COLLOQUIUM MATHEMATICUM

VOL. 80 1999 NO. 1

STRONG S-GROUPS

BY

ULRICH ALBRECHT AND H. PAT GOETERS (AUBURN, ALABAMA)

1. Introduction. Virtually all classes of groups considered in the theory of torsion-free abelian groups of finite rank arise in an attempt to recover some of the properties of rank 1 torsion-free groups for groups of arbitrary (finite) rank. The motivation for this paper is the observation that quasi-isomorphic rank 1 groups are actually isomorphic. The failure of this property for torsion-free abelian groups of larger rank has led to the introduction of the classes of \mathcal{J} -groups and finitely faithful \mathcal{S} -groups by Arnold [3] and others: A \mathcal{J} -group is a torsion-free abelian group A of finite rank such that any torsion-free group which is quasi-isomorphic to A is actually isomorphic to A, while A is an \mathcal{S} -group if every subgroup B of finite index in A is of the form IA for some right ideal I of E(A). The group A is finitely faithful if $IA \neq A$ for all maximal right ideals I of E(A) which have finite index in E(A). Every \mathcal{J} -group is an \mathcal{S} -group.

Arnold showed in [3] that the finitely faithful S-groups are precisely the torsion-free abelian groups A of finite rank for which $r_p(E(A)) = [r_p(A)]^2$ for all primes where $r_p(A) = \dim_{\mathbb{Z}/p\mathbb{Z}} A/pA$ denotes the p-rank of A. Furthermore, using a result of Warfield, Arnold showed that the finitely faithful S-groups are the torsion-free groups of finite rank for which $\operatorname{Ext}(A, A)$ is torsion-free. In [6], it is shown that a finitely faithful S-group A is a \mathcal{J} -group when A is reduced and satisfies $r_p(A) \neq 2$ for any p, or A is quasiisomorphic to $A_1 \oplus \ldots \oplus A_n$ such that $E(A_j)$ is commutative for $j = 1, \ldots, n$, or $A = B \oplus B$ for some group B. The present authors show in [2] that a finitely faithful group A is an S-group if and only if $S_A(G)$ is a pure subgroup for all torsion-free groups G, where $S_A(G) = \sum \{\phi(A) \mid \phi \in \operatorname{Hom}(A, G)\}$ is the A-socle of G. Equivalently, the A-socle of G is the largest subgroup of G which is an epimorphic image of a direct sum of copies of A.

It has become customary to study S-groups only in conjunction with finite faithfulness partially due to the difficulties in handling the S-group property alone, and in part because of the compatibility of the finitely faithful and S-group conditions. We show in Section 3 of this paper that finite

faithfulness is not necessary for the purity of A-socles. The purity condition gives rise to a new class of groups which properly contains the class of finitely faithful S-groups: A torsion-free abelian group A of finite rank is a strong S-group if A^n is an S-group for all $n < \omega$. In Section 2 we give a characterization of the almost completely decomposable strong S-groups, which allows us to construct an example of a strong S-group which is flat as an E(A)-module, but not finitely faithful.

Section 3 gives further characterizations of strong S-groups and strong S-groups which are flat as modules over their endomorphism ring. In particular, we show that a strong S-group A has the property that every reduced p-group is A-solvable whenever p is a prime with $A \neq pA$. If A is flat as an E(A)-module, then the converse holds as well. Finally, we show that a strong S-group A is quotient divisible if and only if every reduced torsion group G with G[p] = 0 if A = pA is A-solvable. Here, A is quotient divisible if $A/F \cong D \oplus T$ for some divisible group D and some finite group T whenever F is a full free subgroup of A.

2. The structure of almost completely decomposable S-groups. Our first result shows that the requirement that A is a strong S-group does not impose severe restrictions on the structure of A, in contrast to those observed in [3] for finitely faithful S-groups.

LEMMA 2.1. Let G be a torsion-free group of finite rank, and X a rank 1 group such that $\operatorname{type}(X) \leq IT(G)$. Then $A = X \oplus G$ is a strong S-group which is flat as an E(A)-module.

