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6. Let 6[A, r+ @] be a fixed invertible ideal in Ry, § and 1 in zZ,
and let 7, ¢ be positive integers such that 621 = r6. We wish to determine
the number ¢(z) of divisors in R, (necessarily invertible) of &[2,r- w]
of norm v, i.e. the number of ordered pairs T, 8 of invertible ideals in By
such that d[4, i+ w] =18, N(T) = v. For each prime p define integers
Koy Lys Ty 8 By 2 90118, p'2|| 2, 97 ||(4, 0); leb m, be the largest integer such
that d/p™» is in D. ‘ ‘

Tt 9 = 0 in Theorem 3, i.c. it p is not a bad prime, then Theorem 3
becomes a special case of Theorem 1 of [11 If #z is a positive integer let
% (%) denote the number of invertible ideals in R, of norm z. By Theorem 3
and Corollary 2 we pow have

THEOREM 4. If there ewists a prime p such that by, << 1, and 2k, < 8, < 1,
then g(o) = g(v) = 0. Otherwise, .

g(e) = g(v) = x{[[p®), where @, = minfs,, &, min(n,, L,/2)). .

7. Tt may be of interest to' mention that the result in the opening
sentence of this article arose from a neat proof, essentially by descent,
that if a+bi is & Gauss integer of norm mn (m and » positive infegers),
then the number of nonassociate divisors of a4 bi of norm m is equal
to the number of Gauss integers of norm (a, b, m, #). There is a similar
result for gquaternions, and presumably a corresponding theorem for
factoring ideals in generalized quaternion orders, The analegous problem
in cubic fields seems to be complicated. In [1] we gave an afgorithm which
associates the factorizations of an element 7 (@, +z,w) in B; ag o product
of elements of morms m and » with represenfations of ¢ = (r, m,n) by
an explicitly given binary quadratic form ¢ of diseriminant d. How @
is naturally connected with the given elements wag left unclear. Hence
it may be worth mentioning that ¢ can be transformed by an integral
transformation into the primitive form associated in [2], Section 3,
with the module [m, i {w, - w,w)].
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1. Iniveduction. Let # be a differential ring of analytic funetions,
that is a ring closed under differentiation. We may assume without loss
of & generality that # contains the constants € and is therefore an algebra
over C. Tf 2, is a differential subring of # we can define the Ting
£ = [ D] of linear differential operators with coefficients in #, and con-
sider #Z as an #-module.

1.1, DeFINITION. The elements fi, fo, ..., f, of # are linearly depen-
dent over & if there exist Ly, ..., I, % not all 0 5o that Lifit e+ Tpfo =0
and Unearly independent over & otherwise. The dimension of & over ¥ is
the maximuwm number of linearly independent elements of # over #.

We are interested in the following general conjectures:

1.2, Conomeruvme. If £ is a ring of entive functions which i3 finite
dimensional over & then # is 0-dimensional over . That is, for every fe#
there exwists an LeF” (= Z\{0) so that Lf = 0.

The hypothesis that # be a ring of entire functions is certainly not
superfluous since the conjecture in this form does not hold for rings of
meromorphic functions (see §3). However David Cantor has suggested
the following two purely algebraic versions of our conjecture.

" 1.3. ConTECTURE. Let # be an abstract differenticl ring with DR = #
and define H#, and & as before. If & is finite dimensional over & then 58
is 0-dimensional over & (at least if D#, = {0}).

14. Congrerure. Let #, %, and £ be as in Conjecture 1.3 but make
the stronger assumption that L& =X for every L eZ,[D] whose leading
coefficient is a unit of #,. Then, if # is finite dimensional oper £ it is 0-dimen-
stonal over £, :

So far we have no algebraic attack on those conjeectures. However
we were able to show that there i3 an upper bound on the growth rates
of the functions of # which iy consistent with Conjecture 1.2 ([17).
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In §2 we prove the conjecture for %, = C, that is .Z the algaebra,
of linear differential operators with constant coefficients.

