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On a theorem of Erdos-Kac
by
A. RENYI (Budapest) and P. TUrRAN (Budapest)

Introduction
Let V(n) denote the number of all prime factors of =, . e., if
o= prpg? ... i
where p; < p, < ... <p, are primes, o, dy,..., o natural numbers,
then let us put V(n) = aq+a+...4a.
It has been discovered by G. H. Hardy and S. Ramanujan [6] that
the number of those integers k <« for which

V(k)—loglogn

(1) w(n),

l/loglog'n
where w(n) is any function tending to + oo for n — oo, is o(n). A very
simple and elementary proof of this theorem has been given by P. Turdn
in his dissertation ([15] and [16]; for generalizations see [17]).

This proof consists in the application of Chebyshev’s lemma, well
known in the theory of probability. This was the first application of
probabilistic methods to the investigation of additive number theoretic
functions. Since that time a great number of important results have
been achieved in this field of research. (As regards the bibliography of the
subject see [8] and [9].)

The dissertation [15] contains also a second proof of the theorem of
Hardy andf[Ra,manuja.n. This second proof makes use of the standard
tools of analytic number theory, Dirichlet series, contour integration, ete. -

The aim of the present paper is to apply this analytic method to
obtain the deeper statistical properties of the number theoretical func-
tion V(n), or,of other related functions.

We begin by giving in §1 a new proof of the theorem of P. Erdos
and M. Kac [3] concerning the function ¥ (n). This remarkable theorem
states that:if:Nn(V, z) denotes the number of thoge natural numbers
k < n for which
V (k)—loglogn <

Vioglogn
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then we have

e
@) lim %(77—@ = &(a),
[t
where )
1 { —145'2',
(3) d () = Vi J e .

In other words, the random variable &, whi.c]'a asaum'eﬂ :;hie values
V1), V(2), ..., V(n), each with the same probability 1/n, u~f, .1.(01 ;ﬂ‘ > cx;,
asymptotically normally distributed with mean value loglogn and stand-
ard deviation ¥loglogn. ' .

The original proof of Hrdss and Kac was _11011 .mmplc; bcsqi_eg thg
central limit theorem of the theory of probability, it quad the mgve of
Viggo Brun. Our proof given in § 1 is not elementary, but is muc}1 sg.mpler

. than the original proof, or any other proof kl}own to us, of jjhe Iyrc.h»)s-i‘Kac
theorem. (It could be made still shorter, but in order to avoid duplications
it contains also preparations to §2.) ' ' .

W.J. LeVeque [10] introduced certain mofidications ‘th t}le proof

of BErdos and Kac and obtained the following improvement: of their result:

logloglogn
NV, o) @(m)+0<ﬂ—:f’%:r:-vg~.~—gf )
" V/loglogn

LeVeque conjectured that the error term is actually of order
1/¥loglogn. Recently I.P. Kubilius [9] came very near to this conjecture,
namely he proved S

7 logloglogn
NulV52) _ gimy+0 (l-/?:*z::) :
n loglogn

In § 2 of the present paper we shall prove the conjeeture of LeVeque; -

it can be shown by using a theorem of . Erdos [2] and L. ¢x. Sathe [12]
that the result thus obtained, 7. e.,

1
@) Voglogn ’

(4)

is the best possible (1).

(1) The estimate in (4) is the best possible in tho senso that (’)(l/lr’lln;xlngu)

cannot he replaced by o(1l/Vloglogn) wniformly in w. Nevertholess tho x'ml\zm!d('r
term can be improved in the sense that its dependence on « can be investigatod (seo [9]).
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In § 3 we consider other number theoretical functions too. We show
for example that (4) holds also for U(n) instead of V(n), where U(n)
denotes the number of different prime factors of n,.

