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Two combinatorial problems in group theory
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k. B. Eeéareron and P. ERDUS (Calgary, Alberta)

Abstract. Sequences of elements from (additive) abelian groups are
studied. Conditions under which a nonempty subsequence hag sum equal
to the group identity 0 are established. For example, an n-sequence with
exactly % distinet terms represents 0 if the group has order g=<n (2)
and n =k (g) .

‘The least number f(k) of distinet partial sums is also considered,
for the case of k-sequences of distinet elements such that no nonempty
partial sum is equal to 0. For example, 2k —1 <{ f(k) < [$k2]-1.

In this paper a sequence is a seleetion of members of a get, possibly
with repetitions, in which order is not important; elements are members
of sets, and ferms are membery of sequences.

Dewxrrion. Let * be a binary operation on a set A, and lef;
8 = (a;)i~, be a sequence of elements from 4. § will be said to represent
the element zed if

(1) » is a term in 8, ar

(il) there exist y,z<4 such that o= J*z, and y and 2 are represent-

ed by disjoint subsequences of 3.
(Clearly this notion extends to general algebras.)

In particular, if (¢, +) is an abelian group and § = (a;)?., it a se-
quence of elements from &, then § represents meG just if there exists
a sequence K = (g)l., of elements from {0, 1}, not all 0, such that

N ;

2 &0 = . ' ’
i=1 .
We resolve here some aspects of the following two related problems.
(1) Under what circumstances does an #- sequence of elements from
an abelian group represent the zero. element?

(2) If an n-sequence of distinet elements from an abellan _group does
not represent the zero elemént, how many elements does it represent?
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Sequences representing zero. ‘

THEOREM 1, Any n-sequence 8 = (a;);—, of elements from an abelian
group {G, +>, exactly k of which are distinct, represents the group identity 0
if the group has order g < n-+ (g) and n =k (72")

Proof. Suppose on the contrary that § does not represent 0. Then,
none of the elements represented by the first m terms of § is 0, and none

,
is equal to any of the n—m sums of the form 3 a;, with m -1 < v < n,
ol

for otherwise the difference would be a sum equal to 0. Again, none of
thege latter n—m smms equals 0, and all are distinet, for otherwise there
would be a difference equal to 0, contrary to hypothesis.

We shall show that a suitable choice of m can be made, smeh that

at least m 4+ (‘;“) elements are represented by the fivst m terms of 8, so

with the latter #—m sums a total of at least n -+ (72“) nonzero elements

are represented. This is inconsistent with g<{n - (g), so the initial hy-
pothesis is false and the theorem follows.

We may suppose there ave t equal terms in S, say ¢; = a, for 1« i<,
where ki > n. Then § represents those elements equal t0 sa,, for 1< s < ¢,
whieh are necessarily distinet and different from. 0. There are now two
cases to consider: either (i) § has a term not in [a,], the subgroup of &
generated by a,, or (ii) all terms of S are in [a,].

Casge (i). Suppose o,,,¢[e;]. Then, with m =i--1, these first m
terms of & must represent 2¢4-1 distinet elements. Tf n3= k (726), at least
m—l—(ﬁ) distinet elements are représented, because ktzn, which iy what
We require. : '

Case (ii). Let a; = 7,0, for 1 < i < n, where the sequence 8 = (r)},
comprises positive integers, exactly & of which are distinet, and »; = 1
for 1 < 4 < ¢ (Since § does not represent 0, S hag no zero terms.) Regaxd &
a8 a sequence from the additive group of integers. T¢ no term of §' exceeds t,

E n
then 8’ represents all positive integers up to and including 3 ry, and’
=1

this sum is at least as lzﬁrge as the sum of the first & positive intogers to-
gether with a further n — k ones. Thus 8 certainly represents g if g < n - (g),

s0 8 represents ga,, which is 0 since ¢ is a multiple of the order of a,.
This i3 a contradietion, so 8" must contain a term which exceeds i, say
Tyra > b Again take m = {+1 and repeat the argument of Case (i). @

This theorem is best possible in the sense that the bound on g cannot
be improved in general, for if @, =4 for 1< i<k and a; = 1 for k-1
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< ¢<n, then § represents all nonzero clements of.the additive group
of residue classes modulo n4- (Z) -+ 1, but does not represent 0. On the

other hand, it is not clear what the best bound for » should be. If we take &
to be the additive group of residue classes modnlo 252+ 48, where s is
any positive integer, and S to comprise » = 3s terms specified by a; = ¢
forl<i<s, a; =1fors+1<i<2s—1, and a; = s+ for 28 < i < 3s,

then & = 2541, and § does not represent 0. Since g = 2584 45 = 7+ (ﬁ)

in this case, it follows that the bound on # in Theorem 1 eouwld not be
redueed as far asg g-(k—l) in general. We conjecture that the theorern is
true for » 2= ck, where ¢ is some positive constant. ' _

