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n « b ¢ d ’ (@-+D) (c-+d)
239 29 —28 13 1 114
247 10 4 —16 17 14-1
254 6 4 3 —1 10-2
265 7 55 53 26 6279
266 11 —10 1 14 1-156
268 9 2 —12 13 11-1
274 7 4 t2 5 11-7
275 11 2 10 4 1314
283 7 1 -4 5 8- 1
286 7 2 4 1 9.5
290 7 1 E k 86
292 52 52 | —151 153 104 4
293 8 5 1 7 13-8
Or, on a 232 = 22.29,248 =25-3l,250=53'2,256 = 4%-4, 272
= 2°34.
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On the so-called density-hypothesis in the
theory of the zeta-function of Riemann

by

P. TurAN (Budapest)

§ 1. Introduction

1. If w = u-+dv, then the zeta-function of Riemann is for u > 1
defined by

(111) . t(w) = Z-n,*”.

As is well known, (w—1){(w) is an integral-function, which has an
infinity of zeros, called “non-trivial” zeros, in the vertical strip 0 < u < 1,
‘which according to Riemann have a mysterious connection with the
prime-numbers. Denoting by N (T) the number of these non-trivial zeros
in the parallelogram

(1.1.2) o<u<l, O0<o<T,
we have according to Riemann-Mangoldt(!) for 7 > 2

(1.1.3) N(TYy— ilog—Z—L < ¢logT,
27 2me

where ¢, and later ¢,, ... are positive numerical constants (if some of them
depend upon small .parameters ¢ or x, 6, the dependence will always
be explicitly stated). The famous unproved conjecture of Riemann asserts
that Z(w) = 0 for « > %. Recently it has been realized that many of its
consequences in the number-theory could have been deduced from
‘“density-theorems” which assert that in parallelograms

(1.1.4) “=a, 0<v<T, i<a<l,
the number of zeros of Z(w) i§ “not too large”. More exactly, N (a, T')

(1) See e.g. [3], p. 181, the name of Mangoldt not being mentioned.
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denoting the number of zeros in the parallelogram (1.1.4), this sort of
theorems assert that

(1.1.5)
for T > ¢, uniformly for 3 < « < 1. Comparing (1.1.5) with (1.1.3) we get
at once :
(1.1.6)

After the pioneering works of Bohr-Landau (see [3], p. 197) and Carlson
(see [3], 1. 197) the best results were achieved by Tngham (see [3], p. 197)
who proved (1.1.5) with

N(a, T) < T%091ogsT

cs = 2.

61
Gy = gy

Moreover he proved the inequality

(1.1.7) N(e, T) < 05 THAU= 1005 T,
where T > 2 and ‘
%1 it z—; ek,
1.1.8 Ha) = 1
(118) @W=138 4 l_,cn
2-—qa 2

These results are superseded only in the neighbourhood of « == 1; I have
proved (*) that for a certain (small) ¢, we have for

(1.1.9) l—g<a<gl, Tz
the inequality
(11.10) N(a, T) < 7200 ro00-at 006,

2. The pioof of the inequality

(1.2.1) Nie, T) < T20490-0 7>, p<a<l

would be very important in the analytical theory of numbers; e. g. we
could derive from it a proof of the longstanding conjecture

1/2+4¢
?

p'rb+1‘—pn < Pn
where p,, denotes the nth prime. This is called (*) “the density-hypothesis”

n > (e,

(*) See [4]. In an essentially enlargod Chinese version (1.1.10) is replaced by

Na, T) < T2~0)+0-a)b!
for (1.1.9).
(%) Sometimes the somewhat stronger inequality

Na, T) < ¢ 7%~ log*T, (<a<<l, T2

is ealled the density-hypothesis.
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and is not proved so far. Ingham (see [3], p. 202) deduced it from the
unproved Lindelof-hypothesis, according to which .

(1.2.2) [E(u+1v)] < ewle)|v]®

holds for § < w < 1, |»| = 1. Wanting to know whether or not my methods
in [4] work also “far” from the line = 1, I gave an alternative proof ()
of Ingham’s result; this proof gave me the impression that they can work
and that from (1.2.2) much stronger estimation of N (a, T) than (1.2.1)
can be derived. In turn it seemed to me possible that the density-hypothesis
(1.2.1) is deducible from results much weaker than (1.2.2). In what
follows we shall show that this is indeed the case.

3. As Littlewood (see [3], p. 279) has shown, Lindel6f’s conjecture
(1.2.2) is equivalent to the inequality
N(ay, T4+1)—N(a;, T)

1.3.1 lim =
( ). T too logT 0

provided % << o; <1 and « is fixed. Consider now the following .
Conjecture A. There is a function g(x) positive and increasing for
z > 0 with

(1.3.2) Im g(x) =0

z—>+0

having the following property. Let

T<#<1l, 0<8<px—2) and x<a.

Then denoting by M (z, as, 6)'th6 number of zeros in the parallelogram

(1.3.3) =< U<, |v— <82

we have for v > ¢y(sx, 8) the estimation

(1.3.4) M(z,a,, 8) < ag(a)logg.

The content of conjecture A may roughly be expressed by saying:
“the concentration of zeta-zeros is not too big”. If Lindelof’s conjecture
(1.2.2) is true, then owing to (1.3.1) the fruth of conjecture A trivially
follows; the converse assertion, however, is not true: (1.3.1) does not
follow, even with a ¢,(a;) instead 0.

