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Note added proof, April 1964. These twelve cases have also been disposed
of by Yamamoto [3] in a recent paper which Professor M. Hall has just drawn to
my attention.
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1. As is well known, for any power d there is a number g(d) such
that every positive integer is a sum of ¢(d) dth powers. Some time ago,
Siegel ([7], [8]) generalised this to finite algebraic number fields. Let
K be a finite algebraic number field; then the elements of K which are
sums of dth powers of integers of K form a set which we may denote
by J (K, d). Siegel proved that there is a number G (XK, d) such that every
large enough element of J(K, d) is a sum of at most G dth powers. He
conjectured that G should depend only on d and not on K; for instance,
he proved that every large enough element of K which is a sum of squares
is a sum of at most five squares.

In [2], it was shown that the circle method could be applied so long
as the number of variables exceeded a certain bound independent of the
field K; in particular, I proved

THEOREM. Let s > 2%-+1; suppose that M is a large enough totally
positive integer of K, which is a sum of at most s d-th powers in every p-adic
completion of K. Then M is a sum of at most s totally positive d-th powers
of integers of K.

Siegel’s conjecture was thus reduced to a p-adie problem. At the
time, the best p-adic results available were due to Stemmler [9]; in par-
ticular, these were enough to prove the conjecture for prime d. Subse-
quently a result similar to but sharper than the above has been proved
by Kérner [3], and an ‘elementary’ approach has been given by Rieger
[6]; Korner [4] has somewhat improved Mrs Stemmler’s p-adie estimates.
In this note I will prove

TamoREM 1. If K is a p-adic field, then every element of K which
is @ sum of d-th powers of integers of K is a sum of at most dwe?® such
d-th powers.

Combining this with my earlier theorem, we deduce 2 gimilar result
for o finite algebraic number field, and hence also for a number field which
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is not necessarily of finite degree over the rationals. This confirms Sie-
gel’s conjecture.

Since this note was written, I have seen a paper by C. P. Ramanu-
jam [11], in which he proves a theorem similar to Theorem 1 with drod?
replaced by 8d°. As our methods are different, and neither of our papers
containg the other, I have made no substantial alterations.

2. ¥From now on, X will be a p-adic field with ving of integers o and
prime ideal p = (). The rational prime above p is p, the ramification index
is e so that (r)° = (p), and the residue class field o/p = % has 2 elements.
We denote the set of n-tuples of any set ¥ by K"

If @ = (@3, ..., %,) 0" and j is any positive integer, s;(%) will denote
the elementary symmetric function of weight j in @,...,®, and ()
will be the sum of the jth powers of @, ..., 4,. It is convenient to take
3, =1, so that if x, y are two sets of elements then

7
2.1) sy, y) = D'si(@)si(y).
T=0

The following is well known (see, for instagce, [5], p. 151).

LemmA 1. There are polynomsals F, with rational inleger coefficients
such that 4, = Fi(s1, ..., 8g) identically.

In order to prove Theorem 1, it is convenient to prove a little more.

THEOREM 2. Given any set & of iniegers of K we can find a set y con-
sisting of at most dis&® integers such that

s;(®) = 8;(y)  for

In view of Lemma 1, Theorem 1 is an immediate consequence of
Theorem 2: given ® we choose y so that s;(x) = s;(y)for j =1,...,d,
and then by the lemma #z(x) = £3(y). In fact, we obtain a more general
result without extra effort — if y(2) is a polynomial in one variable over
o such that 3(0) = 0, then any element of K which is a sum of values
of y is a sum of at most d% values of y. The main gain in discussing
symmetric functions rather than sums of dth powers is that we can now
apply a version of Hensel’s lemma, as in Lemmas 3 and 6 below. We are
also -able to bypass some of the difficulties in identifying J (X, d).

The proof of Theorem 2 will be in three stages; first, in § 3, we prove
a similar result for finite fields. Then in § 4 we prove Lemma 4 which deals
with the case d* <p’, and in §5 we prove Lemma 9 which deals with
the case d* > p’. Putting together Lemmas 4 and 9 gives the theorem
immediately.

