)—H(s; a, b, 6) > a(a)—.005.
In either case
a(a)—H(s) > a(a)—.005.

Multiplying by ¢~** and summing over @ then gives the desired. regult.

Unfortunately the programs for the IBM 7094 used to verify con-
ditiong (i) and (ii) of Theorem 2 were written before Theorem 4 and its
corollary were proved in the present form. The program was based on
a previous weaker form of the corollary in which .009 played th(? role
now occupied by .005. The number .009 was derived from an estimate
of H(s; @, b, c) in Bateman and Grosswald's paper. However the lower
bound —.005 < —H(s; @, b, ¢) is still not sufficient for all d values.
The more precise estimation of Theorem 4 is still required.

4. The main program. The programs written for the IBM 70?4
at the University of Illinois were to check that conditions (i) and (if)
of Theorem 2 held if 1 < d < 1000000. We want o convince you that
the programs were adequate and that the IBM 7094 — hereafter referred
to as the machine — did its job.

The main program was designed so that the machine could verify
that

(10) D a " {a(a, d)—.009} > 0.
Q

From the corollary of Theorem 4 we see that if (10) is valid for a partic-
nlar d, then conditions (i) and (ii) of Theorem 2 hold and thus, by The-
orem 3, L_g(s) > 0. Clearly it would not be practical to print out the sum
in (10) for all the d’s we work with, go if the machine found (10) was valid
for a particular d, then it printed out nothing. If it found that (10) was
false, then that d value and its associated sum from (10) were printed out.

Let us see how the program was written to allow the machine to
verify (10). The heart of the problem here is to find the elements of the
set @ to sum over. We need to digress here to explain how this may be
done and the problems that arise from it pertaining to the writing' of
the program. ‘ :
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Now @ is the set of reduced integral solutions of d = 4ac— b2. Fur-
thermore, —d is a fundamental discriminant. This means that d is not
divigible by the square of an odd prime, and if 4 is even, then

d=4 or 8(mod16).
Sinee [b] < a < (d/3)*, an easy way to look for @ is to write
(b, @) = (d+b?) /4 = ac.

We fix d and then factor (b, d) = #(b) into a product of two integers,
taking the smaller factor as a if it is ag large as |b| and ignoring the facto-
rization otherwise. Since |b| has the same parity as d,]b| would range
over the even or the odd integers from 0 to [(d/3)"2]. This method, while
fine for hand computation, unhappily requires completely factoring about
3(d/3)" integers for each d, which is very time-consuming for the machine.
To best utilize the machine, we need to use the fact that » is a function
of both » and d. .

The basic idea is to consider many @’s simultaneously so we can reduce
the number of factorizations needed. How many d’s we can consider at
one time depends on the number of words the core memory of the machine
can hold. The machine ean store 2'5 — 32768 words, 80 we decided to
consider 6144 = (3/8)2™ @' simultaneously. With each d we stored
1logd for computational purposes and a partial sum of Do {a(a)— .009}.
If we think of these forming tables in the memory, then these three tables
alone took 18432 positions of memory. Now 4 is such that

d =3,4,7,8,11, or 15 (mod 16).

In the machine computation we consider all d satisfying the above con-
gruence whether or not —d is a fundamental diseriminant. The value
computed for (10) in the case —d is not a fundamental diseriminant is
irrelevant. Thus the numerical difference between the first and the last
d’s stored in the table in memory was less than 2" = 16384. Since
= (d+b*)/4, we want the d’s in the table to depend on . In particular,
for a given #, we want the d’s in the table to be such that

do—2" < d < 4w,
or
tac — (2" < 4 < dac— 02,
Suppose we let

2 u”m{a(a) _ .009} — 2 a,—llz{a(a) — .009}—|— 2 a—l!Z{a(a)_ '009}7
7 @ Q2

‘where
Qi = {(a, b, 9)| (a,b,0)cQ and [v] < 128 — 27}
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= Q) — 2 runs through consecutive integers, any 1)ax't;iuullm-
?lngigze;e&ua%; ?ﬁtexr l;n(; leave %:he table of d’_s in the memory. yVh]le
it is in the table, the set @; will be fou}x;d as solutloxis oflflb= 461“; :—1/'1;, ?1111((1
for each triple found as a solution, a / {ar(a)—.(ll)‘9 } w1" \e‘ :y( ( (’,t(i(. :;1; [
partial sum of (10) agsociated with thl? d. Thus 1_)37 the Llln‘l(‘ a particular o
is ready to leave the table, the associated partial sum is