The conjecture of Lindelof in its form (1.3.1) is not proved for any
o < 1. The conjecture A follows quite easily at least in the case a, = 1

(Y) Even in a little stronger form. See [5].

Acta Arithmetica IV. - 3
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(by Jensen’s inequality) from the known(®) fact that for £ <u <1,
|} > 2 the inequality

(1.3.5) (Ut i0)| < egglp]*E01080= " o o]
holds; even the wealker fact
— 1 o log|¢(utiv)|
K i lim =0
(1.5.6) im0 T 1l oo logw

would suffice. But even a proof that e. g. for all squares (1.3.3) the much
weaker inequality

0,017 20y ¥
Mz, ay, 8) < 6™ log»é

holds, seems to be almost as difficult as Lindeléf’s conjecture itself. There-
fore I should not congider it a particularly great advance to deduce the
density hypothesis from conjecture A. .

4. However if we could restrict ourselves only to squares (1.3.3)
which “are affixed from the left to big zero-free parallelograms”, the
situation changes. More exactly we consider the

Conjecture B. There is a function g(x), positive and increasing for
%> 0 with

(1.4.1) lim g(2) =0,

T—>+0
having the following property. Let
0<é 110(94«-;-) and

'12‘<"<1’ %K ag,

and suppose that L (w) does not vanish in the parallelogram (°)

(1.4.2) o <u<l, |o—1 < [1og§].

Denoting by M(z, oy, 8) the number of zeros in the parallelogram

(1-4-3) =i <u<a, |v—1] <42,

we have for v > 014(x, 0) the estimation

(1.4.4) Mz, 0, 0) < 5g(5)1og§.

(%) Theorem of Hardy and Littlewood. In this form see [1], p.40.
(6) Throughout this paper [z] denotes as usual, the greatest integer < w.
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Ag we shall see in the Appendix, in this case the proof of the inequality

T
(1.4.5) M(z, a5, 8) < 0,718 log =
is eagy: it requires only Jensen’s formula, the three-circle theorem and the
classical inequality of Hadamard-Carathéodory.

5. In what follows we shall prove the following

TarorEM. The truth of conjecture B implies the truth of the density-
hypothesis (1.2.1).

A sketich of the proof of this theorem and a number of remarks
to the conjecture B I gave in a lecture (see [6]). As to the proof of
the theorem it is based not only on the methods of my book
(the knowledge of which, however, is not assumed) but also on
two new ideas. The starting point of my papers on the zeta-function
was always the forming of appropriate identities, which connected zeta-
roots with prime-numbers. But in these identities the complex variable
was restricted to the half-plane # > 1 and therefore their full force could
work only in the neighbourhood of the line u = 1. In this paper the
starting point is another identity, which can be applied also in the critical
strip. This identity (which is written, to save & step, in the form of the
inequality (4.1.4)) seems to me applicable also to other aims in the theory
of the zeta-function; to these I shall return elsewhere. The second idea
is a simple reduction-process which enables me to replace the conjecture
A by conjecture B; a more detailed description must be postponed to
the first few lines of § 5.

The methods of this paper could also give the best-known estimations
for N(a,T) without any conjectures. E.g., before finding the new
starting inequality and using as a new tool only the reduction-process
I proved that for T > ¢ and 1—27" < a < 1 the estimation
(1.5.1) N(a, T) < TCH-
holds without any conjectures. Slight changes in the proofs of this paper
and in particular in the Appendix would certainly enlarge the a-interval
in which (1.5.1) holds; we do not go into details here. I mean in partie-
ular such a change in (1.4.5) which would replace in it the constant
0,71 by another one depending on ¢; and tending to 0 with (1 —a;).

§2. Preliminaries to the proof

1. We shall make use of the following three inequalities, which are
easy consequenceés of (1.1.3). For 7 > ¢, we have

(2.1.1) N(z) < tlogw,
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further very roughly If A(n) stands for the usual Dirichlet-symbol we have the

(2.1.2) N(z-+[log57])—N(r) > 0 LemMA I. Ji(s) has also the representation ’

and for all real z-values (3.1.2) Tils) = Sw /l(n)Rf(n, €)

(2.1.3) N(+1)—N(z) < eylog(2+iz)). ~ "

G;.-Nl(x_sﬂ)sngwl(usﬂ)
2. Let ¢ be an arbitrarily small positive number < 4 + and fixed. With

9(#) of conjecture B we determine uniquely &, > 0 by where for the Ry(n, e)-numbers the estimation

: (4 |
(2.2.1) g) <& &< e (3.1.3) |Bx(n, &) < 6,
and let : holds.
12 Proof. Obviously we may insert in (3.1.1) the Dirichlet-series of
(22.2) By = (W) = );251 ’ ¢'[c. This gives
Taking ¢ sufficiently small we have 14 Tis A1 fj Ny NI _ = }k aw
(2.2.3) 0< 8 <, G S = 25w 2 Nw | A
7. 6.
(2.2.4) &Ny > 2000, N, > 40000 Writing the integml in the form
2. , .