This note solves the problem it set out to solve, but has several defects.
The bad estimate d16# for the number of variables needed has been im-
proved by Ramanujam [11], so far as Theorem 1 is concerned; it iy de-

j=1,..,d.
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sirable to improve Theorem 2 and Lemma 2 as well. Bateman and Stemm-
ler [1] and more particularly Ramanujam [11] tell us a lot about the iden-
tification of the set J (K, d) of numbers which are sums of dth powers;
but we have not identified the set L(k, d) of possible values for the first
d symmetric funetions even in the apparently simple case where & is a
finite field.

3. In this section, as elsewhere in the paper, k is a field with p’
elements. We wish to prove

LeMMA 2. Suppose that p’ > d*. If x is any set of elements of k, then
we can find a set y consisting of at most 3(8%—1) elements of k such that

(@) =5(y) for j=1,..,d

(The condition p’ > d* is inessential but convenient — if at >,
then the result remains essentially true for trivial but different reasons,
see Temma 8 below. Lemma 2 seems to be harder than it looks, though
there is more than one way of proving it; in what follows, we use a sug-
gestion of Davenport’s.)

'We will prove Lemma 2 by induetion on d. The lemma is certainly
true for d = 1; suppose it is true in the (d—1) case, so that given any
2 we can find a (5% '—1)-tuple y such that s;(x) = s;(y) for i =1,...,
d—1. Write 3(3%'—1) = ¢ for short.

We prove our induction step by easy stages.

Tn the first place, if a is any set of elements of k, then there is ano-
ther set, which we may denote by z, such that s;(z, ¢) =0 for j =1,
..., @; for instance, we may take x as x repeated (p*—1) times.

Second, we may suppose in proving the lemama that there is a w ek*+!
such that

s(w) =0 for i=1,...,d—1, s*(w)#0.
In fact, there are two possibilities; either given any set of elements of
% we can mimic its first ¢ symmetric functions by means of a set of ab
most ¢ elements, in which case our induction step is trivial, or else (as
we will suppose) there is a 2, «k°"* such that there is no 2, ek’ with s§;(=4)
=s;(,) for j=1,...,d. By the induction hypothesis we can certainly
find 2, ek® with s;(2;) = si(=,) for i =1,...,d—1, so we have found
2, k! and 2, ek® with
s;(21) = s8;(a) for 4=1,...,d—1 and sq(=y) 7 84(=s).

Now we find 2, ek° so that s;(2;) = 8;(z,) for ¢ =1,...,d—1, that i,
50 that s;(#,,2) =0 for i =1,...,d—1; and we can take w as one of
(21, %) Or (22,0,%).
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Next we note that pf > d* implies that every element of % is a sum of
two dth powers (see, for instance, Weil [10], p. 502). We deduce that
for every cek we can find ®ek**® such that

sife)=0 for i=1,...,d—1, sg(x) = 0.

In fact, we find A, pek so that (274 u%)sg(w) = o, and then we take
x a8 the union of the two sets Aw, uw obtained by multiplying the ele-
ments of w by A, u respectively.

Finally, given any a, we choose ¥, %’ so that s;(y;) = s;(x¢) for
t=1,...,d—1; and we choose y,ek*** so that s;(y,) = (e, y,) for
j=1,...,d; this we can do since s;(x,y) =0 for i=1,...,d—1.
So we have found y = (y1, ¥) ek ** 5o that s;(®) = s;(y)forj = 1,..., d;
since Be+2 = }(3°—1), our induction step is proved.

4, Write D = $(5°—1) for short. In Lemma 4 we will show that
if @' <p’ then for any set x of elements of o there are Yiy ooy YDy
21y ...,%g¢€D such that s;(x) = s;(y,2) for j =1,...,d. First, we prove
a corollary of Hensel’s lemma (a more complicated version of this will
be used in the final section).

LeMMA 3. Let r = 1. Suppose that a <o, yeo®, 2" eo® are such that

(1) @k (m)  for ij
and
(4.2) sy, 2 =a, («") for k=1,...,d.

Then we can find 2t eo? such that

(4.3) 2D =2 (a7
and
(4.4) sp(y, 2y =ay, (™Y for k=1,...,d.