2@”1/2{(1(0,)——.()09}.
[

§ ¢ ves 2* = ¢-+1, those d’s ready to drop out of the table ave
(? Lﬁ;ﬁ;ﬁj{ and (‘i; it is in the table) d = 4m*‘~2“. The .;\OW ' :l,j,\:
ready to go into the table are d = 4g*—1 and (130851b1:y) d = i : }:tm(
Lt = 4t — 2™ (mod 16), the same number of d’s go 1.njm. .1,]10 ‘m‘ 2u ;m;
come out. The incoming d’s were now checked for divisibility by 5, 5%,
or 7. It they were divisible by one of these numbers, then W(, sFomd} (t
in place of them. Hence about 98°/, of the d v.alue‘as fmctually checked by
the machine were negatives of fundamental dlsumm]na,nts.‘

When a particular d is ready to be dropped out p‘f. thg tiable we. l‘fmk
at ibs associated partial sum, which is the sum over @;. If this was n‘e:gm.lve,
we found the triples in @, and added a~"*{a(a)—.009} to the 1‘)41'1,1@1 su.m‘
for each triple found. If the full sum (i.e., the sum over @), and Q?)-Y]ﬂ’i
gtill negative, then d and its associated fuu sum were 'prlnlted out. .[1: .1(‘,
parfial sum was positive, or became positive upon adding Slll]?l.lldulld.h
associated with €, then d was dropped from the table with no
prmtlot:Ll fs important to verify that indeed, (10) holds if d is dr.opped with
no printout. This is so because the summands ,asso.clated with. the '(wle-
ments of @, are all positive if d < 3000000. To see this we note that since
a> |b| > 128, we have

a(a)—.009 = loga-+log(8re~")— 4logd—.009
> 4.852 4 2.646 — 7.039—.009 = .450 >0,

The reason that factoring is so time-consuming for the machine is
because it requires a large number of divisions. The machine factors })/Y
a sieve process; it divides an integer » by successive primfas from 2. to @t
In the example given later, we list the number of divigions reqmred'by
the machine to factor each z. Once we have factored @, it iy easy to find
the divisors of # not exceeding «'® which will serve as our possible @
values. Suppose we have found a reduced solution (a, b, ¢) of d = ftac - I)“A.
Then (a, —b, ¢) is also a reduced solution if 0 < |b] < a < e. l'f b =0
orb =a or g = ¢, then (@, —b, ¢) is not a distinet reduced solution. The
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divisors of » which will give rise to possible reduced solutions are those
numbers e such that b < a < o**, Furthermore, each & value in this range
gives two solutions unless ¢ = b or ¢ — £'* — ¢, in which case there is
only one solution. Also if b = 0 there ig only one solution. Thus we
were caveful to handle these cages separately, .

Checks on the program and the machine calculations were made in
various ways. We followed through the program by hand. We got memory
dumps on the debugging runs and we could actually see the factors, divi-
sors, and 4 tables in the memory. Since the program is entirely accurate
for d’s < 49152 (i.e., a full sum of the form in (10) is computed), we had
every d and its associated sum printed out if 4 < 32000, Thus for various
small d’s, the computations were done by hand and checked against the
machine’s sums. There were also internal checks. For example, an inte-
ger x 1y a perfect square if and only if the number of its divisors is odd.
In this case the largest value of ¢ will be #, and this was checked inter-
nally against #'” computed in another way. This was a usefal check because
we found a bug in the program that did not show up until the machine
was processing d’s > 100000.

About two hours of machine time was used in debugging runs until
we were convinced the program ran perfectly. On production runs, the
machine took about eight minutes to Drocess all d’s << 100000, but by
the time the d values got up around 400000, it was only processing an
interval of about 40000 every twenty minutes. This was because for
nearly every d of this size or larger, extra solutions had to be found. In
all, around ten hours of machine time were spent on production runs and
we eventually ran the main program for all d < 1200000,

The machine carried eight-place aceuracy at all times and this was

more than enough; six-place accuracy would have been sufficient. The
vital constant

log (8re™™) = 2.64695576. ..

was found by tables and read into the machine. The program with its.
tables used over 32000 words in the memory, 80 we utilized the machine
to full advantage.

BXAMPLE: d = 17923, We have constructed an example which we
thought to be interesting and instructive because d = 17923 and (d-41)/4
= 4481 are primes. Our bagic idea is to consider x — ac = (A b /4
as a function of b to find all possible & values. Since d is odd, then b must
be odd. Then to get from one x value to the next we simply add b+1
to the first value because

A+ (b+2)? a4+

R I S, )
4 4 s
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Sinee I* < o* < (d/3), our  values should range from %(d-+1) 1.70 [;};(d-ﬂi/@]
= [d/3], or in this case from 4481 to 5974, Although this exan.aple. is
atypical from a factoring viewpoint, it emphagises how the ffmctomzatmn
problem affected the writing of the program. Hence the first column
gives the number of divisions required for the machine to factor the
pumber #. The second column gives the appropriate b value; the third
column o and its factorization; and the fourth column the a values
if there are any. Here p is a prime.