The same method as the one used in § 2 yields also the'fo]_lowing
result: if d(n) denotes the number of divisors of n and Nu(d,») the number
of those positive integers k <= for which ak) < 2‘°5‘°g”+m"m, then

No(d,x 1
(@) _ ®(@)+ 0 (—,-T_T)
" Vloglogn
As regards d(n) the relation
N,(d,x
N-00 n

hag been proved by M. Kac [7]. This has been improved by LeVeque
[10] to )
Na(d ) loglogs
M ®) _ 40 (.l_fﬁﬁ_og_”_)
w Vloglogn
and by Kubilius [9] to

N

& logloglog
2 p@)+0 (Bg,—g_gloi_“).
V loglogn
Finally we give a new and simple proof of the formula proved re-
cently by A. Rényi [11], according to which if the density of the sequence
of those numbers » for which V(n)—U(n) =F is denoted by d;, then

o Se i)

Te==0 D=2
where p in the product on the right of (5) runs over all primes, and |¢| < 2.
We shall return on an other oceasion to the ease of general additive
fanctions to the dependence of the remainder-term upon @ and' the re-
placement of @ (@) in (2) by an agymptotical expansion.

§ 1. Proof of the theorem of Erdés and Kae on the asymptotic distribution ot
the number of all prime factors of »

In this seetion we shall investigate the number-theoretical function
V(n). We put by definition V(1) == 0. We prove the following

TrmonuM 1 (Brdos-Kae), Let us denote by N(V,w) the number of
those positive integers & < n for which .

V() Toglogan P

Foglogn
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Then putting

&€
1 ol
@ (w) = I/IZAWA j‘ ¢ v d’%,

we have
1) tim Y02 gy (—oo <@ < +oo).
’ o0 n

Proof ‘of Theorem 1. Consider the Dirichlet series
- wl(m)

¢
(1.2) A(s, u) = }_; -
Pz .
where u is Teal and s = o+ it & complex varis_mble. The series on the righ.t
of (1.2) evidently converges for ¢ > 1. As 7™ ig (completely) multi-
Pﬁca,tlve, b by e-tuV(nm) — G’tuV(fn) aiuV(m)

for any pair #,m of natural numbers, it follows that

(1.3) A, u) = ”'(‘1“:5%7)‘7
where p runs over all primes. Now let us put

s ) = 8
(1.4) wis,u) = (C(s))“m
where v

e 1 ® 1
(1.5) £(s) = 27? = Qm*)

=1

i the zeta-function of Riemann, and the product on the right of (1.6)
is extended over all primes p and logi(s) is real for o > 1.
‘BEvidently for ¢ > 1

0

oo ( iule=1) _y)
2

D=2 Jwmd

(1.6) logu(s, u) =

As the series on the right of (1.6) converges uniformly for o > §+e
where & > 0 ig arbitrary, it follows that, for any fixed real value of «,
w(8, %) is a regular function of s in the open half-plane ¢ >> }. Later on
we shall need the following estimation, which is a straightforward conse-
quence of (1.6):

(1.1 [logu(s, u)| < |u|
for § = o4t, 0 = 1.
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Now, by a well known formula for Dirichlet series, putting

(1.8) S(n, u) = 2 ei”'(k)log%
=1
we have
1 P n° (s, u)ds
. S - f AL, u)as
(1.9) (1, u) Y y =
where ¢ > 1.

In what follows we shall always suppose |u| < 7/6, which implies
cosu = }- '

Let us effect the decomposition

Au(sf 'M) A 1
(1.10) A8, 4) = ——— +u(s u)( () — u)
’ (s—1)" () (s—1)"
with log(s—1) real for ¢ > 1 and put
C+joa
_ 1 7' (s, u)ds
(111) b= L o
and )
S (s, u) iu 1
(1.12) I = ﬁ%} 5 ——((C(s)) —(—:W)as.

Then we have

(1.13) S(n,u) = I+1,.

