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Refining the idea used in [24] and employing very careful computation,
the present paper shows that for 0 < p < oo and k > 1, there exists a
function f € C’{“_L”, with f®)(z) > 0 for € [0,1] and f*)(z) < 0 for
x € [—1,0], such that

(k)
lim sup en (S —
n—oo WE424[1/p] (f7 n )p

:—’—OQ7

where eﬁf‘)( f)p is the best approximation of degree n to f in LP by poly-

nomials which are comonotone with f, that is, polynomials P so that
P®E) () f*)(z) > 0 for all 2 € [~1,1]. This theorem, which is a particu-
lar case of a more general one, gives a complete solution to the converse
result in comonotone approximation in LP space for 1 < p < oc.

1. Introduction. Denote by C[JX 1,1] the class of real functions which
have N continuous derivatives on the interval [—1,1], Ci_1,] = Lffl’u =
C[O_l’l], C2y 4y the class of infinitely differentiable real functions on [—1,1].
Let Lfa,b] be the space of pth power integrable real functions on [a,b], I,
the class of algebraic polynomials of degree at most n, and

AR ={f: AFf(x) > 0,2 € [-1,1 — kh],h > 0},

where
k ke
A = Y0 (4) o im).
Define
A" = {f sen(@)ALf(2) > 0,2 € [1,1]\ {0},x + kh € [-1,1]}.
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For f € Cl_y,, let
1= 1fllee, ,, = max [f(z)],

-11] _1<z<1

and for f € Lfa’b] and 0 < p < oo,

b 1/p
1z, = (1@ de)

As usual, let E,(f), denote the best approximation to f € Lfil 1 in LP

by algebraic polynomials of degree n; moreover, set E,(f) = FE,(f)s and
nF. 0 = s (AL F @y 0<h <t

wm (f3t) = wmn(f,t)oo -

For f € Lf[’_1 n N AF | let

EP(f)p =min{|[f = Plzy + P €Il,nA",

EP(f) = EP(f)o

and for f € Lf—l,l] N Zk,

e (f)p = min{|[f — Py
e (f) = e (fso

Presently, coapproximation of functions by algebraic polynomials is one
of the most active and interesting fields in approximation theory, and many
scholars focus especially on Jackson type estimates. In monotone approxi-
mation, G. G. Lorentz and K. Zeller [12] showed that for f € C_y 1N A,

EWD(f) < Cun(fin™h),
and R. A. DeVore [3] proved that for f € Cj_y 3N Al
ED(f) < Cwa(fin™h).

In the case that f € C[k—l,l]’ G. G. Lorentz [11] and R. A. DeVore [4]
showed that for k£ > 1,

EM(f) < Clk)n Fwi (f*, n7h).

There are corresponding results due to R. K. Beatson [1] and A. S. Shve-
dov [21], [22] in convex approximation for wi(f,t) and wa(f,t). A. S. Shve-
dov also investigated monotone and convex approximations in L? space; his

result states that for f € Lf_l N AF k=1,2and 1 <p < oo,

EF (f)p < Cwa(fin™h),.

—mh

]:PGHnﬂZk},

1,1



COMONOTONE APPROXIMATION 267

The above estimate also holds for general k£ > 1, which was established
recently by X. M. Yu and Y. P. Ma [27].

Concerning the comonotone case, X. M. Yu [26] considers the problem
in which one approximates a continuous function f with a finite number of
changes of monotonicity on [—1, 1] by a polynomial comonotone with it, and
shows that such an approximation still has the Jackson type estimates for
wa(f,n1).

Other relevant materials can be found in [2], [5], [7], [9], [10], [15]-]20]
and [25].

On the other hand, there are several converse results. G. G. Lorentz and
K. L. Zeller [13] showed that there exists a function f € Cj_1,1) N AF such
that for k > 1,

limsup EXF) (f)/En(f) = +o0.

A. S. Shvedov [22] proved that for any given A, k and n > k + 1, there

exists a function f, ; € ka—l,l] N AF such that

E® (for)p > Awppo(for, (E+2)7),, 0<p<oo.
Although Shvedov’s result shows that the Jackson type estimate

EP(f) < Ck)wrga(f.n7")
cannot hold for all continuous functions, is it possible that it holds for any
particular f € Cj_y 17 7
Using a result from [6] or [28], we can prove that for any fixed n and k,
Shvedov’s example f,, ;, satisfies

Em(fn,k) 2 Cm_ky

) e Lip1 we get

lim sup Eg)(fn,k)/Em(fn,k) < +00.

m— 00

g k-1
while since ffl &

This discussion leads to the following problem:

PROBLEM 1. Does there exist a function f € Cj_; ;N AF for k > 1 such
that
limsup B (f) fwiqa (f,n ") = 4007

In comonotone case one can ask a weak form of that:

PROBLEM 2. Does there exist a function f € Cj_; 11N A" for k > 1 such
that

limsup e\ () /w2 (f,n ") = +00?

n—oo
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They appear not to be easy questions. In X. Wu and S. P. Zhou [23],
we showed a weaker result, which asserts that there exists a function f €

C[k—l,l] N A* such that
limsup EX (f) /war1(f,n ) = 400
for £k > 2 and

lim sup E,(ll)(f)/wzl(f, n~1) = +oo

n—o0
for k = 1, while in [24] by using a new idea we constructed a counterexample
fe C[k—1 1] N AF such that for k > 1,

limsup B (f) /wias(f,n ™) = +oo.