Number of b ® o
divisions
19 1 4481 = p 1
19 3 4483 = p
11 5 4487 = 7-641 7
20 7 ‘ 4493 = p
11 9 4501 = 7643
9 11 4511 = 13347 13
20 13 4523 = p
9 15 4537 = 13-349
11 17 4553 = 29157 29
11 19 4571 = 7653
20 21 4591 =p
11 23 4613 = 7-659
20 25 4637 =p
20 27 4663 = p
20 29 4691 = p
20 31 4721 = p
7 33 4753 = 7297 . 49
20 - 35 4787 =
8 37 4828 = 7-13-53 53
20 39 4861 = p
8 41 4901 = 13%-29
20 43 4948 =p
20 45 4987 =p
11 47 5033 = 7-719
21 49 5081 = p
11 51 5181 = 7.733
21 53 5183 == 71-73 71
21 55 5287 = p
20 57 5293 = 67-79 67
22 59 5351 =p
11 61 5411 == 7-773
10 63 5473 = 13-421
7 65 5587 = 72118
10 67 5603 = 13-431
17 69 5671 = 53-107
22 71 5741 = p
22 73 5818 =p
12 75 5887 = 17-29%
20 77 5963 = 67-89
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For the machine to check just this one d value would involve 612 divi-
sions to perform the necessary factorizations. Now ¢ = b only when a =1,
so we have further analysis as follows:

a b 20~ (a)
1 1 —2.2500
7 + 5 —.2299

13 +11 L1747

29 +17 .4150

49 +33 4689

53 +37 4724

71 +53 4778

67 +57 4773

.0062

The heading of the third column is 24~**a(a), where it is understood

that the 2 is used only if the corresponding number in the b column has
a double sign. Thus we see in this case that

D a7 a(a) = .0062.
Q

We bave given no error terms because we see that |b] > a in every case,
80 by Theorem 4 all the error terms are positive.

The secondary program. At first we believed that the crude esti-
mate for the error term, — H(s;a,b,¢) > —.009, would be sufficient
because we had checked all d’s << 1700 by hand and it was quite good
enough. When we later put it on the machine, 17923 was the first d value
for which this estimate was not sufficient. Thus we wrote a second program
to check further the d’s printed out by the main program. The loop to
do the factoring and to find the divisors was lifted intact from the main
program. We checked the d value to make sure —d was a fundamental
discriminant, With each summand e "?a(a), we also computed

(11) — o~V c08 (rch [a) kMg,

There were five columns in the printout of the secondary program. These
showed «, |b|, da=**a(a), 6 times the quantity in (11), and da~** (.009),
where 6 =1 if ¢ =b or @ = ¢ or b = 0, and § = 2 otherwise. The sums
of the last three columns were also given, so by subtracting the sum of
the fifth column from the sum of the third column, we could check the
results of the small program with the results of the main program. Unfor-
tunately we did not carry along the sum of the absolute values of the
quantities (11), 5o we had to compute this by hand when it was necessary.
This sum of absolute values was needed to apply Theorem 4 to show that
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condition (ii) holds. Thus we show that or b =0, and 6 =2 otherwise, and that k = d'?/(2¢). The cases where

6 =1 are indicated by asterisks.

