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ACTA ARITHMETICA
XIII (1968)

On the coefficients of the zeta function
of an imaginary quadratic field*
by

RAYMOND G. AvoUn (University Park, Pa)

§ 1. Introduction. Let K = Q(l/ﬁ), D < 0 be an imaginary quadra-
tic field of diseriminant d and let |d| = %.

Let
5 1 o F(n)
& == ————
) tx(s) 2 @y % e
be the Dedekind zeta function of K where
(2) F(n) = 2 1.
NQE)=n
It is known (see e.g. [1], Chap. V) that
(3) Cx(s) = C(s)L(s, xa)
and that

Fn) = 3 ()

1n

1
where yg(n) = (—(—) == J{ronecker symbol.
n

]

Let
(4) H(z) = D F(n).

f<a
It is known [3] that

(8) H(w) = aw-+ 45 (@)

where o is the residue of ¢z(s) at s = 1 and where 4x(z) = 0(z"®) with
the constant implied by the O depending on k.

* This research was supported by the N. S. F. under grant 4 GP-5593.
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In a brief note to be submitted, the author has observed a connection
between imaginary quadratic fields of class number 1 and the function
A,(2). In particular, it is shown that if it could be established that there
is a numerically calculable constant ¢ such that

pl/Z

(®) ()] <05

where p, a prime, is the absolute value of the discriminant of an imagi-
nary quadratic field, then we should have anumerical control on imag-
inary quadratic fields of class number 1.

It is therefore the object of this note to examine the behavior of Ay (x)
with regard to uniformity in Z%.

Clagsical analytic methods are applicable coupled with a result due
to H. Rademacher [4], [B]. We are unfortunately not able to establish
(6) but we regard the following analysis as a first attempt. The referee
has kindly pointed out to the author that E. Fogels [2] has also consi-
dered this question in a more general setting.

§ 2. Statement and proof of the theorem. Specifically, we shall
here prove the following

THEOREM. If a = h—— with & the class number of K, then for any

VE
& >0,

(M H(z) = az+4 0 (aPT°514%) 4 O (B> o)

where the constants implied by the O depend only on e and not on k.
Proof. We begin with an integral representation of H(w), viz. if
7 >0,
1+7+1c0
(8) H(w) = ——

27 R
14n~1c0

8
CK(S)%—ds =1I.
We gplit the path of integration into 3 parts, viz. [14-y—dco, 14 5—iT7],
(A+9—il, 14+ n+4iT], [149-+4T, 14+ n-4d00] and get in this way
(9 I=I+J+1I,.

We estimate I,;7, yields a similar result

1+47+ic0

1 o 1 o 1+n+7i00 s
Li=gg | @)= Mrm) (ﬁ) T
T Lpirir § ™ = Lirigir M8

hm@
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We integrate the integral by parts which gives

.- F(n) (xfn)itntieo & Fin 14y+ico o\ d
L:o{ L ] -+Z (n) f (_)_8}
221 |log = Lt il L Iogﬁ v VLS
" n
1\ F(n) [@\+
=0 {‘T‘Z I (,7) }
n=1 logﬁ

We split the sum into 3 parts n < /2, 2/2 < n < 32/2, n > 32/2 getting

I, = 0(1/T)(21+ 2+ 23)‘

In X, we have

logﬁ | >log2 and hence
n

= 0(d™* "t (1+7)

a similar estimate holding for X,.

/2<n<<3T)2 zja<N<3T)2

In %, let F= max F(n); then
/2 <N<3T(2
F(n) [x\'*" — 1
Xy = — = = ).
z @ (w,) o\F 2 - |

log — log —
08 og%

The inner sum however is readily shown to be O{zlogz). Consequently,

T Faologa

5 = 0 (- exti+n) +0(Z7E)

where F = max F(n). This gives
T[22
14-n il e

1 : o° 't Faxloga
) "o =5 [ o Saero(T ) + o[~

0 L s T T

The errors are uniform in k. On the other hand, for any ¢ > 0, F(n) = 0 (n°)
uniformly in %. Hence from (10)

14n-+iT

(11) H(s) = ?17:7

14n—iT

m1+"cK(1+n))+0( ”‘)_

z x
CK(S)‘s—ds-f-O( T W
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We now move the path of integration in the integral to the line ¢ = —y.
We get the principal term from the pole of [x(s) at s = 1. This now results,
from (9), in

— T —n=1T Tyt s
) 1 g »
(12) J = art— + + Lre(s) —ds
AN RT e i

= ap-+J,+L+Jy+{x(0).