Proof. Ulmer's Theorem from [8] asserts that A is flat over its endomorphism ring if and only if A generates the kernel of any homomorphism between powers of A. Since $S_A(U) = U$ for all pure subgroups $U \subseteq A^n$, A is flat. If B is any group quasi-isomorphic to A, then IT(B) = type(X), and so $B = S_X(B) \subseteq S_A(B) \subseteq B$, and A is an S-group. Finally, $A^n = X \oplus [X^{n-1} \oplus G^n]$ and $IT(X^{n-1} \oplus G^n) = \text{type}(X)$ for all $1 < n < \infty$. By the first part of the proof, A^n is an S-group. \blacksquare

Note that in the case above, $B = X \oplus H$ for some group H quasi-isomorphic to G. In particular, B is a \mathcal{J} -group if G is. As the next step in our characterization of almost completely decomposable strong \mathcal{S} -groups, we describe completely decomposable \mathcal{J} -groups.

LEMMA 2.2. Let A and B be \mathcal{J} -groups such that $\operatorname{Ext}(A,B)$ is torsion-free. Then $A \oplus B$ is a \mathcal{J} -group.

Proof. Suppose that $\operatorname{Ext}(A,B)$ is torsion-free. If G is quasi-isomorphic to $A \oplus B$, then there is a quasi-split sequence $0 \to A_1 \to G \to B_1 \to 0$ where A_1 is quasi-isomorphic to A and B_1 is quasi-isomorphic to B. Since

A and B are \mathcal{J} -groups, we have $A_1 \cong A$ and $B_1 \cong B$. Since $\operatorname{Ext}(A, B)$ is torsion-free, the sequence splits. \blacksquare

Using the last result, we obtain the following one, which was originally shown in [7], but is restated here for the convenience of the reader since it will be used in Example 2.5.

PROPOSITION 2.3. Let $A = X_1 \oplus ... \oplus X_n$ where each X_j is a subgroup of \mathbb{Q} of type τ_j . Then A is a \mathcal{J} -group if and only if, for each $i \neq j$, either $\tau_i \leq \tau_j$, or $\tau_j \leq \tau_i$, or $\pi(\tau_i) \cap \pi(\tau_j) = \emptyset$ where $\pi(\tau) = \{p \mid \tau \text{ is finite at } p\}$.

Proof. Suppose that A is a \mathcal{J} -group. If τ_i and τ_j are incomparable and $p \in \pi(\tau_i) \cap \pi(\tau_j)$, consider the group $G = X_i \oplus X_j + \frac{1}{p}\mathbb{Z}(a_i, a_j)$ where $a_i \in X_i$ and $a_j \in X_j$ have p-height 0. It is well known [5] that G is an indecomposable group, quasi-isomorphic to $X_i \oplus X_j$. It follows that A is quasi-isomorphic to $B = G \oplus \bigoplus_{k \neq i,j} X_k$. But A and B are not isomorphic since the class of completely decomposable groups is closed with respect to direct summands.

Conversely, we induct on n, and assume without loss of generality that τ_1 is minimal among τ_1, \ldots, τ_n . Recall Warfield has shown that, for rank 1 groups X and Y, the group $\operatorname{Ext}(X,Y)$ is torsion-free if and only if $\operatorname{type}(X) \leq \operatorname{type}(Y)$ or $\pi(X) \cap \pi(Y) = \emptyset$ (cf. [9]). Then $\operatorname{Ext}(X_1, \bigoplus_{j=2}^n X_j)$ is torsion-free, and A is a \mathcal{J} -group by Lemma 2.2.

PROPOSITION 2.4. Let $A = X_1 \oplus \ldots \oplus X_n$ where each X_j is a subgroup of \mathbb{Q} of type τ_j . Then A is an S-group if and only if, for all $i \neq j$ such that τ_i and τ_j are incomparable but $\pi(\tau_i) \cap \pi(\tau_j) \neq \emptyset$, there is k such that $\tau_k \leq \tau_i \wedge \tau_j$.

Proof. The stated condition is equivalent to the following: For any two distinct minimal types τ_i and τ_j among $\{\tau_1, \ldots, \tau_n\}$, the set $\pi(\tau_i) \cap \pi(\tau_j)$ is empty. Suppose the collection of τ_i 's satisfies the stated condition. If B is quasi-isomorphic to A, then $B = \bigoplus_{j=1}^m B(\mu_j)$ where μ_1, \ldots, μ_m are the minimal types among $\{\tau_1, \ldots, \tau_n\}$. This holds because $B \doteq B(\mu_1) + \ldots + B(\mu_m)$, while the condition $\pi(\mu_i) \cap \pi(\mu_j) = \emptyset$ guarantees equality and directness of the decomposition. Observe that $B(\mu_j)$ and $A(\mu_j)$ are quasi-isomorphic, and that $A(\mu_j)$ has a direct summand of type $\mu_j = IT(A(\mu_j))$. By Lemma 2.1, $A(\mu_j)$ is an S-group, and so $S_A(B(\mu_j)) = B(\mu_j)$, i.e. $S_A(B) = B$.