It is desirable to obtain a result corresponding to Theorem 1 for the
cage in which the exact number of distinet elements appearing in 8 i
not known, the only relevant information being a lower bound on the
number. We can deduce this result by using a theorem first conjectured
by Erdds and Heilbronn {21, and recently proved by Szemerédi 5], viz.,

THEOREM (Szemerédi). Any k-sequence S = (@)l of elements from
an ebelian group (&, +>, all of which are distinet, represents the group
identity 0 if the group has order ¢ = g, and k> enl/g;, where g, and ¢, are
absolute constanis,

Thus, if the n-sequence § in Theorem 1 contains 4 = % distinet ele-

ments, and the order of @ satisfies gy < g <+ (;ﬂ), then the supposition

‘that & does not represent 0 implies k < ¢, l/ﬂ—}— (Z) If { is the number

of terms of § equgLI to a,, we may assume Af > n, whence the argument
used in Case (i} of the proof of Theorem 1 shows that the first m terms of 8§

represent at least w4 (],:) distinet elements provided = == ¢, k%, where 6,

~1s an absolute constant. All other details of the proof CaTry over, 80 We

have the .

- OOROLLARY 10 TUEOREM 1. Any n-sequence S = ()i of elements
from an abelian group (&, +>, at least k of which are distinet, represents
the growp identity 0 if the order of the group satisfies g, < g=n-+ (7;) and
n 2 o, k', where g, and ¢, are absolute constanis. _

It is possible to obtain similar results even when the number of
distinet elements in § is not so small in comparison with #.
© THEOREM 2. Any n-sequence S — (a)l; of elements Jrom an abelian
group (G, +5, at least k of which are distinct, represents the yroup identity 0
if the group has order g<<n-+k—1. - _

Proof. Suppose on the contrary that S does not represent. 0. We
may take the first % terms of § to be distinct. As will be shown in the

w

L] Ambn K midleemalio . wrr
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second part of this paper these % terms represent at least f(%) distines
elements, and for any %, (k) > 2k —1. None of the elements they represent
r

can be equal to any of the n —k sums >’ a;, where k+1 < r < », for other-
i=1

wise the corresponding difference equals 0 and § would represent 0. Similax-
ly, no two of the latter »—% sums can be equal, so § represents at least
n-+ k-1 distinet elements. Bince S doeg not represent 0, this constitutes
a contradiction if g<n+k—1, so the theorem follows. Indeed, it holds
H og<nt+flB)—k =

In a sense, the npper bound on ¢ in Theorem 2 ig low because of
the structure of eyclic groups. This is clarified by the next result,

THEOREM 3. Any n-sequence 8 = (a;)i—, of elements from a nonoyelic
abelian group (G, -+ represents the group identity 0 if the grouwp has order
g< 2n—1.

This may readily be deduced from the following result of Olson [4]:

Treoreym (Olson). If H, K are abelian groups of order h, & respective-
ly, and k|h, then any n-sequence S = (a,)0., of elements from their direct
sum G = HPK represents the identity O of n = h+k—1.

Proof of Theorem 3. If @& is a noneyclic abelian group of finite
order, there is a direct sum decomposition

G = @ 063'7
lismi -
where C’ej is the cyelic group of oxder ¢;, m > 2 and ¢, l¢; for L << j < m—1.
With
H ==

) ng, and K 22 Uy s

I fsm-1
we have

m—1
h = e, and k=w4e,, 80 k|&.
1

By Olson’s theorem, § represents OeG if n > h-+%k—1. Thug, it soffices
to see that 2n—12 ¢ = Ak ensures n = k- %k—1. This is easy; for if at
least one of &, k is even, we require }hk > h+k—2, s0 (h—2)(k—2) =0,
and if both h and & are odd, we require (A~ 2)(k—2) = 1, which conditions
are satisfied bhecause A=k > 2. m

Sequences not representing zero. Let & = (4%, be a sequence
of & distinct elements from an abelian group <@, +5, such that § does
not represent 0, and let f(k) denote the minimum number of elements
which ean be represented by &, i.e,,

J(k) = min |{zG: » is represented by S}

5,6
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THEOREM 4. f(k) =25 —1 for k1.

Proof. Clearly f(1) =1. For some k> 1, suppose f(k)=> 2k—1,
and let 8 = (a,){2] be a (k+1)-sequence of distinet elements from ¢ which
does not represent 0. :

Case (i). There is a term in § which is not Tepresented by the remaining
% terms. Then without loss of generalifty we assume ) I8 such a term.

The 2k-—1 elements {or more) which are represented by the first & terms
B4l

of § do not include a,.,; nor do they include > a;, for otherwise the
=1

difference between this sum and some other representation of the same

element is 0, confradicting the fact that & does not represent 0. Hence §
represents at least 2k -1 elements.

Case (ii). Every term in 8 is represented by the remaining % terms.
To resolve this case we use a theorem of Moser and Scherk (31, viz.