Further let the o of N(a, T) be restricted by _ ‘ k 1 1 N1 E=20N 0 gy,

1 125 . 6 L. G 2 V) wF f ) W
(2.2.5) 3 + —Egﬁ—l Lo < 1—max (38—1‘38“, ;2»»/1»61‘-1—33 ) = ®

we see ab once, owing to the well-known integral-formula
and fixed. Let 7 be so large that

1 a”
T i (2 2, —— | —dw=0, 0<a<1
(2.2.6) T > max (e, e¥), [og' T <mm(N1,a 5 27”;() o= <e<x1,
later we shall have some more restrictions upon 7', but all of the type that each term in (3.1.5) V;a,m'shes if
T > ¢(e). Further let k be an even integer > 20, to be determined later; ‘ ) e
at present we require only : n = M)
(2.2.7) logT < kNy < (1+44%)logT. Further an easy application of Cauchy’s integral-theorem gives
gil;alsl)y the complex parameter ) 1 e AN reznwlk do 1 f oy PV _ i }k aw
N : § =0 RET T 28N w [ a¥ T 2mi l 28N, w e’
is restricted by @ (=1
2.9.9 1 2 . 2 et o and thus expanding the binom on the right we see at once that each
(2.2.9) = +—fﬂmng’T Sos1l— Tog'1]’ <20, term vanishes again for
n< ek;\‘”l(l—ez)
< :

§ 3. Distribution of the values of an almost periodic\nl polynomial owing to the well-known integral-formula

1. Let Jy(s) be defined by

- 1
1.1 _— Nyw
(BL1)  Jys) szFl

1 ~ a]l}
hi ——“)_77 J ’?;’jc' dw = 0, = 1.
} ¢ (s w)dw. Iy

VW __ p—~etNyw

—e
26N, w
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Thus (3.1.2) is proved with

1
Byny o) = 5%
@)

Cauchy’s integral-theorem gives again

szN w —ENw &

1 o A L' )
(3.1.6) Ryn, &) = o f {8N W 2&2N1wv} —
©

n

1 7 sine*N;o
= —f( ! ) cos (kN,—logn)vdv.
T 0'

Hence we have

R < fw sino )k v
[Bi(n, e}l < =N, ) v ’
and thus very roughly
1
1 gino \* 1 1
[Bitn, o) < {of( ) vt — 1}< T <4
using (2.2.2).
2. Writing
o0
Udo) = [ Wulo+it)'at
r

we have the
Lemma I1. The inequality (7)

Ui(o) < 619(e) TP +%"10g" T

holds.
Proof. If we write shortly

icm
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The usual technique gives

v <7 N1 el

i. e., using (3.2.1) and (2.2.7), we obtain

Ux(o)
\’1 logmlogn
i (mn)°log (mn)

kg <11'b<€kNl(1 + 5-)

< T8 _Yj log*n-n~% 4 48 -

12
SN (1) <m0+

LN ~20 1 168%(kN,) \! S
< 2T 8(kN,) Z n166,(kNy) i (mn)°log (m[n)

néekNl(l—g) KN (1422

nam<e

252 ZT{T —2 (mn)~° \
< 328;log Z T 2 log(m/n)f
n>T1—52 'n<m<1’(1+52)2
Owing to (2.2.9), this evidently gives
Uilo) '

T(1—2a)“.—ez)

i s

— B
L\’J (mn)~ "+ Z W

anmgT(lw'-ﬂg)z 1rw.<1'(1-!-t!2)Z
<M<

T2(1—0)+z v - )z . " 1
< GZlallong{T +( 2™ + Z n 2-;7;_—;1

1
mTL+E )2 nerd+e)? n<mM<IN

2(1—0) +6> (1482)2(1—0)
T € 4 Uig N\’ logn)
25—1 (1—a)? £ el
ngT(1+52)2

< czoéﬁlong{T‘

< 022(8)10g3T{

< 01p(e) TP+ 00" T g6 d.

3. We denote by Ao, T) the set of t-values in T <t < 27, where
at fixed o and % with a fixed « from (2.2.5) the inequality

Tils) = 2 o (3.3.1) |Tu(o+it)] = T Uy(o)*logT ]
' FNA=A) N1+ holds. This is a finite set of disjoint closed intervals. Denoting its
meas by M4 T it )
we have, by Lemma I, . e by M{ds(e, 1)), we bave
Uo) = [ |Jlo+it)as > M(Axo, T)) 10Ty 0)log™T,
(3.2.1) || < é,logn. Axlo,T)
_ 1. &.,
(") It would be easy to diminish the exponent of the logarithmns but it is of no 7=
importance. xponent of the logarithms but 1t 18 o1 n (3.3_2) JII(A;,,(U, T)) < ‘ﬂgﬁﬁy .
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Owing to (2.2.7) the number of possible values of & is < 2logZ. If we
regtrict the o-values to

v
(8.3.3) o

1 o
= 1*‘——”*‘,,—“ 2 < < log*T]~2
v [og*T]’ LS 9 [log™T'] ’

then (2.2.9) is fulfilled; the number of these o,-values iy < log*Z. Hence
from (3.3.2)

112(1»‘11)

“-; Z M (dyfo,, 1) < 216g17j,‘

and we find that if A(7) is the union of all 4,(o,, T)-sets (*) then

(3.3.4) MAD) < 2—1-0?@.

and if A(T) is the set complementary to 4(T) with rvespect to (1, 27",
we have owing to (3.3.1) and lemma IT

(3.3.5) [Tl o, 18)] < I/MT““""*“zlog“T, te A(T)
for each permitted values of % and » from (2.2.7) resp. (3.8.3).
4. We cover the horizontal strip
Ir<e<or
of the s = o+ it-plane bj the horizontal 7 -strips, defined by

