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A REMARK ON MULTIRESOLUTION ANALYSIS OF LP(R?)

BY

QIYU SUN (HANGZHOU)

A condition on a scaling function which generates a multiresolution anal-
ysis of LP(R?) is given.

1. Introduction and results. A family of closed subspaces {V;} cz
of LP(R?) is called a multiresolution analysis of LP(R?) if
(i) V; C Viy1 and f(z) € V; if and only if f(277z) € Vp;

(i) mjeZVj = {0} and UjeZVj = Lp(]Rd);
(iii) there exists a scaling function ¢ with [P stable integer translates such
that

Vo={ 3 Cto(-—k): Y I < oo}
kezd kezd
We say that a function ¢ has [P stable integer translates if there exist
0 < A < B < oo such that

W A(Xlewr)” <] S owse-w| <B(Xlowr)”
kezd kezd

keZa

for every sequence {C(k)} € [P. Hereafter we assume 1 < p < oo and
write LP = LV(RY) = {f ¢ [fly = (fpa |F@)Pde)'/? < o0} and 17 =
P(Z%) = {{C(k)} + 3 1eza|C(K)|[P < oo}, For simplicity we use Y without
index to replace the sum over Z¢. We say that a function ¢ generates a
multiresolution analysis of LP if ¢ has [P stable integer translates and the
family of closed subspaces {V;},cz defined by

(2) Vi = { D CRo( - —k) : > CH)I < oo}
= LP closure of { ZC’(k:)(;S(Qj -—k) : {C(k)} has finite length}

is a multiresolution analysis of LP. Hereafter we say that a sequence {C(k)}
has finite length if C'(k) # 0 except for finitely many k.
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The multiresolution analysis of L? was introduced by Mallat ([3]) and
Meyer ([4]), and is well examined since we can use the Fourier transform
([2]). It becomes an important and almost unique scheme for construction
of orthonormal bases of wavelets of L? which are unconditional bases of L?
(1 < p < o) under some conditions. The multiresolution analysis of LP
(p # 2) is still meaningful since the construction of bases of wavelets from
a multiresolution analysis of L? is still a difficult problem in general, and
a function ¢ with some decay at infinity which generates a multiresolution
analysis of L? generates one of L also. Define

Lf:{f: f <Z\f(x+k)]>pdx<oo}.

[0,1)¢

Jia and Micchelli ([1]) proved that ¢ generates a multiresolution analysis
of LP if ¢ € LY has [P stable integer translates and satisfies the refinement
equation

(3) ¢(x) = a(k)p(2x — k)

with the mask {a(k)} € I'. Let ¢ be a distribution having a continuous
Fourier transform. We say that the integer translates of ¢ are globally lin-
early independent for tempered sequences if ¢p(€+2km) is not identically zero
on Z? for every ¢ € R? (cf. [6]).

In this paper we will use Fourier analysis to prove

THEOREM 1. Suppose the integer translates of ¢ are IP stable and globally
linearly independent for tempered sequences. If ¢ satisfies the refinement
equation (3) with > a(k) =2 and _ |a(k)|*(1+ |k|)? < oo for some integer
1 > d/2, then ¢ generates a multiresolution analysis of LP.

In particular, if ¢ satisfies the refinement equation (3) with {a(k)} € I},
then the spaces V; defined by (2) satisfy

(i) V; C V41 and f(z) € V; if and only if f(277z) € Vj,
since Y C(k)p(x — k) = > C(l)a(k — 21))¢p(2x — k) and

Z ’ ZC(l)a(k: — 21)‘17 < (Z Ia(k)\)p Z ()P

Let 1 < ¢ < oo. We say that a measurable function m is a local L4

multiplier if for every compact set K there exists a constant C'x independent
of f such that

I(mf ) g < Ckllfllq
for every f € L9 with suppf C K, where f and fV denote the Fourier
transform and inverse Fourier transform respectively.
Observe that Y |a(k)|?(1 + |k|)? < oo for some [ > d/2 implies {a(k)}
€ [, Therefore the matter reduces to



MULTIRESOLUTION ANALYSIS 259

THEOREM 2. Suppose the integer translates of ¢ are P stable and glob-
ally linearly independent for tempered sequences. Assume ¢ is a continuous
local LT multiplier for some oo > q > max(p,p/(p — 1)). If ¢ satisfies the
refinement equation (3) with {a(k)} € I* and $(0) # 0, then Njez Vi = {0}

and V., =1LP.

jez Vi
THEOREM 3. If ¢ satisfies the refinement equation (3) with > a(k) = 2
and Y |a(k)|?(14|k)? < oo for some integer | > d/2, then ¢ is a continuous
local LY multiplier for 1 < q < oo.
Therefore conditions (i) and (iii) imply (ii) provided ¢ € L' and the inte-
ger translates of ¢ are globally linearly independent for tempered sequences,

since [[(6)"[lg = II [ ¢(- = 9)(v) dyllq < [|6]11]1flly for 1 < g < oc. Observe
that L' D L% for any 1 < p < oo and the integer translates of ¢ € LY which

has [P stable integer translates must be globally linearly independent for
tempered sequences (see also Section 3 below). Hence Theorem 2 improves
the result of Jia and Micchelli ([1]). In particular, Theorem 1 is new even
when p = 2.