Conversely, suppose that A is an S-group. We may rewrite the given decomposition of A as $A = A_1 \oplus \ldots \oplus A_k$ where each A_j is a homogeneous completely decomposable group of type τ_j , and $\tau_i \neq \tau_j$ for $i \neq j$. Suppose that τ_i and τ_j are minimal types for which we can find $p \in \pi(\tau_i) \cap \pi(\tau_j)$. Choose rank 1 summands Y_i of A_i and Y_j of A_j containing elements x_i and x_j of p-height 0, and set $B = A + \frac{1}{p}\mathbb{Z}(x_i, x_j, 0, \ldots)$. The element $x = (x_i, x_j, 0, \ldots)$ of B has type $\tau_i \wedge \tau_j$. Therefore, $B(\tau_l) = A(\tau_l)$ for $l = 1, \ldots, k$. Since A is

an S-group, $\frac{1}{p}x \in S_A(B)$, and we can find maps $\phi_1, \ldots, \phi_m \in H_A(B)$ and elements $a_1, \ldots, a_m \in A$ such that $\frac{1}{p}x = \sum_{t=1}^m \phi_t(a_t)$. No generality is lost if we assume that each ϕ_t maps A into $A_i \oplus A_j$. Any map $\phi: A \to B$ can be expressed as $\phi = \phi \eta_1 + \ldots + \phi \eta_k$ where η_1, \ldots, η_k are the idempotents of E(A) induced by the decomposition $A = A_1 \oplus \ldots \oplus A_k$. Hence, we may assume that each of the ϕ_t has support either in A_i or in A_j . If $\phi_t(A_j) = 0$, then $\phi_t(A_i) \subseteq A_i$, while $\phi_t(A_i) = 0$ yields $\phi_t(A_j) \subseteq A_j$. Therefore, each $\phi_t: A \to A$, and $\frac{1}{p}x \in A$, a contradiction.

As a direct consequence of the last two propositions and Ulmer's Theorem we obtain:

EXAMPLE 2.5. (a) Let X_1 and X_2 be subgroups of \mathbb{Q} of incomparable types such that $\pi(\tau_1) \cap \pi(\tau_2) \neq \emptyset$, and choose a subgroup X_0 of \mathbb{Q} such that $\operatorname{type}(X_0) < \operatorname{type}(X_1), \operatorname{type}(X_2)$. Then $A = X_0 \oplus X_1 \oplus X_2$ is a flat strong S-group which is not a \mathcal{J} -group.

(b) Although the strong S-group A constructed in Lemma 2.1 has the additional property that every pure rank 1 subgroup of A is A-generated, there are completely decomposable strong S-groups without this property. For instance, let Π_1 and Π_2 be non-empty, disjoint subsets of the set Π of all primes of \mathbb{Z} , such that $\Pi = \Pi_1 \cup \Pi_2$, and define two subgroups A_1 and A_2 of \mathbb{Q} by $A_i = \mathbb{Z}\big[\frac{1}{p} \mid p \in \Pi_i\big]$ for i = 1, 2. Since $\pi(A_1) = \Pi_2$ and $\pi(A_2) = \Pi_1$, the group $A = A_1 \oplus A_2$ is a strong S-group which contains a pure subgroup U with $A/U \cong \mathbb{Q}$. Because $\Pi_1 \cap \Pi_2 = \emptyset$, one has $U \cong \mathbb{Z}$. Hence, U is not generated by A.

THEOREM 2.6. An almost completely decomposable group A of finite rank is an S-group if and only if $A = A_1 \oplus \ldots \oplus A_n$, where each $A_i = X_i \oplus G_i$ for some rank 1 group X_i with $\operatorname{type}(X_i) \leq IT(G_i)$, and if $i \neq j$, then $\pi(X_i) \cap \pi(X_j) = \emptyset$.