Let us consider first I,. The integrand is regular for s = o+ 1it,
o >1, except for s = 1, but it is continuous at this point also, because
(s—1){(s) is regular and equal to 1 at s = 1, and thus
() (s =11 —1

(s—1)
is also continuous at § == 1, though of course it has a branching point
there. Now letius push the path of integration to the line § = 14 it (—oo < &
<<+o0) and apply partial integration in such a manner that 2’ is chogen
a8 the factor to be integrated, which results in the appearance of a factor

1/logn. By applying the well known estimates (see [14], Theorem 3.5
and 5.17)

[£(1-t)] == O(logt),
(1)
£(1-t)
[log¢ (1 14t)] = O(logt),

= 0O(logt),
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we obtain by rontine calculations (the O-gign uniformly in — zw'\: UK -%n) On the other hand, by transforming the integral I, and using the
well known integral representation of the Ifunction,
n
I, = O|-———1}.
(1.14) I, (log%)

I'(z) =f e ldu  (Re > 0),
0

Tet us now turn to the investigation of I;. Clearly we have further the functional equation

3 I = 1I;;+1
(1.15) 1 11T Ag rEri—s =
where bt Sinwe
Jtoo . HA1IL
16 ; H/m%>} i e o I
(1.16) 11 o e .s"‘(.s‘-—- 1‘)“m (1.23) I, = I'(e“‘)
and )
g o (s — 1)1%1“ s, w)—p(l, u)\ . Collecting our results, we obtain by virtue of (1.8), (1.13), (1.15 )
(117 Ly =5 f B o ds. (1.16), (1.18), (1.19), (1.22) and (1.23) uniformly for —%T<‘u< I
c—ico A Iu(l u)
As : (1.24) 8(n,u) =n F(e’m) (logn )em~1+0(10 n)
(s, wy—u(l, u) 4
s—1 Let us now put ‘
{ 1.25 s(n, ) = uF (k)
is regular, and bounded for the half-plane Re 2> 1 and further R (1--¢™) 220, (1.25) (n; u) é; ¢ ’

by transforming the path of integration of I, to the line Rs = 1 and then trivially
applying again partial integration we obtain again uniformly in «

(1.26) 8(y, w)—s(@, u)] < ly—al.
Since
(1.18) Ly = O(IOgn) Fos(@, u)
' (1.27) 8(n, ) =f :
As regards I;;, we have 1

we have for any 1> 0
(1.19) Iy = (L, w) (I —1Ihys)

1L+7M
(n, u)—s
where S(n-+in, w)—8(n, u)+ f ( -—)clw
erino X 1.28)  s(n, ) =
(1.20) L = s f . dém i log(1+4)
[ ooy
AT i (5' '“1)& Thus from (1.26) uniformly in u
and
evico ) . S(n( L+ 4), u)w— )
1 ? Loeleg s (1.29) (1, u) = — ~«»—{-O(}m,).
(1.21) g = ST $4-1) ds. ’ Tog (1-+4)
. ST e § But if 0 <2<}
The integral I,;, can clearly De transformed again to the line ‘ ) (14 A)(logn ( 1+,1))<“'—1 Iong)cm"l
Rs =1 and by integrating partially we obtain as before uniformly in u (1.30) log(1+4)
: fu_ ||
(1.22) 1u=0( awm”‘@+mu+0Q«",
logn | ogn
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the O-estimates being uniform in =2, % and A. Therefore, choosing
1 = ([u|/logn)'?, we obtain uniformly in u

s(n ) _ﬁﬂ 71)_ 91 [ O( W 1/:)) 0(-4__1—@)
(1.31) n (™) (logn)® ( + (logn) + Vmgé;;

Now s{n, u)/n is nothing else than the characteristic function of the
probability distribution of a random variable §&,, which takes on the
values V(1), V(2), ..., V(n) with probability 1/n.

Thus, in order to prove Theorem 1 according to a well known theorem
(e. g. see [11, p. 96-98) it suffices to show that putting

8

(1.32) Pu(®) = n

we have

(13 Hm g, (u) = ¢~
T--+00

But (1. 33) is evident for w = 0 and for u % 0 it follows by easy
caleulation from (1.31). Thus Theorem 1 is proved.

