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A NOTE ON THE LIMIT POINTS ASSOCIATED WITH
THE GENERALIZED abc-CONJECTURE FOR Z[t]

BY

DANIEL DAV IES (WARSZAWA)

1. Introduction. For any non-zero polynomial A ∈ Z[t], let rad(A)
denote the radical of A, i.e. the product of all the different irreducible
factors of A. Also, let A1(t), . . . , An(t) ∈ Z, where n ≥ 3, satisfy the
following conditions:

(1)

(i) max1≤j≤n deg Aj(t) = deg An(t) > 0,

(ii) A1(t) + . . . + An−1(t) = An(t),

(iii) no subsum of the l.h.s. of (1) is equal to 0,

(iv) gcd(A1(t), . . . , An(t)) = 1.

For concision, we shall henceforth denote the set of all such n-tuples
A = (A1(t), . . . , An(t)) by Tn (n ≥ 3).

We also define the function Ln : Tn → R+ as

Ln = Ln(A) =
deg An(t)

deg(rad(A1(t) · . . . ·An(t)))
.

Again for concision, we denote the set of all limit points of the set
{Ln(A) : A ∈ Tn} by Pn.

From the definition of Ln it follows that Ln ≥ 1/n. The n-conjecture for
Z[t] claims that Pn ⊆ [1/n, 2n− 5] for n ≥ 3 (see [B-B]). It has been proved
for n = 3 and n = 4.

We may now state our main result:

Theorem 1.0. [1/n, 2n− 5] ⊆ Pn for n ≥ 3.

R e m a r k 1. It is clear from the method of proof that the same theorem
holds for K[t], where K is any integral domain of characteristic 0.

It is convenient to break the proof up into several steps.
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2. Preliminary lemmata

Lemma 2.1 (J. Browkin). For m > k > 0, the polynomial

f(x) = xm − xk + 1

has no multiple roots over a field of characteristic zero.

P r o o f. (This was given in [Br].) From f(x) = f ′(x) = 0 we get(
k

m− k

)k

=
(

m

m− k

)m

,

and hence mm = kk ·(m−k)m−k. The last equality cannot hold since k < m,
and m− k < m.

Lemma 2.2.
[
1
2 (2n− 5), 2n− 5

]
⊆ Pn for n ≥ 3.

P r o o f. Let n ≥ 3 be chosen. By [B-B], Lemma 1, the polynomial of
degree k ≥ 0 defined as

fk(z) =
k∑

j=0

2k + 1
k + j + 1

(k + j + 1
2j + 1

)
zj

has integral coefficients and satisfies the identity

(2)
x2k+1 − 1

x− 1
= xkfk

(
(x− 1)2

x

)
.

Making the substitution k = n− 3 in (2) and rearranging gives

(3) x2n−5 = 1 +
n−3∑
j=0

sj(x− 1)2j+1xn−j−3,

where

sj =
2n− 5

n + j − 2

(
n + j − 2
2j + 1

)
.

Equation (3) is a sum of the form (1), with An(x) = x2n−5, and A1(x)
= 1. Clearly conditions (i), (ii) and (iv) hold. We claim that (iii) also holds.
Indeed, if it did not, then we could insert x = 2r (r > 0) in (3) and assert
that the identity

(4) 2r(2n−5) − 1−
n−3∑
j=0

sj(2r − 1)2j+12r(n−j−3) = 0

has a proper subsum equal to zero. However, this is impossible because only
the first summand in (4) is positive (see [B-B], eqn. (7)). Thus we have a
contradiction, and so (i)–(iv) all hold. Thus (3) ∈ Tn.
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Finally, inserting x = tri − tmi + 1, where ri > mi > 0, ri,mi ∈ N, and
i ∈ {1, 2, 3, . . .}, we obtain (for each i ∈ N), the identities

(5i) (tri − tmi + 1)2n−5

= 1 +
n−3∑
j=0

sj · t(2j+1)mi · (tri−mi − 1)2j+1 · (tri − tmi + 1)n−j−3.

Since (3) ∈ Tn, so are the sums (5i). The polynomials

tri − tmi + 1, tri−mi − 1, and t

are obviously pairwise coprime. The latter two polynomials clearly have no
repeated roots over any field of characteristic zero; neither does tri−tmi +1,
by Lemma 2.1. Hence the radical of (5i) is

(tri − tmi + 1) · (tri−mi − 1) · t1,
which is of degree 2ri −mi + 1. Therefore applying Ln to (5i) gives

(6) Ln =
(2n− 5)ri

2ri −mi + 1
=

2n− 5
2−mi/ri + 1/ri

.

Since ri > mi > 0, we may choose a sequence mi/ri converging to any
α ∈ [0, 1] as i →∞. Applying this to (6) gives the stated result.

Lemma 2.3. [1/n, 1/(n− 1)] ⊆ Pn for n ≥ 3.