Proof. Suppose that A has the described form, and consider a group B quasi-isomorphic to A. Then $B = B_1 \oplus \ldots \oplus B_n$ where each B_j is quasi-isomorphic to A_j since $\pi(X_i) \cap \pi(X_j) = \emptyset$ and $S_{A_j}(B) = S_{X_j}(B)$. By Lemma 2.1, $S_{A_j}(B_j) = B_j$, and A is an S-group.

Conversely, choose a non-zero integer m such that $mA \subseteq C_1 \oplus \ldots \oplus C_l \subseteq A$ where each C_j is a pure, homogeneous, completely decomposable subgroup of A of type τ_j such that $\tau_i \neq \tau_j$ whenever $i \neq j$. We show that τ_1, \ldots, τ_l satisfy the conditions of Proposition 2.4. Suppose to the contrary that, without loss of generality, τ_1 and τ_2 are minimal among τ_1, \ldots, τ_l , but there is $p \in \pi(\tau_1) \cap \pi(\tau_2)$.

Let e be the exponent of p in m, and consider

$$B = A + \frac{1}{p^{2e+1}} \mathbb{Z}(c_1, c_2, 0, \ldots)$$

where $c_i \in C_i$ has p-height 0 for i=1,2. Set $x=(c_1,c_2,0,\ldots)$, and observe that $(1/p^{2e+1})x \in S_A(B)$ since A is an S-group. Hence, we can find $\phi_1,\ldots,\phi_k \in H_A(B)$ and $a_1,\ldots,a_k \in A$ with $(1/p^{2e+1})x=\sum_{j=1}^k\phi_j(a_j)$. Let $j\in\{1,\ldots,k\}$. Since $B(\tau_i)=A(\tau_i)$ for i=1,2, we have $\phi_j(A_i)\subseteq\phi_j(A(\tau_i))\subseteq B(\tau_i)=A(\tau_i)$. Furthermore, $\phi_j(A_t)=0$ for t>2 since τ_1 and τ_2 are minimal. So, $\phi_j(mA)\subseteq\phi_j(A_1\oplus A_2)\subseteq A(\tau_1)\oplus A(\tau_2)\subseteq A$. This shows $\phi_j(A)\subseteq(\frac{1}{m}A)\cap B$ where $\frac{1}{m}A=\{u\in\mathbb{Q}A\mid mu\in A\}$. Therefore, $(m/p^{2e+1})x=\sum_{j=1}^km\phi_j(a_j)\in A$. But $A/[C_1\oplus\ldots\oplus C_l]$ has p-component bounded by p^e in view of the choice of e. So, x has p-height at most e in A, while $(m/p^{2e+1})x\in A$ implies that x has p-height at least e+1, a contradiction. It follows that $A=A_1\oplus\ldots\oplus A_n$ where $A_j=A(\tau_j)$ and τ_1,\ldots,τ_n are minimal among type $(C_1),\ldots$, type (C_l) . If X_j is a pure rank 1 subgroup of A_j of type τ_j , then $A_j=X_j\oplus A'_j$, and the remainder follows from Lemma 2.1. \blacksquare

While the question whether every S-group is a strong S-group remains open, we can give an affirmative answer for almost completely decomposable S-groups.

COROLLARY 2.7. Let A be an almost completely decomposable S-group. Then A is a strong S-group.

3. Strong S-groups and A-solvability. In this section we give several characterizations of strong S-groups, and discuss their most important properties. For the convenience of the reader, we give a short summary of the notation used in discussion of endomorphism rings which goes back to [4]: Associated with every abelian group A is a pair (H_A, T_A) of adjoint functors between the category of abelian groups and the category of right E(A)-modules which are defined as $H_A(G) = \operatorname{Hom}(A, G)$ for an abelian group G and $T_A(M) = M \otimes_{E(A)} A$ for a right E(A)-module M. The module structure on $H_A(G)$ is induced by composition of maps. The natural maps $\theta_G: T_A H_A(G) \to G$ for an abelian group G and $\Phi_M: M \to H_A T_A(M)$ for a right E(A)-module M are defined by $\theta_G(\alpha \otimes a) = \alpha(a)$ and $[\Phi_M(m)](a) = m \otimes a$ for all $\alpha \in H_A(G)$, $m \in M$, and $a \in A$. The A-generated abelian groups are the groups G for which θ_G is onto, while the A-solvable abelian groups are those for which θ_G is an isomorphism.