In §3 we characterize the rings of meromorphic functions which
are finfte dimensional over the same % = C[D] and find them to be
rings of functions meromorphic on compact Riemann gurfaces where
the dimension over & is given by the number of poles.

2. Differential rings of entire fuvctions. In this section we prove
Conjecture 1.2 for rings of entire functions and % = €'[D] (which is the
meaning of % from now on).

2.1. THEGREM. If & is o ving of entive functions which is Jindte dimen-
sional over & then Z is a ring of evponential polynomials.

Since the conclusion refers only to the individual elements of %
we may restrict atbention to the differential subring

<f> = C[f?f’7f”f o]
generated by an element f of #. Wo first prove that J bhas the correct
growth rates, repeating the arguments in [1] for this special case.

2.2, LemMA. If (f) satisfies the hypothesis of the theorem then fis of
finite exponential lype. ‘

2.3, Lovaa. Let M(r, f) = max| F(@)l, as usual, then for cvery 8> 0
=y
we have M (s, ')y < M{r-+2(r, 7% f)*+9,
Proof. This is an immediate consequence of Cauchy’s inequality
_ M(?‘,f’)éﬂ[(?—!—@,f)/g
where we choose g = I {r, f)™%.

Proof of Lemma 2.2. Let n be the leagt positive integer so that
there exists an I, %" with

(2.4) Ln(f") = Loy (f* ™M 4o+ Iy f = g
v Ly yeZ. If n =1 we are finished. If » > 1 write
Ly = (D~1) .. (D=2) = (D—2a)™ ... (D — A,)"™

where L, ...

where 1y, ..., 4; are district and solve (2.4) for f” bo get

bt

. - 2
I" = P(2)e" .. L P, () ¥ L eh? [ etta—iia [ [ eggyar ...,
a 0 ¢ .
where P,(z) is a polynomial of degree < m,— 1. Thus there exist positive
constants (which we generically denote by ¢) with

(2.5) M(ry )" =M (e, [ < 6™ 4" M (v, 9) < ee"M(r, g)
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(2.13)

Thus
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unless g = O in which case f”, and henece f, satisties the lemma. Now - -

M(r,g) <e¢ max M, D(fY)
. lﬁ_ﬂ's:ﬂ\a—l
FEh

where N = max deg L,, Thus by Lemma 2.3 we gel
1<iggn—-1 .
(2.6) Mr, gy < e max My+M(r, 0, fipv

lidn—1
= emax M(r- M (r, )%, )N
< eMr+M(r, )77, fr N,
If we choose 6 = 1/(2nV) and substitute in (2.5) we get
(2.7) M(r, fY" < oo M(r-+H(r, fy°, f)"=12,

Now, if the lemma does not hold then there exist: arbitrarily large »

for which the term c¢e™ on the right of (2.7) satisfies

{2.8) ce™ < M (v, F}M.
‘Whenever (2.8) holds we get (2.7) to yield
(2.9)  Mr+-M(r,f)7°, f) > Mr, {Y¥™9 5 M (5, £)M(r, £),
Now pick » so that an inequality

o’ < M (r, FYY,

slightly stronger than (2.8) holds and so that

(2.10)

(2.11) M(r, )i > 2.

'We can now snccessively use the values r = 7y, 71, 75y ..., %, ... Where

1

(2'12) Tg?’s(?'g_}_l = 7"3+M(?s,f)-_6<7'+1w27+f
and
M 1oy, £ > 20 (ry, fY 2 2V B (v, 7).

We get these properties induectively from (2.9) by substitution.