We are still unable to give a complete answer to Problem 1. However, by
refining the basic idea used in [24] and employing very careful computation,
the present paper will show a positive answer to Problem 2. Indeed, we will
consider Problem 2 in general LP spaces.

THEOREM 1. Let 0 < p < oo and k > 1. Then there exists a function
fe C[k—1 3N A" such that

lim sup eff) (f)p/wWrr2s/p (fs n_l)p = +o00.

Theorem 1 follows as a particular case from the following more general
result.
Let f € LY, | with f®)(0) = 0. Write

e®)(f), = min{|| f — Pllpy ¢ P €I, with P®(0) =0},

and

b — k, 0<p<oo,
P lk—-1, p=ooc.

THEOREM 2. Let 0 <p < o0, k>1 and 0 < m < k,. Then there exists
a function f € C[k_1 N A" such that

~(k)
lim sup o (f)p I
n—o00 n_mwk,m+2+[1/p](f(m),n_ )p
COROLLARY. Let 0 < p < oo, k>1 and 0 <m < k,. Then there exists
a function f € C[Iil N A" such that

(k)
. €n (f)p
lim sup W =
n—oo n p

= +00.

+00.
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Throughout the paper, we will use C(z) to denote a positive constant
depending only upon z in case 1 < p < oo or depending only upon = and p
in case 0 < p < 1, which is different, in general, in different relations.

2. Proof of Theorem 2

LEMMA 1 (). Suppose that a > 0, a(z) = a?/(2? — a?), gr(x,a) =
ake@H1 1 € (—a,a). Then

9" (2, a) — k| < C(k)a~%2%  |z|<a.

Proof. This lemma is evidently true for a/2 < |z| < a. Now suppose
|z| < a/2. Write

k .
(k) _ pa(@)+l EUORN 5@ @)
gy (x,a) = kle™® +e;j! ; T

x? x? 2
1+ s o((5a) )

k .
k' (k\ . d
E i j_ = ja(r)
ejzl g! <]>m da:je '

We verify that

d
%ea(x) < Clzla™2,

and by substituting y = z/a, we have

d? d? 1 .
el el —J ;
d exp(y2 1>‘§C(k:)a , 2<j<k.

o(x)
e g7

= a_]

The proof is completed by combining the above results. m

LEMMA 2. Under the same notations as in Lemma 1, we have for 0 <
m < k,

9" (@,a)] = 0(@*™™),  z€[~ad].
Proof. The argument is quite straightforward. m

Proof of Theorem 2. We begin with the construction of a sequence
of functions {f,} such that for sufficiently large n > Ny,

0o —k
fn€CZynAa-,

(1) This is Lemma 1 in [24]. We give the proof to make the paper self-contained.
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and for 0 <m < k,

G L — k! 140, k-

(1) f,(Lm)(x) - _phmil  _ _ltopkom
(k—m+1)! (k—m)! L
_ O(gk—m—l-l—l-a—l-l/p)
(2) LA™ =0(1),
where (?)
0
—n 172 g=141/p -1 = .
En =1 , +[1/p]=1/p, o 231 0)
In fact, let
Jp(z,en,0) = 571l+"gk(x,£n) + gFt - 6711+U{Ek, x € (—€n,en).

Then

9 (20, 0) = €77 (0 (w.20) = KD + (B + Dl
By Lemma 1,
g,ﬁk)(x,em(f) > (k+ 1)z —O0(%z) forxz €0,e,),
3 (2,60, 0) < (k+ Dz + O(%x)  for & € (—en,0),
that is, for sufficiently large n > Ny,
y;k)(z,sn,a) >0 forxe|0,e,),

y,({k)(a;,an,a) <0 forzx € (—e,,0).
Put
xk—l—l _ E}L+o$k’ ‘:U| Z En,
iz en,0), |z| < ep.

ute) = {

Then it is not difficult to verify (2) and that f, € C7°, ;; N A". Finally, (1)
can be deduced by applying Lemma 2.
Let

—6/8 —6/8 -
Fi(x) =Y 07" fu,(2),  Qula) = quz) +n; 3@+ - eltoahy
j=1
where ¢;(x) is the algebraic polynomial of best approximation of degree n; to

F;_1(z), and {n,;} is a subsequence of natural numbers chosen by induction:
Set ny = No,

k 0 M,
(3) ey = 2(ng FHETIPDIO ) Vo))
k+3 k+24[1
+[IEST) 4 [ RO e

(2) Note that 0 < 6 < 1 for each 0 < p < 0.
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for 1 =1,2,..., where [z] is the greatest integer not exceeding x,

=[(1+6/2)(k+1+0+1/p)]+2,
1 150_ 1 11 1
{ ]‘p‘m—mw[p}‘mp-
It is not difficult to see that
(4) |Fi-y = aill = O [ ).