An exact sequence $0 \to B \xrightarrow{\alpha} C \xrightarrow{\beta} G \to 0$ is (almost) A-balanced if the induced exact sequence

$$0 \to H_A(B) \xrightarrow{H_A(\alpha)} H_A(C) \xrightarrow{H_A(\beta)} H_A(G)$$

has the property that coker $H_A(\beta) = 0$ (coker $H_A(\beta)$ is torsion).

Theorem 3.1. The first three of the following conditions are equivalent for a torsion-free abelian group A of finite rank. Moreover, they imply the fourth, and the converse holds if A is flat as an E(A)-module.

- (a) A is a strong S-group.
- (b) If G is an A-generated torsion-free group, and $H \doteq G$, then H is A-generated.
 - (c) $S_A(G)$ is a pure subgroup of G whenever G is torsion-free.
 - (d) If p is a prime with $A \neq pA$, then all reduced p-groups are A-solvable.

Proof. (a) \Rightarrow (b). Let H be a subgroup of the torsion-free group G such that $mG \subseteq H \subseteq G$ for some non-zero integer m. For every $h \in H$, we can find $\phi_1, \ldots, \phi_n \in H_A(H)$ such that $mh \in \langle \phi_1(A), \ldots, \phi_n(A) \rangle$. To simplify our notation, we denote the latter subgroup of G by U, and set $V = \langle U, h \rangle$. Without loss of generality, we may assume $V \subseteq \mathbb{Q}U$. Since $mV \subseteq U$, we have $V \subseteq \frac{1}{m}U \cong U$. The maps ϕ_1, \ldots, ϕ_n induce an epimorphism $\delta: A^n \to U$ which extends to a map $\delta': \mathbb{Q}A^n \to \mathbb{Q}U$ such that $\delta'(\frac{1}{m}A^n) = \frac{1}{m}U$. The subgroup $W = (\delta')^{-1}(V)$ of $\frac{1}{m}A^n$ contains A^n . Since A^n is an S-group, we can find an ideal I of $E(A^n)$ such that $W \cong mW = IA^n$. In particular, W is A-generated, and the same holds for V as an epimorphic image of W.

- (b) \Rightarrow (c). Let $S_A(G)_*$ denote the \mathbb{Z} -purification of $S_A(G)$ in the torsion-free group G. When $x \in S_A(G)_*$, the subgroup $\langle S_A(G), x \rangle$ is quasi-equal to $S_A(G)$ and hence A-generated by virtue of (b). Therefore, $x \in S_A(G)$, and (c) holds.
- (c) \Rightarrow (a). If a subgroup U of A^n is quasi-equal to A^n , then $S_A(U) \doteq U$. Since $U/S_A(U)$ is also torsion-free by (c), we see that U is A-generated. Thus, $I = \text{Hom}(A^n, U)$ is a right ideal of $E(A^n)$ with $U = IA^n$, and consequently, A^n is an S-group.
- $(c)\Rightarrow(d)$. Let p be a prime such that $A\neq pA$. As a first step, we show that every bounded p-group G is A-solvable. If $p^mG=0$, then G is an epimorphic image of a direct sum of cyclic groups of order p^m . Since A/p^mA contains at least one element of order p^m , the group G is A-generated. So, there exists an A-balanced exact sequence $0 \to U \xrightarrow{\alpha} \bigoplus_I A \xrightarrow{\beta} G \to 0$ for some index-set I. Since $p^mG=0$, we have $p^m\bigoplus_I A\subseteq \alpha(U)$. In particular, $S_A(U)$ is quasi-equal to U. On the other hand, $S_A(U)$ is pure in U by (c), so that U is A-generated. Consequently, the map θ_U in the commutative diagram

is onto. By the Snake Lemma, θ_G is an isomorphism.

Now assume that G is a reduced p-group. For every p-basic subgroup F of A, the group A/F is p-divisible. Therefore, $\operatorname{Hom}(A/F,G)=0$, and we have an embedding $0\to\operatorname{Hom}(A,G)\to\operatorname{Hom}(F,G)$. Since F is finitely generated, $\operatorname{Hom}(A,G)$ is a p-group. If $\phi_1,\ldots,\phi_n\in H_A(G)$, then there is $k<\omega$ such that $p^k\phi_1=\ldots=p^k\phi_n=0$. Therefore, $\langle\phi_1(A),\ldots,\phi_n(A)\rangle$ is bounded by p^k , and hence A-solvable by the results of the first paragraph. Hence, all finitely A-generated subgroups of G are A-solvable; the same holds for G.