Ty o= "’_}'M("’ff)_ﬁ <74 %1
M(ry, f) > M(r, )M (r, f)* > 2P M (v, f)

1R — Anta Awrithratine wYr
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which proves (2.12) and (2.13) for s = 1. Now agsume (2.12) and (2.13)
hold for s then

1
Faps = Ta b M (1, )70 <rH1— o H27M 0, £

1

and, since », satisfies (2.8),

Mlrgrn, ) > M(rg, )M (rg, Y4 = M (ry, f)I (7,
>2 oy Mﬂ_[ f)> 9{5+1}/5M( f)

which completes the proof of (2.12) and (2.13). EHowever (2.13) implies
that

ME+1,0 > M@, =

for all s whieh is impossible. In other words (2.10) cannot hold for any r
large encugh to satisfy (2.11).

2.14. Levua. If &f) safisfies the hypothesis of Theovem 2.1 and is of
minimal exponential type then f is a polynomial.

Proof. We have log M (z

= 2°M(r, f)

", £)fr = 0. So there exists a sequence #, - oo

with
log A (rs, ffrs > log M(rs—+g, f)/(7e-+ ), o> 0.

In other words
(2.15) Mg+ 0,f) < M(rg, )M (r, ,f)e”“s

If we have chosen r, so large that M (1, f) < ¢ for » = r, then (2.15) -
becomes
(2.16) . C Mirg+o, << M(r, , fle®
and correspondingly .
(2.17) Mo g, %) < M (ry, e,

Applying Cauchy’s iﬁequdlity with o = j/ke we get
(2.18) Mire, DV(F) < Mg+ 0, )]o < o/ M (r, f)F.

- If we substitute (2.18) in (2.4) ﬁhen the lowest order derivative of f*
dominates for 7 — 7y and & sufficiently small. Thus, if I, = aﬂmDm-l-
a1 DM Ly, # 0, we get -
bR 7 1
(2.19) M(r,, L,(f ))>§

G| M {5, D™ (™)) > B (g, FYET = oM (7, , )P0
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For the right side of (2.5) we get

(2.20) ifr,, j L) < eM(ry, f*7) = My fY
i=1

Comparing (2.19) and (2.20) wo get
M (re,F) < ol

(2.21)

for a sequence 7, —> oo 80 that & is a polynomial by Liouville’s Theorem.
We may thus assume from now on that f is of finite but nonminimial
exponential type. We can therefore consider its Borel transform F(w),

Plw) — S‘% Y‘azn

Sormad

where  f(2)

Here I'(w) 18 ana]ytic in the complement of o bounded domain £ whose
convex hull, conv ¥ = ¥ determines and is determined by the support
Tfunection

ol = h{—68,f) of &
where

R{8, f) = limsuplog |f(re™)|jr.

Cleaxly h(6, f*) = kh{0, f) and thus, if F,(w) denotes the Borel transform
of f* with corresponding domain %, and %, then &, = k¥%.
If we take the Borel transform of (2.4) we get

{2.21) P (w)Fp(w) = P, () By s (w)+ ...+ Prlw) By (20),

where P,(D)=1;. Thus the singularities of F,(w) in 2%~ (n—1)% are
poles located at the zeros of P,(w). This implies that »% and hence %
is polygonal. .

2.22. Lemwda. If. {f> satisfies the hypothesis of Theorem 2.1 then
f = fi+fF where f, is an exponential polynomial and %Y, the conwexr hull
of the complement of the domain of analyticity of F7 (w) (the Borel transform
of 1), is a proper subset of €, comammg none of the vertices of & B:ncept
possibly 0. ‘

Proof. Let 4,,...,
by our remarks above the points niy, ...

(2.23) JR) = Pra() 8 L Pp(2)6"% + g (2),

where P, {(z) are polynomials and the Borel transform &, (w) of ¢,(3) '
is regular at the points #l;, ..., nd, so that (#,) is a proper subset of
n¥ containing none of the non-zero vertices of #%. Analogously we get

(2.24) ") = Py, AP (@) e VE L g ()