Proof. The congruence (4.3) is equivalent to 2"+Y = 2 "¢
with teo?, so it is enough to show that we can find # such that

si(y, 2"+t = ay (=) for k=1,...,d.
But

5k(y, 0+ 77t) = sy (y, 27) +- " Zt Ty &) (=

i=1

8o since » > 1, it is enough to solve the linear congruence

d
(4.5) D 41081 /025] = n" [ar—si(y, )] (r).
=
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The determinant formed by the coefficients ds/dz; is of Vandermonde
type; it has value 4II(2;—#;) and so does not vanish meod = by (4.1);
80 (4.5) is certainly soluble.

LeEMMA 4. Suppose d* < p’, and write 3(5%—1) = D. Then for any set
x of elements of o we can find y<o” and z o” such that

s;(y,z) =s;(x) for j=1,...,d.
Proof. First we choose 2V eo? so that
W=t (n) for i #7;

this is possible since d < p'.

Second, we choose yeo® so that

sy, 2N =s;(x) (m) for j=1,...,d;

this is possible by Lemma 2.

Now we apply Lemma 3: for each » > 1 we find 2 =2"(n) so

that
sy, 2N =g (=") for j=1,...d.
Finally, we let 7 - co. By the compactness of o, the sequence {z("}
has a limit point, call it 2, and then s;(y, 2) = s;(x) for j =1, ..., d.
5. Finally, we deal with the case d* > p’. This part of the proof,
though not difficult, is distinetly messy.

LeMMA 5. There are forms y(2) defined for 1 <i <j<d, such
that @i has integral coefficients and degree j—1t, gy =1 for i =1, ..., d,

and
S
identically in 2z for § =1,...,d.

This lemma is wholly trivial; it simply describes what happens
when we triangularise the Vandermonde-type matrix ds;/d2,. We state
it in order to establish notation.

TEMMA 6. Let aeo®, 20 co®. Let the power of = dividing H(z(')—z("))

be = for each j=1,...,d, and suppose that

-1
[[@ =) =0 D) for 2<j<k<d
i=1
and

7
(5.1) 2% () [8:(2") —a;] = 0 (n"+°D).
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Suppose that r > max [v(j)]. Then we can find 20D eyeh that

2 = 2 (£

) s (20 Y) — @] = 0 (77 FH0D),

)
2l
i=1

Proof. First, note that since ¢; = 1, we have

(5.3) (N —a; =0 (n") for j=1,...,d.
We try to solve (3.2) with 2" = 2"+ ="f, Then by (5.3)
j
N (@) [ (27 7 —ai]
i=1
- 0s;
Z (2 51 (&) - 0]+ " 22"’ N () (=),
i=1 i=1 k=1

So by Lemma 5,

i
iy () [ (20Y) — ]
=1
J--1

2(/)17 z()[s ﬁ()—(l]—l— Zk” )

k=f =1

Since ¢ =0 (f)+1, we get a solution of (5.2) by successively choosing
tay ta_1y ..., 3y modulo = so that
a j=1
2— 2
fy=n [ [<z1—z, pr () 1 (2) — 61— )’ nﬂ 2R (m).
i= =1 k-=j T= B

LeMMA 7. We can find o sequence {z;} of elements of o such that, w]m'n-
<k, n (zk—-z

as H (2;—2), and H (ej—2;) is not divisible by =¥~

ever 2 < is divisible by at least as high a power of =

If now aco’ samsfws a; = 8;(2) (m*%) for j=1,
find weo® such that s;(w) =a; for j=1,...,4d.

Loy dy then we can
Proof. We choose 2,,2,,... successively so as to make ” (%2

divisible by as small a power of = as possible. BExplicitly, we flrm, ('hoosv
Z1yeeny 2y tO e mcongruent modulo ; then, for j = jo+ 5,0 +jup™+.
m the scale of p’, we take Zjg1 = 2z7u+11: It is easy to verify =

1 H (5 —2).

1-2

The hypotheses of Lemma 6 are now satisfied with r = 2d;
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50 by Lemma 6 and induction, for each r > 2d we can find 2 such that

2" =z (2*) and 2 @5 (7)) [8: (M) — ;] = 0(n"+°D); if 20 is a limit point

of the sequence {z(')} then s;(w) = a; as reqmred

LEMMA 8. For each integer m, let L(d, =*%, m) be the set of d-tuples
¢ of residue classes modulo =** such that there emists y €o™ with s;(y) = ¢;(x*
forj=1,...,d. Then

L(d, =% = UL(d, =*
mn

4 m) c L(d, n*¢, prt—

2 +1).