The author would like to thank the referee for his (her) useful sugges-
tions.

2. Proofs. The proof of Theorem 2 depends on the following two
technical lemmas.

LEMMA 1. Let m be a continuous local LY multiplier for some q > 2.
Then for every xo such that m(xzg) # O there exist a compact set K and
a constant C independent of f such that xo is an inner point of K and
I(m= L)V, < C|fllp for every f € LP with supp f C K where q/(q—1) <
p<q.

Proof. Without loss of generality we assume xg = 0. Observe that

(7 f )]l < C sup [m(@)] [ f]2
B(r)
for every f € L? with supp f C B(r) = {z : |z| < r}, where m(z) =
m(z) —m(0) and r > 0. Recall that

1@f ) Ml < [mf )l + [m(O)].fllp < Cllfllp
for every f € LY with supp]?C B(r). Therefore we get

1f )Y llp < Csup [m()) || f 1
B(r)

for every f € LP with suppr B(r) by the Marcinkiewicz real interpolation
between 2 and ¢ or ¢/(q — 1), where ¢/(¢ —1) <p < g and 0 = 0(p,q) >0
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([5], p- 21). Furthermore,
. 1
1 f ) My < 5 lm @) .flp

holds for every f € LP with suppf C B(rg) when 79 > 0 is chosen small
enough by the continuity of m(x). Observe that

m () = m(0) ! <1 + g:l (W)’“ )
o 71 < @ (151, + 3 (Mm@ )
< 2m(O)~ 1,

for every f € LP with suppfc B(rp) and Lemma 1 is proved.

LEMMA 2. Let V; defined by (2) for some ¢ € LP satisfy V; C V41 and
Y be any Schwartz function. Then for every f € Vy there exists g; € V; such
that [+ f — g;ll, — 0 as j — .

Proof. Let g;j(x) = 27943, 4(277k) f(x — 277k) € V;. Then

lg; = fllp < > [ [y +27k) =@ 77k) dy | £l

k0,079
+ 272k wy(f,27)
k

< C27|fllp + Cwp(f,277) = 0 as j — o,
where wy(f,t) = supy, o, [I/(- =y) = f()||p, and Lemma 2 is proved.

iez Vi = {0}. Let Ko
be a compact set such that for every § € R? there exists nn € Kj such that

( ) # 0 and (€ —n)/(27) € Z4 since the integer translates of ¢ are globally
linearly independent for tempered sequences. Then for every {o ¢ Ko there
exists a Schwartz function v such that suppy N Ky = 0 and (&) = 1.
Let f be any function in Y. Therefore ¢ x f € Y C V by Lemma 2 and
zp(g)f(f) = T(§)¢(§) where 7(&) = Y. C(k)et* is a 27- periodic distribution
and {C(k)} € IP. Let 1y be some point in Ky such that ¢(n) # 0 and
(€0 — m0)/(2m) € Z. Therefore 7(¢§) = 0 on some neighborhood of 7
and furthermore on some neighborhood of 79 + 21 Ze sincejp\f: 0 in some
neighborhood of 79, ¢(ny) # 0 and 7 is 27-periodic. Hence f(£) = 0 on some
neighborhood of &, and supp fC Ky for every f € Y. Observe that f € Y
if and only if f(27:) € Y for j € Z and any function f with supp f = {0}

Therefore

)

Now we start to prove Theorem 2. First, Y =)
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is a nonzero polynomial. Recall that K is bounded. Therefore supp fz 0,
f=0and (., V; ={0}.
Second, ;e Vi = LP(R9). Define

X' ={felL”: supp f is compact in R

and X = {J;c; Vj. Therefore the matter reduces to X’ C X since X' is
dense in L? and X is a closed subspace of LP. Let f be any function in X !
Recall that ¢(0) # 0. Therefore there exists a positive integer j; such
that [2771y| < 7/2 and |$(2~71y)| > %|$(0)| for any y € supp f. Since ¢
is a local L9 multiplier for some ¢ > max(p,p/(p — 1)), by Lemma 1 we