Az be the non-zero extreme points of €. Then,
, Wi, are poles of F, (w) and

() e
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Dividing f**" by /* we get -
2.95) 12) = ¢(@) 7 +o(2);
where g;(2) is rational and the Borel transform &;(w) of @ (2) is analytic

at A;. Raising (2.25) to the nth power and comparing with (2.23) we get
g7 = P,; so that ¢, is a polynomial and 4; is a pole of F(w). Thus
F(w) = Fy(w)+ I ()

where F, is rational with poles 1;,..., 4, and F] is regular outgide %
and at i, ..., 4. Inverting the Borel transform we get the lemma.,

If ff =0 we are finished. If mnot there exists _an, ?pfmhor
Ly = (D —4)™. (D =A™ e £* go that L, f, = 0 and hence I, f = Infref.
Thug, by Temma 2.22 we have either Z,f = 0 and we are finished or

Lifi = g2+95

where g, is an exponential polynomial and #(G3) is a subs{et of #(I)
_ confaining none of its non-zero extreme points. Inverting L, we got
(2.27) i =f+f2

where f, is an exponential polynomial with & () = € (F*) and, ‘?5(_1!‘:)
= #(F;) 5o that %(F;) contains none of the non-zero extreme points
of €(FY). . . o
Continuing this process we get f; = fi + i Whe:::e i an expo-
nential polynomial and %(F;,.,} = #(F}) so that #(F;,,) contains none

i=1,2,..,k

(2.26)

of the non-zero extreme points of #(F;) = €(¥;,,). If this process ends |

in a finite number of steps we are finished. If not then F'(w) has an infinite
- number of poles. Let 2* be the complement of the domain of meromorphy
of F and %* = conva®. '
2.28. LA, Bvery non-zero extreme point of €% is a lWmit point of
poles of F. If € = {0} then, obviously, 0 is a limit point of poles of F.
Proof. Let p 0 be an extreme point of #* which is not a limit
point of poles of F. Let I be a line of support of %" throngh p. Then. on

one gide of 7 there is only a finite number of poles of #. So therve exists .

a polynomial P (w) so that P(w)F(w) is analytic on one side of I The
corregponding funetion g = P(D)fe{f>. Thus by Lemma 2.22 the point p
is a pole of ¢(w) = P(w)F(w) and bence a pole of ' and hence p¢%*.

We can now complete the proof of Theorem 2.1. Let 1 be 2 support-
ing line of ¥ at an extreme point p of ¢* go that-F is meromorphic
‘with infinitely many poles on. one side, %, of I. Let 4 be an extreme point
of € in ¥ at which ¢ has a line of support parallel to ! Then ¥, (w) has
the point (n —1}4 - p as a limit point of poles which are exterior to (n—1)%.
In other words F,(w) has infinitely many poles in a domain in which
F,Fyy ..., F,_; arve analytic. This contradicts equation (2.4).
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3. Differential rings of meremorphic functions. Tt is no Ionger true
that rings of meromorphic fun¢ions which are finite dimensional over &
are necesgarily 0-dimensional. In fact a non-entive meromorphic funetion
does not satisfy & nontrivial linear differential equation with constant
coefficients. Since the proper setting for these rings will turn out to he
compact Riemman surfaces we shall give first examples in these terms.

3.1. DuprvitroN. Let . be g compact Riemann surface. By a de-
rivation, I, we mean an operator which acts locally like a differentia-
tion operator on the analytic functions of .#. Tt g = genus 4 %1 then D
will have one singular point (where ibs veetor field vanishes) p, (point at o).
The operator algebra % = C[D] iy now defined in terms of such a D.

3.2, THEOREM. Let # be a ring of functions meromorphic on the com-
pact Riemann surface 4 whose poles other than Do are subsets of {p,, ..., p,}
then % is n-dimensional oper 2.

Proof. The dimension of # over & ig = n since there exist » functions
Jiyfayien; faet so that f; is regular exeept for a pole at Py. Since applying
& non-zero operator Lye.%” cannot cancel a pole, excopt at p,, it follows
that }'L;f; has poles a p; whenever I, == 0.