_ Proof. Clearly L(d,=*,m+1) 2 L{d,=*,m), and if L(d,='?,
m+1) = L(d, **, m) then I(d,=*,n) = L(d, =", m) for all n >m.
But there are only p14¥ possible values for the d-tuple s;, ..., s; of resi-
due classes modulo =*, and L(d, n*%, 1) accounts for p*” of these since
s, takes p”df values. So the nested sequence of subsets L must termi-
nate after at most ped¥—p*¥ 1 terms.

Lemwma 9. For every set of integers a, we can find a p*@f-tuple y such
that 8;(y) = s;(®) for j=1,...,d.

Proof. By (2.1), for fixed = 0% there is a 1-1 correspondence between
integer d-tuples s;(y, 2) and integer d-tuples s(y) (j=1,...,d); and
for a fixed set of integers y there is a 1-1 correspondence between the
8;(y, 2) and the s&(z).

First, fix zeo? ag in Lemma 7

Second, let z denote z repeated (p**—1) times. Then by Lemma 8
we may choose a (p‘*’izf d)-tuple y, so that s;(y,) = s;(x, 2) (=*%; and
then s;(yy, #) = s;(2) (z* ), ag in the first step of the proof of Lemma 2.

Finally, by Lemma 7, we may choose yzeo 8o that

LY = 5@  for  j=1,..,d.

This completes the proof of Lemma 9. Theorem 2 follows by com-

bining Lemmas 4 and 9, and Theorem 1 is immediate from Theorem 2.
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Tauberian theorems for sum sets
by

P. ErpO8 (London), B. GORDON* (Los Angeles, Calif.),
L. A. RuserL (Urbana, Ill.) and E. G. STRAUS (Los Angeles, Calif.)

Introduction. The sums formed from the set of non-negative powers
of 2 are just the non-negative integers. It is easy to obtain “abelian”
results to the effect that if a set is distributed like the powers of 2, then
the sum set will be distributed like the non-negative integers. We will
be concerned here with converse; or “Tauberian” results. The main theme
of this paper is the following question: if the set of sums formed from
a given set of positive real numbers resembles an arithmetic progres-
sion, how much must the original set resemble a set of constant mul-
tiples of powers of 22

If we denote the given set by k,, &y, ks, ..., arranged in ascending
order, and let §(z) count the number of those sums of distinet %; that
do not exceed x, our problem is, roughly, that of showing that k, is close
to 2™ if §(x) is close to . Our first result gives sharp bounds for liminf
and limsup of 2"/k, in ferms of liminf and limsup of S(z)/z. In the
next section, we show that if S(z)— 2 is bounded, then %,— 2" is bounded,
and furthermore, }'|k,—2"] < oo, so that if the %, are integers, then
ks = 2™ for all large n. We extend the method in the succeeding section
to obtain estimates for k,—2" and ) |k,—2"| in terms of suitable bounds

nN
for S(z)—x, even if S(x)—= is unbounded. Finally, on a slightly dif-
ferent note, we show that it is not possible for 8(z) to behave too much
like 2® if a < 1.

1. Asymptotic behavior. Let K =k, %y, kay.ooy 0 < kg <k <k
<..., be any sequence of positive real numbers. Let S(z) denote the
number of choices of &, ¢, &, ... such that for each j =0,1,2,...,
either ¢ =0 or & =1, and such that eky+e k... <z. Let

A = limint 8 (z) /@, a = liminf2"/k,,
ZT—00 700

B = limsup 8 (z) /=, B = limsup2”/k,.-
Z—00 N—s00

* Alfred P. Sloan Fellow.
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