(d) \Rightarrow (a). Suppose that A is flat as an E(A)-module. Since the class of A-solvable groups is closed with respect to finite direct sums, every bounded group G such that A = pA implies G[p] = 0 is A-solvable by (d). To show that A is a strong S-group, we consider a subgroup U of A^n such that $mA^n \subseteq U$ for some non-zero integer m. Without loss of generality, $A \neq pA$ for all primes $p \mid m$. Therefore, A^n/U is A-solvable by the initial remarks. In view of the flatness of A as an E(A)-module, U is A-solvable since kernels of maps between A-solvable groups are A-solvable. But then $I = \text{Hom}(A^n, U)$ is a right ideal of $E(A^n)$ with $U = IA^n$.

However, even if A is a strong S-group which is flat as an E(A)-module, not every reduced torsion group G such that G[p] = 0 whenever A = pA needs to be A-solvable, as the following result shows. It is easy to see that a torsion-free group A of finite rank is quotient divisible if and only if, for every full subgroup U of A, the group $(A/U)_p$ is divisible for all but finitely many primes.

COROLLARY 3.2. Let A be a strong S-group of finite rank. Every reduced torsion group G such that A = pA implies G[p] = 0 is A-solvable if and only if A is quotient divisible.

Proof. Suppose that A is a quotient divisible strong \mathcal{S} -group. We know by Theorem 3.1 that every reduced p-group is A-solvable. Consider a reduced torsion group G such that A=pA implies G[p]=0, and write $G=\bigoplus_p G_p$ where G_p denotes the p-primary component of G. By [1], we know that a direct sum of A-solvable groups $\{U_i \mid i \in I\}$ is A-solvable if and only if $\{U_i \mid i \in I\}$ is A-small, i.e., for every map $\alpha \in H_A(\bigoplus_{i \in I} U_i)$, there is a finite subset I' of I with $\alpha(A) \subseteq \bigoplus_{i \in I'} U_i$. Thus, it suffices to show that $\{G_p \mid p \text{ is a prime with } A \neq pA\}$ is an A-small family to ensure that G is A-solvable. For a morphism $\alpha : A \to G$, we choose a free subgroup F of ker α such that A/F is torsion. Since A is quotient divisible, $(A/F)_p$ is divisible for all but finitely many primes p. We write $(A/F)_p = U_p/F$ for some subgroup U_p of A containing F, and choose a cofinite subgroup V_p of U_p containing F such that V_p/F is the divisible subgroup of $(A/F)_p$. Since A is quotient divisible, we have $V_p = U_p$ for almost all primes, and $A/\langle V_p \mid A \neq pA \rangle$ is finite. Since G is reduced, $V_p \subset \ker \alpha$ for all primes, and

so $A/\ker \alpha$ is finite. Thus, there are finitely many primes p_1, \ldots, p_n such that $\alpha(A) \subseteq G_{p_1} \oplus \ldots \oplus G_{p_n}$, and $\{G_p \mid p \text{ is a prime with } A \neq pA\}$ is A-small.

Conversely, suppose that all the described torsion groups are A-solvable, and choose a full free subgroup F of A. Suppose that A/F is not divisible for infinitely many primes. Then there are subgroups V and W of A containing F such that V/F is divisible, W/F is reduced and infinite, and $A/F = V/F \oplus W/F$. Observe that $(W/F)_p$ is finite for all primes p. By our hypothesis, W/F is A-solvable since the fact that it is A-generated guarantees that A = pA implies W/F[p] = 0. However, since W/F is an epimorphic image of A, the family $\{(W/F)_p \mid p \text{ a prime}\}$ is not A-small, which is not possible. \blacksquare

Theorem 3.3. The following are equivalent for a self-small abelian group A which is flat as an E(A)-module, and a group B quasi-isomorphic to A.

- (a) $S_A(B) = B$ and $S_B(A) = A$.
- (b) The class of torsion-free A-solvable groups coincides with the class of torsion-free B-solvable groups.