ToeoreM (Moser and Scherk). If 4, B are finite seis of elements from
an abelian group (G, 4>, such that 0cA, O0eB, and a+b =0, aed, beR
implies @ =0 =10, then |A-+B|> |4]+|B|—1, where A+ B = {a-+b:
aed,beB}. ) o '

Thus, if we let 4 = B = {0, a,, a,,...., Oyt then |4 4 Bz 2k 1+-3.

Under the assumptions of case (i), évery expression of the form 2a; is
E+1 :

expressible in the form a+ > g0, where ge{0,1} for 1<i< k-1,
=1

and not all the & are zero, but g; = 0. This shows that every ele-
ment of A + B other than 0 is represented by 8, yielding a total of at
least 2% 12 elements represented by 8. The theorem now follows by
induction on %. m '

Aftainment of the bound for f{%) in Theorem 4, with ¥ = 1,2, 3,
is shown by 1 (moed 2); 1,2 (mmed 4); 1, 3, 4 (mod 6).

TEEOREM B. f(k) = 2% for b= 4.

Proof. The proof of Theorem 4 shows that in Case (i) if the first %
terms of § represent at least 2k elements of &, then & represents at least
2k+2 elements, while in Case (i) this conelusion is invariably wvalid.
Thus, the present theorem follows by induction on k, provided it ean
be shown in Case (i) that if & = 3 and the first 3 terms of & represent
only 5 elements of ¢, nevertheless § represents at least 8 elements. Under
these ecircumstances we may assume that @yy Qoy Ogy Oy gy G+ 8yt By
are. all different, and @, = ay-+ay, a3 = @, a4y, 50 2a, = 0. (Tt iz not
possible to have further independent restrictions cousistent with the
conditions that «,, @, a, are distinet and do not represent 0,) Alse, we
may assume a, iz not represented by ., a;, ;. Then, as before, a, and
a1+ as+ a3 a, are distinet and are mot represented by a., a,, a,; the
same is true for a, + a,+ a,, for in partienlar a, + a,+a, = a, would imply
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4 Gy +ag+a, = 0, contradicting hypotheses concerning . Thus, §
represents at least 8 clements of #. The theorem follows. &

Attainment of the bound for f(k) in Theorem 5, with k& = 4, is ghown
by 1, 3,4, 7 (mod 9). In general, precise evaluation of f(k) is increasingly
laborious, *even though entirely elementary. We have shown f(5) = 13.
The proof is available ag an appendix in [1]. Furthermore 7(6) < 19,
and equality seems likely. (Computationg in this direction are in Progress.)

Szemerédi [5] can show f(k) > eh?* where ¢ is some positive constant.
On the other hand, f(k) < [$%%]+ 1, as shown by the following two exam-
ples (where s is any positive integer);

(1) @, =< for 1<<i<<s,ap =844 for s+1<4< 2841 {mod 2s% 125+
+2), where kb = 2¢4+1, and the number of eclements represented
is Fhe4-4

(2) @; =i for 1<i<<s, o = $*—s+4 for s--1< i< 2 (mod 252 4- 2,
where L = 2s, and the number of elements represented is k211,

- Ttis interesting to note that in all resolved cases, f(k) can be achiev-
ed within the class of cyclic groups. We conjecture this to be the case
for all k.

Finally we remark that our theorems perhaps carry over to non-
abelian groups, but we have no results in this direction.
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A sharpening of the bounds
for linear forms in logarithms

by
A. Bagmr (Cambridge)

In memory of Prafeséors
H. Davenport and W. Slerpiniski

1. Introduction. The purpose of' the present paper i3 to establish
a new theorem on linear forms in the logarithms of algebraic numbers
which incorporates many of the more recent developments in this field
and, in certain respects, goes farther. .

Leb oy, ..., o, be non-zero algebraic numbers with degrees at most 4
and let the heights of e,,...,a,_; and a, be at most A’ and A (> 2)
respectively. We prove:

THEOREM. For some effectively computable number € >0 depending
onky on n, d and A', the inequalities '

{1) 0 < |bdoga,+... + bloga, | < (-lozdlog s

have no solution in rational integers by, -
(= 2).

It has been assumed that the logarithms have their principal values
but the result wounld hold for any choice of logarithms if ¢ were allowed to
depend on their determinations. Under slightly more stringent hypotheses
the theorem would be valid for any algebraic numbers by, ...,5,, not
merely rational integers; indeed our arguments can easily be modified
to show that, for any &> 0, there cxists an effectively computable num-
ber O, depending only on n, 4, A’ and’s, such that (1) has no solution in
algebraic numbers by, ..., &, with degrees at most d and heights at most B -
(= 2) it log A is replaced by (log.4)'**. This sirengthens a recent result
of Stark and the author [3] wherein log Alog B is replaced by the maximum
of (log4)™** and (log B)™" for a sufficlently large absolute constant ¢.
The theorem also extends the work of Feldman [41, which itself furnished
refinements of the inequalities given in the third memoir of the series [y

ooy by with absolute valuss ai mosi B

by substituting log4 for a high power of the logarithm. Furthermore,

the theorem can be viewed as a variant of the result obtained in the fourth