8 2. Proof of the conjecture of LeVeque

In this section we shall prove
TeEoREM 2 (Conjecture of LeVeque). Let N, (V, x) denote the number
of those natural numbers k < n for which

V(k)— loglogn

Then we have uniformly in ©

NV, )

=& 0
)+ (l/log ogn )

Proof of Theorem 2. In order to prove Theorem 2 we follow the
same method as that used in proving Theorem 1. The only difference
consists in the fact that now, as we want to estimate the rato of conver-
gence of (1/n)N,(V, x) to @(z), we have to congider the rate of conver-
gence of g, (u), def.med by (1.32), to e~ and apply the following theorem
of C.G. Egseen [5]:

If F(x) ond G(x) are two distribution functions, G'(x) ewists for all @

o0
and & (@) < 4, flu) = f & AR (@) and g(u) = [ e 6" qAQ () denote the

© 0o

icm

characteristic functions of the two distribution functions respectively,
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the following condition is satisfied:

(%)

f fw)—g(u) |
U

-7

then for —oo < @ << o0

where K is an absolute

~—~[du<

£,

P (1) G(0)] < K(a+—%)

constant.

Let us verify the fulfilment of the condition (x) with G(x)
(which implies A = 1/V/2x),

F(x) = P

NV, T e
'—(—’-l, T=%1/Ioglogn, £ =

6 .

Vioglogn

where ¢> 0 is a constant. We have only to prove that

7V 1og logn/6

—ulj2

(%) — €
(2.1) ip_‘(ﬂw) [ du = O( ~——1_—)'
~ 7Y log logn/6 Vloglogn
We put
+mViogTogn/6 () ~ulf2
n —¢ )
2.9) E..,Ml_&-_m du = A,+ 4,
—mVlogTogi/6
where
) uy -
(2.3) 4, = J M)__@___ du
U
|| =1/V1og Togn
and
._u 212
2.4 A, = ‘ (/)n(u S /79
________ W )

79

and

= ®(a)

Let us consider first 4,. Hvidently, putting ¢ = 1/1/1551@, we

have

(2.5) f } Pu() u)—e‘” r”

-a

du < f I - 7al)

d+f'

—ui/z

du.
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Generally if f(u

(2.6)
Thus
2.7

because

A. Rényiand P.

o '
1=mlw)
u

—~it

Turdn

f ¢™dF (z), then

1

2 (V (%) — loglogn)‘

nloglogn T

is bounded (see [15]). As

(2.8)

it follows that

(2.9)

Let us now turn to the estimation of 4,. Owing to the inequality
(6" —1—1dz+22/2| < |¢|3/6, valid for real 2, we have from (1.81)

ta 1— 6»—11,2/2

/

—a

U

dy = o(
l/loglog'n

1

1
o2}
V1oglogn

2
() — ™12 1 ( 1 )
2.10 < = O |~ ) + A (0
(210) E % [~ \Wiogn T4
where
6-—1#/2 B Wl —
.A('M) = [ul l(l—.] 0(‘/1 D ___.:.)) eﬂiu\‘lﬁl/log‘lokn,_ll and ‘ﬂl <1.
oglogn
Thus
1 m/iKE'i.égh/G
(2.11) A, ( ) . A (w)du.

In order to estimate the integral on the right of (2.11) we remark

that for |u| <

1787

log

< Vloglogn we have

£l VIogTogn __ 140 (

1/ViogTogn

up?

l/loglogn

)

du<2a]/ j 22dl (x).

du=()( -

Vloglogn.

),

icm
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which implies
Visgtogn L
(2.12) f Aw)du = 0( _*_/__)
1/V1og logn l/log ].Og 2

6, — ————
On the other hand for l/loglog'n < |u|l < nl/loglogn/G we have

u G |ul® u? " ol <1
- — L — - - or
2 6/loglogn = 4 =
and thus we obtain ' )
v log logn/6 1
(2.13) A(u)du = o( )
6 J_ l/loglogn
Vloglogn

Thus we have proved (2.1) and therewith completed the proof of
Theorem 2.