On the other hand, given two functions f,ge% with poles Py, Say

. . - d
in terms of a local coordinate z, p; =z, D = T

___. .am _ al .‘ _ b'n. bl
f= (2~ 2;)™ T 7—z T 9= (2—a)" Tt zmzj._'-_"

with m < n we get

b= (= m)(—m—1) .o (—m—np d)g— D = Ly

: (e—a)"
repeating this process we find operators L, L,e%" so that Iyf+ Lyyg
I regular at p,. o ‘

We can now prove the theorem by induction on n. If % = 0 then -
fedt iz regular except for a possible pole at p,. Since D is singular at p,
we got D¥f vogular on . for some k. Thug D*f = const and DFHLf = 9,
Henee # i3 0-dimensional over . .

Now assumo tho theorem true for #—1. Given n-+1 Tunctions
Jas ooy Fugr622 they are either all regular ab p,, in which case they are -
linearly dependent over % by the induction hypothesis, or without loss
of generality we may assume that f,., has a pole at p,. In the latter
case there exist operators L, ...,L,e#* and L), ..., L.c<# go that
95 = Lyfs+Lifoy, is regular at p, for j =1 12y ..y m. Thus the g, ave
linearly dependent over & by the induction hypothesis and this depen-

. dence yields a dependence of Jis ooy fup1 Over #. :
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TFrom now on we shall again think of fanctions meromorphie in
the Gauss plane with D the ordinary differentiation operator.

3.3. Dupmnrrton. Let % be ring of meromorphic functions. For each
fe let 2(f) denote the set of poles of [ (without regard to multiplicities)
and let #(%#) = Uﬁ”(f A seb 2, iz a minimal pole set if &7y = #(f,) for

some fyeZ and J(g)

3.4. TEvMA. Let & be a ving of mermorphic functions which is n-dimen-
stonal over . Then the sets P(f) satisfy the following strong descending
chain condition. Given any set & and any sequence fi,fo,... ¢ so that
the sequence S, = % NG (fy) satisfies &1 = Fy 2 00 S 2L then Py,
= &, with af most n+1 ewcoptions. If f1,..., fr,c# are Vinearly independent
over & then

b, e implies that g is entive (#(g) = @).

P(R) =Z(f)v ... 0 Z(fa).

In particular F(R) is denwmerable.
Proof. Assume that the sequence fi, fa, ...

iy o1 Ppa1s P BO that
S NP 2T P} 2

contains a subsequence

---iyﬁgj(gm-l) #= &

then there exist points p,, ..., Poyy 50 that p, is & pole of gy, ..., ¢; but
Not of Frqyeeey Gnyrr Now asgsume Lygy+...+ Ly, = 0 with Lje?
and % the least index for which Iy, ¢ 0. Then L g, has a pole at P, while
Lyi18pqr+ -+ Lpyrgner does not, contrary to hypothesis.

~ If fiy ..., f, are linearly independent over % in # then for every
- fed there exists an Le#" so that If= L.f,+...+L,f,, L;e? and hence

P(f) = Z(Lf} = P(Lufi) v P (Lufa) = P(f) v o0 Z{S).

3.5, Limvima. et f be meromorphic with 0 < 1P ()] < oo and so that
the differemtial ving £ = A is finite dimensional oter . Then ¥ is rotional.
Prool. We distinguish two cages.
Case I. # contains noncongbant entire functions. By Theorern 2.1
~guch a function g(2)e4# iz an exponential polynomial and henece there
exists an L% 80 that Lg = 2z or so that Ly = ¢* for some 4 s 0.
Subcase (i). 2¢#. Then (2—p)™ ... (#—p,)"f == k() is ontire
where ; i8 the multiplicity of the pole p; of f. Thus by T]morem 2.1,
h(z) is an exponential polynomial. If A(z) is & polynomial we are
finished. If not, then # contains a function

p(e) = ()6 ... + (o) €7,

where the g; are nonintegral rational functions and not all z; = 0. However
{¢> i8 not finite dimensional over £. To see this, let [uy] < el < \.. < |l
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Then for any Lye#* we have
Loy(¢V) = gr e ...