Proof. It remains to show that (a) implies (b). Choose maps $\sigma:A\to B$ and $\tau:B\to A$ such that $\sigma\tau=m1_B$ and $\tau\sigma=m1_A$ for some non-zero integer m. For a torsion-free B-solvable group G, we choose a B-balanced exact sequence $0\to U\stackrel{\alpha}{\to}\bigoplus_I B\stackrel{\beta}{\to} G\to 0$ such that $S_B(U)=U$. Since $S_A(B)=B$, every B-generated group is A-generated. Furthermore, since A is flat as an E(A)-module, the direct sum of a collection of A-generated subgroups of A is A-solvable. In particular, this holds for $\bigoplus_I B$; the group G is A-solvable once we have established that the above sequence is almost A-balanced.

Then, $M = \operatorname{im} H_A(\beta)$ is a submodule of $H_A(G)$ such that $H_A(G)/M$ is torsion as an abelian group. By a standard argument, we deduce that the evaluation map $\theta: T_A(M) \to G$ is an isomorphism. If $\iota: M \to H_A(G)$ is the inclusion map, then $\theta_G T_A(\iota) = \theta$. For $x \in \ker \theta_G$ we can find a non-zero integer k and $y \in T_A(M)$ such that $kx = T_A(\iota)(y)$. But then $\theta(y) = 0$ yields y = 0. Since $T_A H_A(G)$ is torsion-free because A is flat, we have x = 0, and G is A-solvable.

If $\phi: A \to G$, then $\phi \tau: B \to G$, and there is $\lambda: B \to \bigoplus_I B$ with $\phi \tau = \beta \lambda$. Hence, $\beta \lambda \sigma = m \phi$ and the given sequence is almost A-balanced. Hence, every torsion-free B-solvable group is A-solvable.

The converse holds by symmetry once we have shown that B is E(B)-flat. To show this, we consider an exact sequence $0 \to U \to B^n \to B$. The flatness of B follows directly from Ulmer's Theorem once we have shown that $S_B(U) = U$. Since B is A-solvable, and A is flat as an E(A)-module, we obtain $S_A(U) = U$. As before, U is B-generated since $S_B(A) = A$.

COROLLARY 3.4. The following are equivalent for a torsion-free abelian group of finite rank which is flat as an E(A)-module.

- (a) A is a strong S-group.
- (b) If B is quasi-isomorphic to A^n for some $0 < n < \omega$, then the class of torsion-free B-solvable groups coincides with the class of torsion-free A-solvable groups.

Proof. (a) \Rightarrow (b). Since A^n is an S-group, the same holds for B, and $S_A(B) = B$ and $S_B(A^n) = A^n$. By Theorem 3.3, the class of torsion-free B-solvable groups coincides with the class of torsion-free A^n -solvable groups, which is the class of torsion-free A-solvables.

(b)⇒(a). If $B \doteq A^n$ for some n, then B is A-solvable by (b), and $B = H_A(B)A = H_{A^n}(B)A^n$. This shows that A^n is an S-group. ■

REFERENCES

- U. Albrecht, The construction of A-solvable abelian groups, Czechoslovak Math. J. 44 (119) (1994), 413–430.
- [2] U. Albrecht and H. P. Goeters, *Pure subgroups of A-projective groups*, Acta Math. Hungar. 65 (1994), 217–227.
- [3] D. M. Arnold, Endomorphism rings and subgroups of finite rank torsion-free abelian groups, Rocky Mountain J. Math. 12 (1982), 241–256.
- [4] D. M. Arnold and L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225–237.
- [5] R. A. Beaumont and R. S. Pierce, Torsion-free groups of rank 2, Mem. Amer. Math. Soc. 38 (1961).
- [6] T. G. Faticoni and H. P. Goeters, On torsion-free Ext, Comm. Algebra 16 (1988), 1853–1876.
- [7] H. P. Goeters and W. Ullery, Homomorphic images of completely decomposable finite rank torsion-free groups, J. Algebra 104 (1991), 1–11.
- [8] F. Ulmer, A flatness criterion in Grothendieck categories, Invent. Math. 19 (1973), 331–336.
- [9] R. B. Warfield, Extensions of torsion-free abelian groups of finite rank, Arch. Math. (Basel) 23 (1972), 145–150.

Department of Mathematics Auburn University Auburn, Alabama 36849-5310 U.S.A.

 $\hbox{E-mail: albreuf@mail.auburn.edu}\\$

Received 9 February 1998; revised 3 September 1998