I -1
3.4.1 T4 Lt T :
(@4 nog7] ' <" pogrry?
(3.4.2) 0 <u < Tog'Ty;

‘the last one may be thinner. We shall call x the index of the strip L
Some 1, -strips contain horizontal lines # = 7,, with

(3.4.3) 7, € A(T);
we shall call such strips “good” ones. If the strip l,, does not contain such

& horizontal line, we shall call Z,, a “bad” strip. We fix the 7, values

in the “good” strips. Owing to (3.3.4) the number of the “bad” strips
for T > ¢, is at most

Tz(lmu)
% logu 7
Summing up the results of this paragraph we obtain the following

(8) The set A (T) depends of course also upon «; but this is fixed.
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LvMA ITI. For T > ¢y(e) with the exception of at most
' T2(1-9)

(8.4.4) 310ng
“pad” strips to each “‘guod” 1,-strips for the poinis
(3.4.5) o, +iv, =s,, 2<v<}[log’T]-3
the inequality
(3.4.6) Ta(8,)] < ta(e) T2 log™ T
holds for each permitted k-value in (2.2.7).

This is the assertion to which the title of this paragraph refers.

§ 4. Connection of Jy(s) with the zeros of (s

1. The connection that we are going to show will be proved for all
s-values with
1<o<1, T<t<2T,

but actually used only for the s,,-numbeis defined above. We start from
the representation (3.1.1). The usual contour-integration gives at once

6521\'1(1_3) - 6_&.\'1(17 s)l k

(41.1)  Jys) = {GN“I—S) Y AP

. 2Ny (@—8) __ ,~e2N1(e—9) \k
_\ ’eNI(Q—S) et € }
P

2&*N,(0— 8)

€

ENw__ g Nw l], /
[ 61\'1"1 e

(st w)dw.
2 Nw | ¢ (s-+w)

Denoting the last integral by D we get by (2.2.4)

—EN(te) 2 N1+ o~ENi+e) \E | g ) *
412) 1D < ( s LA ) o (=1 (o)) v
' 2n 28N, V1+o S
~kN(1-H)(40) T 1 e .
<E,M; o ' EE A (—14i(t+v)|dv.
2n @)L

Ag is well known,

< eplog (2-+1E-+00);

‘—i’%(-—l+i(t+ﬁ))
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from this, (4.1.2) and (2.2.7) we get
(4.1.3) 1D < 6y T3~ oo 1,
Further we have roughly

FNY(1=8) _ o~eNy(1-5)

26N, (1—s)

B N1+t —0)
Tk

< T—’C+(1~[-E2)2(1-~a) < .’l"‘z,

’ GMo-s °

using again (2.2.7). From this, (4.1.3) and (4.1.1) we get

£ N1le—8) __ g=o"N1e—8) y&

Jk(s)-l-z{e”’l(@"” .

(4.1.4) s

e
Comparing this with lemma XXX we obtain

Lemma IV. For T' > oy(e) we have for each “good” 1,-strips and 8,
-numbers in (3.4.5) the inequality

s2Iy. (e—s,) — 2Ny (o8, N\ k
etl ) — @ ml 2
4.1.5 2 At ¥ L SR— N P Y LR S L Y
§5. A reduction-process
1. Let
(6.1.1) o = oj +it}

stand for a zero of (w) in I; with the greatest real part if there exists
a zero in I; ab all; in this case we may call it an “extreme righthand”
zero in I;. If there are more zeros in I, with the same maximal real parts,
choose an arbitrary one as p; and fix it. We may vaguely call a “neigh-
bourhood” of an I-strip those strips whose indices differ “not mueh”
from j. The aim of this paragraph is to show that omitting “not too many”
“good” strips, we may reduce the study of the zeros to the study of zeros
in such “good” 1,-strips, which contain indeed zeros and for which the
e,-zero i3 “‘essentially the extreme righthand in a big neighbourhood
of 1.

In order to give an exact meaning to what has been said above,
we call a “block” a maximal sequence of “good” strips with consecutive
indices. We speak of a “short block” if the “block” containg at most

(5.1.2) 2410g® T+ 4

consecutive strips (all of which are of course “good” strips); in the
opposite case we speak about “long blocks”. Sinee a block is bordeved

< o TC¥E-D 0
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on both sides by “bad’ strips, (8.4.4) implies at onee that the total
number of “blocks” and thus a fortiori that of the “short blocks” is
T2(1-a)
<% fog
Thus the number of “good” strips eontained in “short blocks™ is
(1—a) 2(1-'a)

T . =
(5.1.3) <3 m(ﬁlog T4 4) < 84 Tog'T

Considering (2.1.3), (5.1.3) and (3.4.4) imply at once that the contribution
of the “bad” strips and of the “good” strips in “short blocks’ to the
total number of zeros in )
’ T <v< 2T

i. €., o fortiori to the total number of zeros in the parallelogram

(5.1.4) el (I'<v<2D),
is at most

2(1=0)
(5.1.5) Gay E)ngTV'

9. Hence we have to consider only the contribution of the “good"’
strips belonging to “long blocks” to the number of zeros in the domain
5.1.4), 1. e., to
( , ’ N{a, 2T)—N{(a, T).