where ¢; is a nonvanishing rational function and the terms not written
have growth rate less tham &'~ along the ray arge = —-arg,u;
for some &> 0. Thus

JLN(WN) (wegmrgy;)l ~ g ¢l
for all large +, while for all L, ..., Ly, «% we have
(Lyfp)+ ot Ty, (V1) (re ™" E| < gr® g™k

Hence ¢, @2, ..., ¢" are linearly independent over % for all .
Subease (ii). e 2, 1 = 0. In this case

hiz) = (6 —P1™ ., (6" — ¢Pn)™af(2)

is entire and hence an exponential polynomial.. In other wordg

Py(2) 6" .. 4P, (2) "

(67':_——- Glpl)ml . (BM __ Blpil)mn .

fle) =

Sinee f(2) has only a finite number of poles the numerator, h{z), roust
vanish at all but a finite number of the points of the arithmetic pro-
gressions & = p;+20wifid; 1 =0, &1, +2,. However, if an expo-
nential polynomial vanishes at fthnost all pomts of such a progression
then it vanishes at all of them. In other words J must itself be entire,
contrary to hypothesis. .

Cage II. # contains no nonconstant entire function. Let #; be
a minimal set of poles with p,«#, and choose g¢# with #(g) = £, having
a pole of minimal order at p, among all such functions. Then for each
he# with & (h) = &, there exists an LeZ* 8o that h—Lg has a pole of
lower order than ¢ at p, and hence i—Lg = const. In particular the
function g* satisfies an equation '
{3.6) . g% =ILg+e, Le#*, cel.

Now a meromorphic function g can satisfy (3.6) only if it iz rational.
This can be seen in many ways, For example, write

¢(8) = R(2)+g¢,(2)

where R (z) is the sum of the principal parts of g at ity poles and g, (2)
i8 entire. Substitution. in (3.6) yields

g = LR+ Lg,+oc—
- M(r, g,)* < ¢+ cmax M (r, o)

S22

R'—2Rg,,
Or
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and this inequality is possible only if g, = const by fhe same proof as
that given for Lemma 2.2.

Thus # containg the nonconstant mtmnal function ¢g. Now either
the poles of f are a subset of #; in which case f is of the form Lg--¢ and
hence rational, or f has polés ¢, ..., ¢ Which are not contained in &,.
In the latter case the function :

_ (g(2) = gla™ ... (g() —glag)™f
will have poles only in &, and hence be rational,

3.7. TeworeM. IT # is a ving of meromorphic functions which is
Finile dimensional over & and # conlains fufnom‘on faith 0 < |2(f)] < o
then & is a ring of rational functions and P (Z) is finite.

Proof. By Lemmas 3.4 and 3.5 we nced only prove that £°(g) is
finite for every ge#. Because in that case all g with & (g) ¢ @ are rational
and all entire ¢ ave polynomials as shown in the proof of Lemma 3.5.

Now assume that there exists a ge# with infinite #(g). Consider
the set & = PGNP} = {p;, Ps, :.-}. Then the functions

B=9, 9:1(2) =(fl—fp))"g(); -y gale) = (F(&) —F (P ™ gp-r(2)
have infinitely descending sets & == % N #(g;) contrary to Lemma 3.4.

3.8, Limmma. Let % be o differential ring of meremorphic funclions
which s finite dimensional over &, If #(#) is infinile and & conmms NON-
constant entire funetions then & is a ving of funclions rational in e* for
some A0 and F(E) containe o finite number of points in & period strip
of &

Proof. According to Theorem 3.7 we know that Z(f) ig infinite for
every nonentire feZ. Let Z(f)= {py, Pa,...} be a minimal pole set,
Since % contains & nonconstant exponential polynomial we have either
ze® or ¢ for some us= 0. However, in the first case we ‘would have
(&—p1)™f(2) e # as a function with a smaller infinite pole seti than f, con-
trary to hypothems In the second cage we have