By Lemma 1 and a theorem on simultaneous approximation to continuous
functions and their derivatives from D. Leviatan [8],

k k k k+3 _
(5) 14 (0) = [F50) — ¢/ (0)] = O F* 2 i) .
From the expression

Fi(x) — Qi) = Fioi() — qu(@) +ny 75 (fa, (2) — 2" bty |

noticing that

2

€

e P e
x?—¢

~ 57’2;“”‘7“/? 7

together with (3), (4), we have

(6) I = Qillzy o~ fog = 2 el
N 79/8 chtlto+1/p
L m

On the other hand, we see
k k —0/8 o
1(0) = ¢ (0) = kin et
thus

(7) Q7 (O)] = Clkyny eyt = Ok '~
follows from (3) and (5).
Now (6) and (7) imply that

8) et IR = Qe < CR)IQ ()]

—1,1]

By a Nikol'skif type inequality for trigonometric polynomials () (see
P. G. Nevai [14, Theorem 1 and the formula in line 11, p. 240] for the
case 0 < p < 1), for any r € IT,,, with r(*)(0) = 0, we have

© 1070 =1Q" ) = r® ) < ChRyn Q= ey,
< Ckym ™7 (Qu = Filley | +I1F = rlley )

]

(3) We can apply it to algebraic polynomials in our case simply by making a change
of variable.
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for 1 < p < oo, and

@) QPO =107 (0) — rP ()P < Ck)nT Q- 7|,

[=1.1]
kp+1
< CmfT (1Qi = Filly,  +IF =1, )

for 0 < p < 1. Combining (6), (8), (9) and (9'), for [ large enough, we get

—k—1 Y S
(1) NE =l 2 Ol e PR = Qulle
C(k)nl—k—l/p—Q/Bg’}Lj-g _ Cknl_k_l_a,

where

1+70 7+7 1 n 1 <14 1

o= — —_— = — —_ — R — .
p 8 8 8|p| 8p p
Define

F@)=> "0 fu ().

j=1
It is clear that f € C[’il N A" For any r € IT,, with r(*)(0) = 0,

oo
—6/8
1 =rliep =N =rler =2 D 0o,

j=l+1

for 1 < p < o0, and

—0/8
If=rit,  zlE-rit, -2 > 0",

Jj=l+1

p

for 0 < p < 1. In any case, applying (10) we have

If —THLP - C(k)(n 717 — l—f{s) > O(k)(ny "1 _nl—k—2_[1/p])’
thus
(11) 51(5)(}[) >C(k) ~k-l-a

At the same time, in view of Lemma 2 and (3), (6), when 1 < p < oo,
(12)  Whmmzif1/p (FTm ) < B 2ERPD | Hm2 o1/

- . (k+1)! —m
+ 0 By 1) (f( (z) - (/-c—fer)l)':ElC -

k! 140, .k—m , —1 = —6/8
Tl T +o( 3 %)
j=l+1
—O( —kdtm—1— ,8)+O( 9/8 k— m+1+o’+1/p)+0( —k—2— [1/p])

where = 1/p+ 150/16.

)
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In a similar way we deal with the case 0 < p < 1 and get the same result.
Take
M — min{n—k—l-m—l/pg—k—i-m—l/p n0/16}
n n ) *

Then from (11) and (12) for sufficiently large [ it follows that
e’ (Dpfwromsasn(F™n N 2 CO)M " m

3. Remark. Let A*(r), r > 0, denote the class of functions such that
Ak f(z) changes its sign exactly r times on the interval [~1,1 — kh] for
sufficiently small A > 0. For f € L’[’_LH N A*(r), let

EP(f.r)p =min{|[f = Pllgy |},
where the minimum is taken over all polynomials P € II,, which are kth
comonotone with f, that is, A¥ f(z)AF P(x) > 0 for all x € [~1,1 — kh] and
sufficiently small h > 0.

PrROBLEM 3. Let 0 < p < 0o, r > 0. Does there exist a function f €

C[k_l’l] N A*(r) for k > 1 such that

lim sup Eff) (for)p/wi2(f, n_l)p = 4007

We can also ask a weak form of this question:

PROBLEM 4. Let 0 < p < oo, r > 0. Does there exist a function f €
C[k_l N AF(r) for k > 1 such that

lim sup E,gk) (f,7)p/Wrt2411/p (s nfl)p = 4o0?
n—oo
When r = 0, p = oo, the above questions become Problem 1 we men-
tioned in the introduction. The present paper has given a positive answer to
Problem 4 in case r = 1. Since the method used in this paper cannot be eas-
ily applied to general cases, the above questions require further investigation
for r > 2.
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