Consider an A4 ,long block” and divide it starting. f.rom the 1,-strip Wﬁj;h
the smallest index into ‘‘sub-blocks” each containing

(8.2.1) ‘ 2 [3log*T]+1

consecutive strips; the last tgub-block” may contain less. ?Dhe e'or:;-
bution of these “incomplete sub-blocks” to N (a, 2T) —N(a, T)is obvionsly
at most

0-a) Ri—a)

(2[310g°T]) e1p10g (2+2T) < G0 Jommrr-

(5.2.2) 3 T T _

Thus it remains to consider the contribution of thgzse “long hloc;zs.”‘to
N(a,2T)—N(a,T) which consist of “sub—l?loeks , each 00121 a;n;rtl)g_c
exactly 2[3log®T]+1 consecutive “good? strips. We rema.rkl :193,31;
viously each “long block” contains owing to {5.1.2) and (5.2.1) &

four ‘‘sub-blocks’. :
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3. We congider the “extreme righthand” zeros ¢ defined in (5.1.1)
belonging to the different good I;-strips. We shall call such a of-zero
belonging to a ‘“good” I;-strip an “outstanding” one, if {(w) 4 0 in the
parallelogram

1
T
(5.3.1) " ogr)’

fo—1] < [logT].
We agsert the simple

LeMmA V. Bach “sub-block” of a “long block” containg ab least one
“outstanding’ oj-zero.

Proof. We consider an “arbitrary sub-block” # of owr “long block”
and consider first the strip I; in the middle of ¥ (¥ consists of an odd
number of strips). Perhaps thig I;-strip does not contain any zeta-zeros;
but owing to (2.1.2) there is a jy-index such that the L -strip indeed con:
tains zeta-roots and for this j-index we have ‘

(5.3.2) i —ol < [log"T'][log1].

It g;o is not an “outstanding” zero, thiy means that thero is a jy-index
with
lir—al < [log"T)[log 1,

%. 6., by (5.3.2), with

(5.3.3) =il < 2[log*T'][log 7]
such that
1

(5.3.4) O
. i1 # 9 - [logmly]'

*

If also g;, were not an “ontstanding” zero, then there would be o jy-indox
with ) |
o=l < [log" 7] [lag 777,

. 6., by (5.3.3), with

(5.3.5) l[ia—4l = 8[log* T'[log T']
sueh that
* 1 2
fo } g e -
B 2 Ty Mog'r| 5,1 [ogT ?
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taking (5.3.4) in account. Since Z(w) = 0 for u > 1, this process neces-
garily stops within [log*T'] such steps. Hence the index of the last strip
is at most

j+ ([log*T]1+1) [log’T1[log T] < j+210g°T < j+[310°T1,
i. e., the corresponding I-strip still belongs to our sub-block E, q.e.d.

4. Ag has been said, each ‘“long block” A consists of at least four
“gub-blocks”. Let us call the two ‘“‘sub-blocks” containing the I-strips
of 4 with the greatest, or the smallest, indices the “wings” of our “long
block” A, and A without the “wings” — the ‘kernel of 4. According
to the introductory remark of this section 4 the ‘“kernel” of 4 is not emp-
ty. The contribution of all “wings” to N(a,2T)—N(a,T) is obviously
2(1—a)

(2[810g"T]-1) e5log (24 2T) < 633 ——-
log®T

Tz(lwu)
loghT
Ag to the contribution of all “kernels” we assert

LevymA VI. If A is an upper bound of the real parts of the “outstanding’
zeros lying in the (“‘good”) U-strips of all “long blocks” then in all “Tkernels”
¢(w) does mot vanish for

(341) <23

w > A,

Proof. Let y be the maximum of the real pavts of zeros lying in the
“kernels”. If y iy at the same time the real part of an “outstanding”
zero, the proof ig finished. If not, then applying the process used in the
proof of lemma V we shall find that y is majorized by an ‘‘outstanding”
zero of a ‘““wing”; but this means that again

y <2y
from which our lemma follows.

5. It follows immediately from this lemma that if for T > eu(e)
and for the above A the inequality

(6.5.1) A< at 38

holds, then owing to (5.1.5), (5.2.2), (5.4.1) and lemma VI the estimation
. ) T2(1—~a)

(5.5.2) N(a+86 21)—N(a+3¢, T) < 037’16,?:'[7

holds. We are going to prove in the next chapter that (5.5.1) holds
for all “outstanding” zeros (. e., not only for those belonging the ,,long
Dblocks”). Here we shall see why the reduction to the ,outstanding”
zeros has been so essential.
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§ 6. The upper estimation of the real parts of the “outstanding” zeros

1. We consider an arbitrary “good” l-strip where the “extreme
righthand” zero is an “outstanding” one, i.e., with

(6.1.1) o = o] +it]

the zeta-function does not vanish for

(6.1.2) %= oy [v—1| < [logT].

1
" Tlog'T]’
The index § is fixed. Then we have the crucial

LemmA VII. We have
G;' < a8,

Proof. If this lemma would false, then we have

) 10

6.1.3 38 < of [< 1 ).