§ 3. A general theorem-

The reasoning of §§ 1-2 can also be applied in other cases. We restrict
ourselves here to the proof of a result which contains Theorem 2 as a |
special cage:

THEOREM 3. Let f(n) denote an additive arithmetic function, 1. e.,
suppose that f(nm) = f(n)-+7(m) if n and m are relatwel y prime. Suppose
that f(p) =1 for amy prime p and that [f(p")| <k* (k =1,2,...) where
a > 0 is a constant, independent of p. Then, denotmg by N(f, = the number
of those positive mtegers k< n for which

f( )—loglogn _

,,,,, = < @
l/loglog'n ’
we have
N, 1
Nalty @) _ @(w)J-O(-a-:——m—).
n l/loglogn
Proof. If :
0 dwimy
als, u) = vi~—~
n=] ns
and
! . o(s, )
ﬂ(-?y u) = (5(8))01'“ s

Acta Avithmetica IV. 6
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then clearly f(s, u) is regular in the half plane § = o+, ¢ > } and
[logh (s, u)] = O(lu})

for >0 and § = o414, o >1, and everything follows exactly as in
the proof of Theorem 2.

Among the arithmetical functions f(n) for which the bypotheses
of Theorem 3 are satisfied let uy mention besides V (n) the functions U(n)

and log,d(n).

§ 4. The distribution of the function A4 (n) == V (n)~ U (n) ‘
Let us congider the arithmetical function
(4.1) Am) =T @n)—Unr) ®w=1,2,...).
Clearly if = = p{ipg... pir where P, < P, <...<p, are primes

and «; > 1 natural numbers, we have
r

=Z(aj——1).

j=1

(4.2) A(n)
The following result has been proved in [11](%):

The sequence of those integers n for which A(n) =k where k s any
fiwed nommegative integer has a definite density dy (k= 0,1, ...) and these
densities d cam be determined by means of their generating function

Se- k-5

where 2| < 2 and p runs over all primes.

(For z = 0 (4.3) reduces the relation d, = 6/=*, which is well-known
as d, is the density of squarefree integers.)

We shall now give a new proof of (4.3). Let us consider the Dirichlet
series

(4.3)

{‘3‘ 0mA(n)
(4.4) 8(s,u) = Lul o
Evidently
(4.5) {8, u) = [(8)A (s, u)
where
1
(4.6) ]7(1— 5)(1- 7:7’7)'

P=2

() This occasion is used to acknowledge that formula (15) of [117] has heen proved
previously by I.J. Schoenberg [18].
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Thus it follows by standard methods (much simpler than those used
in §1) that

s vemﬁ(k) —

n _J
k=

(4.7) A1, u)+o(1),

which implies that the distribution of the random variable, which takes
on the valnes A(1), 4(2), A(n) each with the probability 1/n, tends
for n — oo to a limiting distribution, having the characteristic function
A(1,u). But this is equivalent to the relation (4.3), which is thus
proved.

Of course the existence of the asymptotic distribution of 4(n)
follows from a well known general theorem of P. Erdos and A. Wintner
(see [4]). In [4] the characteristic function of the asymptotic distribution
of additive arithmetical functions is also considered in connection with
the theory of infinite convolutions, and our explicit formula (4.3) could
also be deduced from the general theory. Nevertheless it is not without
interest to note, that formula (4.3) (and similar formulae for other addi-
tive functions) ean also be deduced by the method of the present paper.
It should also be mentioned that A(n) has already been thoroughly invese
tigated by A. Wintner [18], who showed as early as 1942 that 4(n).
is almost periodic (B*) and determined its Fourier-series in terms of

Ramanujan sums. A. Wintner [18] proved also that all moments D,
= Y dp- k" (m =1,2,...) of the asymptotic distribution of 4(n) exist,
E=0

which can also be seen from (4.3). As a matter of fact (4.3) implies that

i ]
1 (p—1y
A~ it P —— k — oo.
2 i inlp-2)
References

[1] H. Cramér, Mathematical methods of statistics, Princeton 1946.

[2] P. Exdés, On the integers having exactly k prime factors, Ann. of Math. 49
(1948), p. 53-66.

[8] — and M. Kac, The Gaussian law of errors in the theory of additive number-
theoretical functions, Amer. J. Math. 62 (1940), p. 738-742.