(2} = (¢ — Py f(2) e R
and since éﬂ(g);’ﬂ'(f) it follows that g is entire and that the 2(f}
< {py+2mwifu] m =0, 4-1,...}. Since the same argnment would be
used for any e it follows that » and u must be commengurable, If
v = aufb where o, b are relatively prime integers then we have

Pa—Py = 2mmiju = 2m’ wi/(au/b)
S0 that m = bm’[a and henee b < £ [ml. Let B be the maximal: denomni-

nator for any such » and set 1 = ,J,/B.' Then every » for which <% is an.

integral multiple of 1 and all entire funetions of 2 have the form -
h(z) = py(2) €M+ py(e) €' .+ py () €,
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where the p; are polynomials and the »; are integers. However, if degp; > ¢
for any ¢ then k(z) is nobt periodic and the zeros of A(#) —Rh{p,) will not
contain all of #(f) contrary to the fact that (h(2)—1(p,))™f(2) is entire.
Thus all cn, tue funetions of # are generalized polynomials (sums of integral
powers) of ¢

Finally 161: ¢ he any non-entire function of 2 and let, # (g
Then tho functions

(3.9) g, (e,

have decreasing sets of poles. Hence by Lemma 3.4 the functions in (3.9)
will be entire from a certain point on. Thus

(G;:z . 6:'“11)”1 . (an — eﬂg]s)ﬂk(p — g—n}.zl)(giz)

for some polynomial P, and ¢ is a rational funetion of &%, _

Finally let fi, ..., f, be a maximal get of functions independent
over & in 2. Sinee each of them is rational in €* it has only a finite number
of poles in a period strip of ¢ By Lomma 3.4 we have & (#) =2(f)u
Wo.ow Z(f,) containing only a finite number of poles in each period
strip.

As a rosult of Temmea 3.8 we can restrict attention from now on to
rings confaining no non-econstant entire functions.

= {g1; Gay -}

(ggm - elugl)'nl (EI‘:: — e#ﬂé)#ztp,

3.10. Liyma. Let % be a ving of meromorphio funclions finite dimen-
sional over £ and let &, be o minimal pole set consisting of more than one
poimt. If &y = (), f <% then [ is periodic with periods p;— p; for all py, p;e P,
In particular every infinite minimal pole set consisis of a ong-dimensional
or twe-dimensional laftice of points.

- Proof. Let #, = {py,p,,...} and let feZ# with &#(f) = #, have
@ pole of minimal order at p, among all such functions. For every ge#
with #(g) = &, there exists an Le%" so that.g— If has a pole of lower
order than f at p, and hence i regular at p, which means g— If is entire.
Since we assumed that £ contains no non-constant entire functions we get

(3.11) g =If+e, LeZ", ceC
~for all ge# with #(g) = #,. In particular we have
(8.12) 2= (@ DP A a, D) f e, @y # 0.
Let _
' nc_:T ‘:x:7 ; .
F= D qle—py = D eule—05 0w EO; 6y 5 0.
frm—tig ' I= g

We wish to prove that m, = m, and e; = ¢y for all 1. Substltutmg in
(3.12) we get at p, that kE =m, and

Gmm = Gy =) (~my—1) ... (==2my+1)0, -
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Similarly at p, we get k = m, and
By = Oy — 1) (1, — 1) oo (— k- 1) 0y -

Thus #, = My ==k and
e (2B —1)!