( ) a+-3¢&" < oy (\ log‘T)

We shall apply lemma IV with

(6.1.4) @ = §;

the y-index is uniquely determined by requiring

» -1 1
(6LB) o, =mle——— 3 0] > L —yo 22 g, e
og'Z] =~ log'T] = 7 Tlog'T]

Owing to (6.1.3) and (2.2.5) the condition
2 < v < $[log’T]—2
ig fulfilled for T > 0y5(). Owing to the definition we have
i 1
~ moer) | < g
Owing to (6.1.2) the inequality (4.1.5) can be written in the form

(6.1.7) ‘ 2 Mile=8,) ¢ Me=) . g N1le-t)
¢ 252~N1(9‘;-;5',v/) } +

(6.1.6) -1

lty=2 1> [logT]

: FV1(e~8y) _ o= o2N1(o—8,5) &

Ny (08 (2 v — e 1e—8y) Yl ) )

- Ze g - 28N\(o—s,) \ < o) L4 logT,
Itg~t; I<[logT} ) ”

op<oy +1/[log"T)
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where g = o, it, stand for the zeros of {(w). By (6.1.5) the expression
on the right of (6.1.7) is a fortiori

(6.1.8) < ey(€) T~ 2 1ogh T

2. We estimate the first sum on the left of (6.1.7) roughly by (2.1.3).
This implies at once that this sum is absolutely

o2k (1-a)

<2y D) Tog(@HEm) Nl S

n>[logT]
i. 6., owing to (2.2.4) and (2.2.7) for T > cy(e),
log*T T*log™T 1
Ny (L4 £2) g
! [og TT* < Gy (log T) &N 1ioeT <

< Gy
This, (6.1.7) and (6.1.8) give together for T' > c4(c)

6.2.1) Z IgN](e—s 7 eeZN‘(g—s""’.) - G—EZNI(Q*SJ)}]‘
(6.2. ) e | 26" Ny(0—$,)

< op(e) T+ 1oghT,

L
Iig—tz lS[log?
a,<o5 +1/[log T}

Next we consider the contribution of the zeros with

* 6 * ]
(6.2.2) 0, < 07— T [t,—%1 < [logT].

Since from (6.2.2) and (6.1.5)

8 6 6
* *
ReNi(e—s,) < N3 ((67 - /87242\7:) 0?') 2
we have owing to (2.2.7)
ENyle—8,5) __ o~Nile—8,) | & —(1—e2)6e% \ &
Mie-s,) © H—e 7 < (e ) <

26*N1(e—s,) 6

hence the use of (2.1.3) implies at once that the contribution of these
¢’s is absolutely

(6.2.3) < 0, T110g™T.
Next we consider the contribution of the zeros with

1 6 "
7 < It— ] < [ogT].

* 6 *
3.2, e < JU—
(6.2.4) oy < 0, < o5+ [og"T] , AW,

&N,
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Since owing to (6.1.5)

2Ny (o — — N (=5,

“N1(0=8,7) __ p~e"Nile—5y)

eN1le=5,) € ”‘A e
)

| 26" N1(0=—$,;)

B AN - Uog T —en) \ &
SN /,.-,25?;')”“)

N Ulog T 2

R ?;7'? — 6 W
we have using (2.2.7) for the absolutie value of this contribution the upper
bound

1ol
(6.2.5) 08

. --3]2N. 2
o < s N et

Combining (6.2.1), (6.2.3) and (6.2.5) we obtain

AN (0 8,5) - (0 -8,5) VI
0=Byf) . p e N (e -8y5) \ B
[ M-y ¢ '

\ 1
| CaNiges) )

e
It, -t 66" Ny
o'} -6 /ele «<ay g_a; + 1/[]05;4‘7']
L]
< ousle)loght {177+ . p-9ieM)
for T3> oge).
3. Until now we have not used the conjecture B. We shall use it in

estimating the number », of terms in Z. Owing to (2.2.6) this number
is not decreased when we replace it by the number of zeros in the square

6 N 6 " 6
- <oty S

6.3.1 2
(6.3.1) T, 2N,

‘We apply the conjecture B with

6 12 1

6 120
&N, ’

Then owing to (2.2.6) the domain (1.4.2) is contained in the parallelogram

(6.3.2) oy = of +

* -
gy - o,

1
" Thog 011 < [log2],
Whieh‘ is indeed free of zeros of £ (w) owing to the definition of the “out-
standing” zeros. The squares (6.3.1) and (1.4.3) are then identical,
further by (2.2.4) 0 < 6@%;(;:—-%) is fulfilled an well as 3 < x < 1.
Finally by (6.1.3) and (2.2.5)

XS 1 126
MEZ T,
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i e.,
® < oy

is also satisfied and thus conjecture B is indeed applicable. Formula (1.4.4)
gives for ») — by (2.2.1) and (2.2.2) — the upper bound

6.3.3 6:9(6)logT = 12
(6.3.3) 19(6:)1og =¥

SlogT < ——1logT.
1828 ogT < g ogT

Let us denote this last quantity by I, in the sequel.

4. Up to this point the integer & has only been restricted by the
inequality (2.2.7). We shall now estimate Z from below by an appro-
priate choice of ¥ within the given limits (2.2.7). This will be done by the

following theorem. -
IfC)
(6.4.1) = ) = ... > Jeal

are arbitrary complex nwmbers, m > 0 arbitrary real and n << L, then
there is an integer v with

(6.4.2) m <Ly < m+L
such that .
——
A 1ttt 2l .
(6.4.3) R s

If we choose as z,-vectors the guantities
6521\’1(9‘%') _ 3—521‘71(9-—3‘»;')

(6.4.4) eNile=sn) -
2¢°N1(0—s.)

these vectors and the domain of summation are independent of k, and hence
the number of terms in the sum of (6.2.6) is independent of k. Hence the
sum in (6.2.6) is a power-sum of fixed complex numbers. We choose as m -
of (6.4.2)

1
4.5 W = ~—logT'.
(6.4.5) m w, og
Owing to (6.3.3) the number of z,’s is at most L, 4. e, the interval
(m, m-+L,) is identical with the interval given for % in (2.2.7); thus %
can be chosen as the » of theorem (6.4.1), (6.4.2), (6.4.3). The factor |2

(*) This is an improved form of the theorem X of my above mentioned book.
See [2].