We now estimate J, and J,. As these are similar, we concentrate on
J,. For this estimate, we need a uniform estimate for [i(s) along the
horizontal path in the strip —5 < o < 1+9. Fortunately this is provided
by H. Rademacher [4], [5] (see also B. Fogels [2]) using the theory of
subharmonic functions coupled with Phragmen- Lindo]tif Theorems. Speci-
fically, he proves that if 0<% <1/2, and —» < o < 1+, then uniformly
in k, we have

o[ 11 - gg| \1+-o
(13)  lxlotit) =0 (k(l+v~5“~('~i§;—i) i +n)).
Choosing % = 1/logk, we find that (z(0) = O(k"*log*k).
Here {(s) is the Riemann zeta function. Using the estimate (13)in
Jy, we get
1+n 0_
lp{o-+4iT — a)
(_{ et o
s 1 T\ (1
f kl—)—r] u)/‘)([ "U"N"qf I +i—-0 L 5( +"7) do
o jo+ 41|

(14) Jy =

ml-i-n

B L
7 )'J“O(T” kT) ‘;2(1+71))-

=0 (§2(1+17)

J, yields the same estimate.
To L we apply the functional equation. This is given by

(15) Exe(s) = gi(s) Ex(l—s)
where
1/’6 - 2"7‘:(‘0&9071:(5
(16) gi(s) = (_2.{) e
Sinee (see e.g. [3],-Satz 160)
A Tl = Ve 3R o)
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ag t —oo and likewise
(18) cosec m(o - it) = 26T L O(1 /1) ),

it fo_llows from (16), ( 8) that for 1 <t <

17) and (1 < T, we have

1/76 14+29— 218
(19)  g(—n+it) = (zn) PRt L o(Lf)

— C—-zitlogtq«szzitlngm ( “'/k )11’2” (1/75 2 an
= —  +oll==) ).
2% 27

Moreover
1 1
20 — ==
20) —n-+1t it +0 ( )
Now

1 T "

=5 f f—l—f g(—n+ i) (l+n—1it) —7]+’¢5 — di

1
= L+ Ly+ Ly.
We evaluate L,. Indeed using (19) and (20) we get

(nw)dt

f gr(—n-it)
2m n”" —7 + i

1 - F(n)
O Ld AT
1

27 27 T +
=1

i - W A
P 2ztlogt+m+2ztlogzn( (n/m)ﬂ

o F(n
+O(Z ”Ln f ) 1+2’7t2”“1dt)
1

T

1427 r —
- ﬁﬁ(]/k) 2 f:l(f ;1) f MO @4 O((VE) 1T 57" (e (14 )
1

27 \ 2%

N=1

where
f(t) = —2tlogi- 2t 2tlog 27 + tlogne.
The integral is now of a well known type and since

2
. f’/ = — < —_ .i_,.
we may apply a classical lemma (see Titchmarsh [6], Ch. IV, § 1, Lemma, 4)
to deduce that

2
Kl

VAl

(22) ' feif(‘)tl—ﬂndt = O (T,
1
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Hence from (21), and (22),
(23) Iy = O (Vi) T L (L)) + O (VI T L (1 7))

The same argument applies to I, and likewise to L,, the former giving
the same error as L, and the latter an error

(24) O ((VEy " g (14n)a™).

Thus from (11), (12), (14), (23) and (24), we get
(28) di(w) = H(x)—ax

e (141n) z'te £3(1+n) 1+,,)
— o) o) +o(Hp e+

+O0 (@™ (VB (L4 n) T+ O (V)47 e (L4 o) T4
+O((VEy 5" g (14 7)) -+ O (W 1og™ k).

However, we also have

lx(s) = L(s)L(s)

and since
&1
DO+ < D) = = LL+)
n=1

if follows that lg(l47) = O0(*(1+%)) uniformly in % Moreover as
7 -0, t(1+75) = O(1/n). In (25), we now choose y = sand T = (z[VEk)*.
Thus (25) then gives ‘ :

Ak (m) — O (m1/3+ck1/3+5)_]_ 0 (k1/2+cwa)

where the constant implied by the O now depends upon ¢ but not on k.
The restriction that # be half an odd integer is now unnecessary.
In particular
Ay(k) = O (K***)

an error far short of the desired result (6). If the class number of K is 1,
then ‘

H(k) = nVh+ Ag(k). .

Is it plausible to conjecture that in this case at any rate A(k)
=o(VE) ?

It should be noted that the above argument may be modified to
yield a result for general algebraic number fields.

hm@
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