>1 a P {a(a)—H(s; a,b, ¢)}
£

| = 115147
Q .
| 2eos(mbfa)  .04]2c08(nb/a)| a 1b] Sa~q (a) — 0~ 2 =12 627K 9 6og (b )
>2aw1/2 a(a)— A IR T T R e e >0 .
Z | Rers kR et 1 1 —3.18002666* .00000000%
? 11 1 —.47164297 .00000000
by a numerical evaluation of the last sum. This method shows that 31 ’; .09122532 .00000000
condition (ii s in all cases left in t by the main program for a 127 L 29584072 —-00006590
condition (ii) holds in all cases left in doubt by vin prog 11 p 19 55036574 00000002
d < 1000000. ) » 37 21 .14167617 .00000000
Since the factor loop was the same in both programs, another cheek 71 21 25697480 —.00000005
was provided on the accuracy of the programs and the machine, because 121 23 .29877525 —.00003788
the secondary program printed out all the ¢ values and the corresponding 1(;1; i? 'zgggg?;g _‘088007(1)0
. -1z i i : : . ; : -2 .00000000
values of 47" a(a) which could then be checked by hand. 107 29 98362927 00000953
5. Conclusion. When we apply the results of the programs — using 3; gg -;ggg?ﬁg -gggggggz
Theorem 4 whenever necessary — to Theorem 2, we find that we have 109 75 23951664 00000967
proved 149 103 .20884264 .00013564
TuEoREM 5. If —d is a fundamental discriminant and d < 593000, 113 113 .14556349* .00001228*
then L_g(s) has no real zeros for real s >0 with the possible ewception of 17¢ 147 __-30007413 -00087354
L_1554(8). — .00060976 00071297
. . 9 i - — 4 P 1 = $361R4 e . - .
Now T.I{e01e¥}1 2 fails to apply to d = 11‘)14.7.d‘]1(1“(l = b&(fl&l be Since ((§) = —1.460355, we see that the approximate value of
cause condition (i) does not hold. However, condition (ii) does hold, as I 1) i
. : X . L _nsian(§) 18
we shall see in the appendix. Now {f(s)--f(L—s¢)} has a power series N . N o
expansion in the even powers of (—s). Thus (.00071297 — .00060976) /1460355 == 000070675
3 \ while our possible error is
() +F(1—58) = —a(a)— (&’ (4) [6+ bya(a)+ by} (F—8)*~ ... !
) . . 1/1.460355)(.04) "o 5129 cos (mh ja)| == .000026183.
For these exceptional cases we find that Y a~'*{f(s)-f(1—s)} has a 1/ ) ); | (mb/a)]

local maximum at s = §. Thus we can suspect strongly that Theorem 5
holds for these d’s. Dr. Norman Hamilton of the University of Illinois
wrote a program for the Iliac II to find L _,u5,,(4) by the definition of
the L-series. Our value of .000071 compares favorably with hix value of

Thus L_j547(%) >0 and a(—115147) = 39.
For d = 636184, the sum of the main terms is —.00023609 while
the sum of the error terms is .00285593. Thus

.000067. L_gis104 () = 00179398

For d’s other than 636184 between 593000 and 1000000, condition . . . ) . . 1
(iii) undoubtedly holds, but we were not able to prove it by a general WIth)alpoten’ﬁml ervor of 00022416 and therefore is positive. Also,
theorem. h(—636184) = 224.

Appendix. We analyze in this appendix the exceptions to Theorem 5, Refer <
namely d = 115147 and d = 636184. As an item of interest we give h(— d) ererence
V‘thieh ig the nl.lm}_)er of .f’riplles i}l Q and is the class number of the ima- [11P. T. Bateman and E. Grosswald, On Epstein’s zefa function, Acta
ginary quadratic field with diseriminant —d. We note from our example Arith, 9 (1964), pp. 365-378. )

that 7(17923) = 15. For comparison purposes, we state that h(—h71267) [2] J. Barkley Rosser, Real rools of Dirichlet L-series, Bull. Amer. Math. Soc.
=71 and h(—636307) = 75. We recall that S=1if a=0b or @ =¢ 55 (1949), pp. 906-913.
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XIV (1968)
[3] J. Barkley Rosser, Real roots of real Dirichlet L-series, J. Research Nat.

Bur. Standards 45 (1950), pp. 505-514. ] '
[4] W. E. Briggs, Some constants associaled with the Riemann zela-function,

Michigan Math. J. 3 (1955/56), pp. 117-121. .
For a general reference for constants and formulas, see Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathe-
maties Series 55, Washington, Nat. Bur. Standards, 1964.

On the number of integer points in the displaced circles
by
" A. A, YupIN (Moscou)

Regu par la Rédaction le 22. 4. 1966

Let & lattice of points with integer coordinates be given in the plane.
Take a circle with the radius 1'%, Without loss of generality one can
assume the centre of the circle to be a point (u,v)e@, where @ is the
domain defined by the inequalities:

I<u<l, 0<v<l.

Let A(4, u, v) denote the number of integer points inside the circle
of the radins A** with the centre in the point (u,v). Then it is eagy to
show that

AR, u,v) = wA+P (L, u,v),

where P(, u, ) = 0(A%), 0 < 0<1/3.
Kendall [4] proved that

11 )
(1 ffpza, u, v)dudy = zzﬂﬁ(mfﬁ),

n

where 7(n) is the number of representations of the number n as the sum
of two squares, I,(s) being Bessel's function.
By well known asymptotic behaviour of I,(z) it follows from (1) that

11
[ [P, u, v)dudv = O (1),
00

We shall show below that

P4, u, v)

lim e P2, u, )
oveo (LI A7

lim -2 ™%
>e>0, I Ty <

(2)

where ¢ is an arbitrarily small positive number, ¢ is an absolute constant,
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