~ ~ ~ -~

get 7(§)Y = (¢(271) 71 (€)Y € LP, where we set 7(£) = ¢(2771) 1 f(§).
Furthermore, Y |7V (2771 k)|P < oo by the Shannon sampling theorem which
says that the L? norm of a function f whose Fourier transform is supported
in [—7/2,m/2]% is equivalent to the [P norm of the sampling values of f at
the integer lattice points. Let

glz) =243 V(2 k)¢ e — k) €V, C X
k

and ¥ be some Schwartz function such that z/p\ =1on suppf\and suppzZ C
{ly| < 29171x}. Then

(4%9)(€) = HEFE) = DO (DY@ PR ) g2 = (),
k

f=v=xg e X by Lemma 2 and Theorem 2 holds true.
The proof of Theorem 3 depends on the following lemma.
LEMMA 3. If D*m € L% . for all |a| < 1 and some integer | > d/2,

then m is a continuous local LY multiplier for all 1 < q < oo, where L =

{f [ |f(@)]|9 < oo for every compact set K}, and o = (a1,...,oq) and
d
ol = >y il
The proof of Lemma 3 follows from the Marcinkiewicz multiplier theorem
(5], p- 96).

Now we start to prove Theorem 3. Let ¢ satisfy the refinement equation
3) with the mask {a(k)}. Define H(¢) = 3>, a(k)e’**. Observe that

(3)
$(€) =TI, H(£/2)$(0) and

Da(g(g) = Z Ca,al ..... o, Z H DamH<2§m>

a1+...fas=a Tlyeens Jjs m=1
a; €240, #0

x 2~ Imlem| H H(;)

j#jl»"sz
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Therefore the matter reduces to proving 3, [ _, | DY H(&/29m)]

m=1

x 27 Jmlaml e [2 or there exist C' and € > 0 independent of ji, ..., j, for

loc?
every R > 1 and every a with o, # 0 and |a| = Y7 | |au| <l = [d/2]+1,
such that

/(I

lz|]<R ~m=1

2
DO‘"LH<2]§> ‘2_j7r1.|a7n|) dx S 02_8(]1++]5) ,

where [z] denotes the integer part of x. Recall that 3, |a(k)|?(1 + |k[)* <
oo. Therefore D*H € L% for every |a| < lp. By the Sobolev imbedding

loc

theorem ([5], p. 124), D*H € L2, for every p, such that 1/p, > 1/2—(lo—
|a])/d. Since

ZS: 1 i-lam]) 1
5" T d 5

m=1

there exist p,,, such that D®»H € Lyem, 1/r =" _ 1/p,, < 1/2 and
d/pa,, < |om|. Therefore

s 2
z|<R \m=1
s . r 2/r
Am _ —Jmlom]
o J (I from(Ge)fet) )
|z|<R S m=1
T Pam 2/pam )
Do‘mH<.> dx) 9~ 2mlam|

2Im

cII( J
C ﬁ 2jm(_2|am‘+2d/pam) S 02_5(j1+~~+js)’

IN

IN

IN

=1 Maz|<R
m=1

where ¢ is chosen as min(2|a,,| — 2d/p,,,) and Theorem 3 is proved.
3. Remarks. If ¢ has compact support, then
(4) IS cwoc—n|| <B(Icmwr)
k P k
holds if and only if ¢ € LP. Jia and Micchelli ([1]) proved that ¢ € L%, i.e.

f (Z\d)(x—i—kﬂ)pdx < 00,
k

[0,1]¢

1/p

is a sufficient condition for (4) to hold. Obviously ¢ € LP is a necessary
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condition. By the inequalities for Rademacher functions ([5], pp. 104, 276),
we know that (4) implies

/
f <Z|C )| p(z + k)| )p 2dz SCZ|C(k)p
k
Furthermore, we have

f (Z|¢(x+kz)]2)p/2dx
a1* k
< C lim 277 M f( > \¢(x+j—s)\2)p/2dx

k—oo i . .
[s|<2F[0,1]¢ [j]<2FH1

<C lim 27 | ( > |¢(a:—|—j)|2>p/2 dr < 00,

k—oo
R*  [j]<2kHE

Therefore

f (Z |¢(w+k)]2>p/2 dxr < 00,
k

[0,1]¢

which is stronger than ¢ € LP when p > 2, is a necessary condition for (4)
to hold.

For some functions {¢s}Y_,, define

N

{ZZC Vops(x — k ZZ\CS \p<oo}

s=1 k s=1 k

Then the corresponding result of Theorem 2 holds (see [1], [6] for the defi-
nition of [P stable integer translates of {¢,}Y ;).
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