P r o o f. Let n ≥ 3 be given. Choose any prime q ≥ n. Then, for each
(i, ri,mi) ∈ N3 (with ri > mi), we may form the n-tuples (in Tn)

(7) (n− 2)(tri + qtmi + (n− 1)q(q + 1))

=
n−2∑
j=1

(tri + 2qj) + q(n− 2)(tmi + q(n− 1)).

We note that the polynomials tri + qtmi + (n − 1)q(q + 1), tri + 2qj, and
tmi + q(n−1) are all irreducible, by Eisenstein’s irreducibility criterion, and
hence do not have multiple roots. Furthermore, since the polynomials are
distinct from each other, all their roots are distinct (in every integral domain
containing Z). Therefore the radical of (7) is

(tri + qtmi + (n− 1)q(q + 1))(tmi + q(n− 1))
n−2∏
j=1

(tri + 2qj),

which is of degree (n− 1)ri + mi. Applying Ln therefore gives
ri

(n− 1)ri + mi
=

1
(n− 1) + mi/ri

.

Choosing a suitable sequence mi/ri → α ∈ [0, 1] as before, we obtain the
stated result.
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Lemma 2.4. [1/n, 2n− 5] ⊆ Pn for n = 3, 4.

P r o o f. The case n = 3 was solved in [Br] and will not be given here. In
view of Lemmata 2.2 and 2.3, it is clear that we need now only show that
[1/3, 3/2] ⊆ P4. As before, 〈ri,mi〉 represents a sequence of integers in N2

with ri > mi such that mi/ri → α ∈ [0, 1]. We consider families

A1,i(t) + A2,i(t) + A3,i(t) = A4,i(t)

as in (1).
That [1/2, 1] ⊆ P4 follows from the substitution: A1,i(t) = A2,i(t) = tri ,

A3,i(t) = 6(tmi + 1), A4,i(t) = 2(tri + 3tmi + 3).
That [1, 2] ⊆ P4 follows from the substitution: A1,i(t) = t2ri , A2,i(t) =

2tri(tmi + 1), A3,i(t) = (tmi + 1)2, A4,i(t) = (tri + tmi + 1)2.
Finally, that [1/3, 1/2] ⊆ P4 follows from the substitution: A1,i(t) =

A2,i(t) = tri + tmi + 1, A3,i(t) = 2(tmi + 1), A4,i(t) = 2(tri + 2tmi + 2).

3. Proof (by induction) of Theorem 1.0. Our induction hypothesis
(H) is that [1/n, 2n− 5] ⊆ Pn.

Let

(8i) A1,i(t) + . . . + An−1,i(t) = An,i(t)

be any family of elements of Tn such that Ln(A1,i(t), . . . , An,i(t)) converges,
under (H), to any α ∈ [1/n, 2n− 5] as i →∞.

Let Si be the set of all the finite subsums of the l.h.s. of (8i), for every
i ∈ N. Since every Si is finite, there must exist a corresponding least integer
m0,i ∈ N such that

(m0,i + 1)An,i(t) 6∈ Si, −m0,iAn,i(t) 6∈ Si,

for every i ∈ N. Choosing such a collection of m0,i we may construct a
family of (n + 1)-tuples

(9i) (m0,i + 1)An,i(t)−m0,iAn,i(t) = A1,i(t) + . . . + An−1,i(t).

A straightforward check shows that we have constructed a family (9i) of
elements of Tn+1. Furthermore, applying Ln+1 to the family (9i) yields the
same limit point as applying Ln to the family (8i). This implies, by (H),
that

[1/n, 2n− 5] ⊆ Pn+1.

Combining this with Lemmata 2.2 and 2.3, we have shown that[
1

n + 1
, 2n− 5

]
∪

[
2(n + 1)− 5

2
, 2(n + 1)− 5

]
⊆ Pn+1.

Now, these two intervals overlap iff 2n − 5 ≥ (2(n + 1) − 5)/2, i.e. when
n ≥ 4.

Using Lemma 2.3, the theorem now follows by induction.
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4. Some general comments. The conjectures in [B-B] strongly sug-
gest an n-conjecture for all number/function fields for all n ≥ 3, thereby
generalizing a conjecture of Vojta ([V], p. 84). The following conjecture is
a logical consequence of the work in [B-B], but it has not been explicitly
stated yet, as far as I am aware.

We state a

Generalized Vojta Conjecture. Let k be a global field, Ok its ring
of integers and S a finite set of places of k containing all the archimedean
places.

Suppose α1, . . . , αn ∈ Ok (n ≥ 3) satisfy

(10) α1 + . . . + αn−1 = αn.

Then, for every ε > 0 and all {α1, . . . , αn} satisfying (10), we have

h([α1; . . . ;αn]) < (2n− 5 + ε)
∑

ν∈S, ν(α1...αn)>0

Nν + O(1).

The constant in O(1) depends only on ε, k, n and S. Here h([ ]) denotes
the usual logarithmic height. Nν is as in [V]. That is to say, Nν = 1 in the
function field case, and Nν = (f log p)/[k : Q] in the number field case, if
the residue field of ν has pf elements.
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