Acta Arithmetica IV. 4
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can be estimated from below by taking the term corresponding to ¢ = .

Owing to (6.1.5), (2.2.7) and (2.2.6) we have
(6.4.6) l6N1(0;~81'j)lk = gkN1(0;~Uv) > e—(1+82)1og1‘/[1032-’1'] >}

Further using the inequality valid for || <3

& 2 \
=‘1+§+'r;1'+"‘;/1" .

and observing that for T' > cy(¢) owing to (6.1.5) and (6.1.6)
N . 1 11
&N lgf—8, <N, ﬁo*g'rfjg + [logs’J‘]z <5
we have by (2.2.7) .
k
s

Pt =Sy _ o=V 1ej—8y)
> ¢~

2€2N1(€:‘;_5'.;j)
This, (6.4.6.) and (6.4.1) give

1
|z > i

(32—N 1)Z
T 3[logTT

k
) <> g~ N1/log*11)EN

AN (ke Log” T1E)log? ~ %

and hence (6.4.3) gives the lower estimation

1/ L o 1 &NT! )"”'Nﬂ“’ﬂ
Z> '4'(23 (m—}—Ll)) T (23(N1‘1~}- £V

= Lo A o b pe-tavsesit) |
4

i

Comparing this with (6.2.6) we get for I' > ¢4(e)
_1_ pi—sHNYlog(25/Y) - o 5)10g1417{1m_a;-}-252 +.1"‘5/2N1},

i. ., since for all sufficiently small &’s

then
=N log@sish) - Cule) gty e,

and for T' > c¢y(e)
T(-—Zslel)lng(‘.’S/sz) < Taw-n;-\-hz.
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This means that owing to (2.2.2) for all sufficiently small positive s
24 25 1 25
0 <at28+ S-log— = at+ &2+ = £%8,log | < at 3¢,
N, & 6 £
. e., lemma VII is proved.

§ 7. Proof of the theorem

1. According to lemama VII and (5.5.2) we have for the «’s in
(2.2.8) for T > ¢y(z) a fortiors

(7.1.1) N(a+88, 2T)—N(a+38, T) < T,

Replacing T by T/2, T/2%, ..., T2, where
T
1 > ogee) = T
and summing, we get
N(a+38 T) < c5(e) T*9,
or owing to (2.2.5) for

1 126

(7.1.2) SR

- 6 .
3 +352 < a g 1'—ma;x(3e,;2—ﬁl—)

the inequality

(7.1.3) N{a, T) < eg(e) T2A—0+3%

Since for .
a<<1—38¢

we have

2(1—a)+66" < 2(14-¢)(1—a)
and by (2.2.2) and (2.2.3)
12588V, < 1168, < &%,

we obtain for T > ¢;;(¢) and
1 . 6
5 +4e" < o < 1—max 38’22_1ﬁ

the inequality

(7.1.4) Na, T) < o5(e) TPC+IA=a)
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‘The case
: 6 !
(7.1.5) 1—max|3e, _82—‘2{7—1 Lag

is, by (1.1.10) already settled, provided & is 50 small that with the ¢
from (1.1.9)

< and 3¢ < ¢

6
&N,
the exponent of 7' in (7.1.4) becomes

(116)  2(1—a){14300(1—a)")

1/100
<2 ‘1+ 300 (max (36, . )) ](1 —a).
&N,

Since the case
(7.1.7) }<a < e

is trivial, our theorem is proved.

§ 8. Appendix

1. As has been said, we ghall outline for v > 7y(x%, 8) a proof of the
inequality

(8.1.1) Mz, ay, 8) < 0,71610g~;~

for the number M(z, ay, §) of the zeros of {(w) in the parallelogram

=21

(8.1.2) Gp—d<u<a, -1 L-

o’

o~

I

when F<x<l, x<aoy<l, 0<d< :u(x—~~%) and (w) does not
vanish in the parallelogram

(813) . dy S U < ]_, |/U--z'| < llog_%]_

First we need the simple
LemMA VIIL If 7 > ¢, then in the domain

logloglog=

(8.1.4) W > ag+ 48
loglog~

;o] < Sloge
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the imequality

4 logt
8.1.5 = < --
(8.1.5) c(w)l = (loglogr)®
holds.
Proof. For the sake of brevity denote
loglogl
(8.1.6) 16 08log’0eT
loglog=
and take T go large that
8.1.7) 2 ogr < log % —2
(8.1.7) 7 8T < ogE-— .
We apply the inequality of Hadamard-Carathéodory (**) to the circle
(8.1.8) o — 5 — ity < +—ay
with
L
lr—1l < IOB‘EJ—]ﬂ

and to the function
og ":E(L). ’
{{z+17)
which is certainly regular in our circle. Since in the circle we have roughly
for T > ¢

I {(w)
tE+in) |
it follows that in the circle
(8.1.9) O
the inequality

! S{w) logz

lo

et | S Ta
i. ¢., also

logr

(8.1.10) flog (1)) < a5y —

(1) According to this theorem if f(w) is regular for |w—wp| << B and here
Ref(w) << M, then for |w— wo << (< R) we have

2r

1 (w)— f (o)} < = (M —Rof (wo)).