[4] — and A. Wintner, Additive arithmetical functions and statistical indepen-
dence, Amer. J. Math. 61 (1939), p. 713-721.

[8] C. G. Esseen, Fourier analysis of distribution functions, A mathematical
study of the Laplace-Gaussian law, Acta Math. 77 (1945), p. 1-125.

[6] G. H. Hardy and 8. Ramanujan, The normal number of prime factors
of n, Quart. J. 1917, p. 76:92. -

[7]1 M. Kac, Note on the distribution of values of the arithmetic function d(n),
Bull. Amer, Math. Soe, 47 (1941), p. 815-817.


GUEST


84 A. Rényi and P. Turdn

[8] — Probability methods in some problems of analysis and number theory,

Bull. Amer. Math. Soc. 55 (1949), p. 641-665.
[9] X. II. Hybuawc, Beposamnocmisvie
Mar. nmayr XI 2 (68) (1956), p. 31-66.
[10] W.J. LeVeque, On the size o
Amer. Math. Soc. 66 (1949), p. 440-463. .
[11] A. Rényi, On the density of certain sequonces of integers, Publ. Insb. Math.
Belgrade 8 (1955), p- 157-162.
[12] L. G. Sathe, On a problem of Hardy on the distribution of integers having
L J. Indian Math. Soe. 17 (1953), p. 63-82, 83-141,

wucen, ¥ CIexu

Memodul & meopun

f ocertain number-theorelic funetions, Trans.

a given wumber of prime factors, I-IV.

18 (1954), p. 27-42, 43-8L. :
18] I.J. Schoenberg, On asymplotic distributions of arithmelical funclions,

Trans. Amer. Math. Soc. 39 (1936), p. 315-830, formula (28), p. 326.

{14] E. C. Titehmarsh, The theory of the Riemann wela-fundtion, Oxford 1951,

[15] P. Turén, Az egész szdmole primosstéinal szdmdrdl, Mat. és ¥iz. Lapok
41 (1934), p. 103-130 (in Hungarian).

[18] — On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934),
p. 274-276.

[17] — Uber einige Verallgemeinerungen eimes Satzes von Hardy und Ramanuwjan,
J. London Math. Soc. 11 (1936), p. 125-133.

[18] A. Wintner, Prime divisors and almost perviodicity, J. Math. and Plys.
91 (1942), p. 52-56.

BUDAPEST, MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES

Regu par lo Rédaction le 20. 2 1987

icm

The inhomogeneous minimum of quadratic forms
of signature zero
by
B. J. BrcE (Cambridge)
1. Minkowski proved that, if I,, L, are linear forms in #, y of deter-

minant A, then, given any ", y" y ; N
o that e y @,y", we can find (r,y) = (", ¥") (mod 1)

1L L} < 14

Ee conjectured that a similar result remained true for the product of =
lirear - forms; but this has been proved only for » = 3 and n = 4.
_The result proved by Minkowski may be restated in terms of qua-
d.mt;m)for;bns: If Qs(x, y) is an indefinite binary quadratic form of determs-
nant D, then, given any x*,y", we can find v = x* =y
so that o ! v =y motd)
Qu(e, )| < 3D

Put in this way, the result may be generalized in a different way, as

follows, ’

) Given a quadratic form @, in » variables ,, ..., ®,, we define the

inhomogeneous minimum M(Q,) by
MfQ) = sup | inf

* *
T ene, Ty Tp=T;(mod1)

[Qr(wly ey mr)]} .

Then ?he natural generalization for guadratic forms of Minkowski’s
re§ult is: “If Q. is any tndefinite quadratic form im r variables of deter-
minant D # 0, then
Q) < 13D
2]73y s;iving an example of an indefinite ternary form with M I(Qa)'
= |z D", Davenport [4] showed that such a wide generalization is

falsg. However, if we restrict ourselves to forms of signature zero the
conjecture is valid; I will prove

. TIFEOREM 1. Let Q,, be any indefinite quadratic form in 2n variables,
with signature zero and determinant D # 0. Then

JII(an) < %‘Dllﬂn .


GUEST