-


GUEST


54 P. Turédn
holds. Next we apply the three circle-theorem to logl(w) and to the
cireles

3 . 3 y
K lw—5—i7| < 5 —ay—4d,
K,: 10—+ — vy < 5 —uy—24,
3 . 1
Kl : [w'— E— 7/’[01 \1 '}i“-

This gives by (8.1.10)

Tog 7 \log{6-~dug--8.1) [log(6 —~duy - 1.1)
@111)  max|log ()] < ew(o.;7 & ) .

i

The exponent for T > 6 I8

4
log|1— 4 )
6 4a3-— 4A

<1—-— 44
log (6 —day—44) (6—

day— A1) log (6 dug ) 1 TH

i. e, by (8.1.11), for = > ¢,

A2

max [log? (w)| < (logrloglogz)*™
weky

logz-loglog~
=~ "(165;)"&16;{10;;10&[161515}}‘ =

logr
loglom)
Then we have in the circle

K,;: [’w—' — 147y << 7 — g3

the estimation
1 log
) 1—(7"’)’ K7 g
¢ 4 (loglogz)
Since the circles K, cover = > ¢; the parallelogram
%= o34,

when 7, varies continuously between

T ([log ; ] e ’1.) ,

lemma VIIT is proved owing to (8.1.7).

< logt
" (logloge)*

lv—7| < $logr,

2. Next we turn to the proof of (8.1.1). As is well known (see [3],

p. 31),
1 1”( 1),
2 T e _.[

r

5 0) = 9= 2 f

8.2.1 Y
ea w— ﬂ\(w e+e)

icm
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where b is a constant. Restricting w to the parallelogram

logl
2y 48 logloglogt <u
loglog™

N

(8.2.2) 1, jp—r| < iloge

and taking real parts we obtain owing to lemma VIII for v > ¢

1 Re]"'(w —}—l) <o logt
’2 (u— Q) +(fv—t) T2 r\2 =7 (loglog 7y
or by Stirling’s formula
logz

,__-______ lo —_—
(8.2.3) 1 S‘ (w—o, +(v % &7| < 3 {iogloge)
The contribution of the g-zeros with

T
[t— 7] > [logE]
is by (2.1.3) absolutely
log(t+n-2)
< Cig 'A”,‘n‘i— << Cezs
n>[log(z(2)] .
i. 6., by (8.2.3) and (8.1.3)
U—o, 1 logt
(8.2.4) — e log7| <4
ty—=I<llog(z/2)] (v—a) +(v—1) 2 (loglogT)
09<a3
or
— log~

(8.2.5) \' Y% 1og‘r +4E

(u— g, + (v—t, 7S (loglogz)*

1% —1'[<[1Dg(‘~'/2
%p<ay

Owing to (8.2.2) the terms of the sum in (8.2.5) are non-negative. We
choose 7 so large that

0 logloglog~

(8.2.6) loglogt

6=

and
500logloglogz 1 ( 1)
loglogv 20 )
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Keeping on the left of (8.2.5) only the terms whose ¢ belongs to the square
(8.1.2) and using (8.2.5) with

Ve —1
w = a3—|———»~—-—6, V=T
2
we get
U—0,
%> My(v, a5, 8) mmin
2 g 7= <MH3ity Gyy !
Ile—1|<[10§(7/2)](uw O'g) + (’” - tq) ag-- $xibsay
a,<ag g "J’ v

min s
- -
'/2_2'"1_.1 << ,!/f_":.".l_ Y

= My, a3, 6) P = My, a a)}./ilr .
: 2

/4
This and (8.2.5) give together

V2 — 1
My(r, 05, ) < —5-8logr+ 4120 €0 p < 0,T15log.

(loglog)
if 7> ¢4(d), q. e d.
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On prime numbers in an arithmetical progression
by
S. KNAPOWSKI (Poznan)

1, Let k=23, 0 <1<k, (I, k) =1 be integers ((I, k) denotes the
greatest common divisor of 1, k).

Throughout this paper p denotes prime numbers, =(z, k, 1) denotes
the number of primes not exceeding #, belonging to the arithmetical pro-
gression

U, 1+%, 142k, ...,

€y Gy 6y, ... denote positive numerical constants, 4(n) denotes the Di-
richlet symbol: . :
logp if n=9p"a=1,2,..,

0 otherwise,

A(n) —_~l

@(k) = h = Buler’s function, L(s, X) denotes Dirichlet L-functions.
It is well-known that

1 du —
7w (2, k, 1) z_ifl—(;—g_u +O(mexp(—cv'10gwl))
2

for any fixed k.
Write .
1 du
A, b, 1) =x(m, k, l)—~h~9 Togu’

We can show by classical methods that if % is fixed and

(1.1) A(z,k,1) = 0(@®) (3 <9 <1, ¢>0 freely fixed, a— o)
then
(1.2) A@, k1) = 0@ (- o0)

for all I (0 <1<k (I, %) =1) and each fixed ¢ > 0.
These methods cannot, -however, reduce the relation (1.1)-— (1.2)

to an explicit inequality.
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