Gy = Gy = (LT e

Now assume that ¢; = ¢; = ¢ for all j <{ and compare the coef-
ficients of (z—p,)""* on both sides of (3.12) for ¢ = 1, 2 to got

2051(3_75-1“... = a'.ul(l—-l) A (l"' 'l‘l) ‘ITG+

where the terms not written are independent of 4. Thus
(=1

is independent of ¢ which means that ¢y is independent of ¢ unless the
term in square brackets vanishes. The latter happens only if % is even
and I = 2%. In that case we look at the equation

oo [2( —k)(—k—1) ... (—2k+1) =1

(3.13) - P = (0D by f e

and by comparing coefficients of (z—p;)™ % we geb

‘ Sp = b (=) (—k—1)} ... (—3k-+1)e_,
80 that
(3k—1)! |

RPEETTRRSC

Now comparing the constant terms in (3.13) we got

Bl yCiopt. =1 (270)101 ot

where the terms not wriften are independent of 7. Thus

(2k)! (3k— 1)}

¢ Oy | 3 A !

i i,zk[ Y ]

is independent _of 7 and hence ¢, 4, = ¢y q,. Hence in overy cose fz—ap,)

= f(z _—pz) a8 was to be proved. Finally all g<# with #(g) == #, are of
the form Lif 4 ¢ and hence have the same periodicity as f.

3.14. Lumma. Under the hypotheses of Lemma 3.10 all Jumctions in #

are of the form (Lf+o)/P(f), Le#, ceC, P a polynonial, In particulor
all functions of .@ hawe the same pewodwﬂws as f. :
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Proof. Lot ged. It Z(y) = %, then we proved that g = Lf¢. If
not let % = #{gPy = {41, ¢s, -..} and consider the funchions

9o =9, 6 = (fE)~fle]"™y, -y @l = [F&—F @) g,

By Lemma 3.4 we must have &, =% n#(g,)

= @ for some % so that
#(g,) = Zy and hence '

Py(f)g = gy = Lf +-c
a8 wag to be proved.

3.15. LiemMa. If 52 satisfies the hypotheses of Lemma 3.10 and 2,
18 a one-dimensional loattico then E;'w're ewists @ A == O such that the f'amctvons
of % are rational functions of ¢*

Proof. Aceording to Lemma 3.14 it suffices o show that the spe-
cial function f msed in the proof of Lemma 3.10 has the desired property.
Now f is simply periodic so that we can express f as o merdmorphic func- -
tion 7 of w = & where 24/ is the period of £, Now (3.12) becomes (with
L = P(D))

{3.16) B () = (J? (—(i'z) F) (W) 46 == (P (Arw ;};) .F) (w)-+ e,

where F in meromorphic with a gingle pole at w == ¢”1. This equation
is analogous to (3.6) and leads to the conclusion that # is rational.
We can now sum up the results of this seetion,

3.17. TuroreMm. If # is a differential ring of meromorphic functions
which is finite dimensional over & but & is not a ring of entive funclions;
then 4 is a ring of meromorphic functions on a compact Riemenn surface #,
where P(R) iy findte on that swrface with the following three possible cases

(1) Z(H) s fimite and & is « ring of rational funcltions; & is the Rie-
mann sphere,

(i) () 48 the wnton of o finile number of one-dimensional lattices
which ave translales of one another and # g a ring of functions rational in €,
Here 4 iz the period strip with its houndary lines zdewmfwd and w@th twe
distinet limit points af the fwo ends.

(iti) & (%) is the wnion of @ finite number of two- mmemmoml Iattmas
which arve translotes of one another and & is a ving of elliptic functions.
Here # 45 the torus oblained by the usual identification of the edges oj o period
pargtlelogram.

Proof. Case (i) is the content of Theorem 3.7, Case (ii) eombines
the results of TLemma 8.8 in cage # contains non-constant entire functions
and of Temma 3.15 otherwise. Case (iii) implies that the funetion f in
Lernma 3.1.0 ig elliptic and so by Lemma 3.14: all functions of % are elliptic
with the same periods. :
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4. Concluding remarks. Tt would be interesting fo invesbigate the
questions raised here for rings of analytie functions of several variables.
For examnples one conld consider differential rings of functions f(z,, 2, ..., 2,)
finite dimensional over & = C[Dy, ..., D] It is clear that even for
rings of entire funetions the situation is more complicated sinee the prod-
uet of solutions of linear differential equations with congbant coefficients
need not satisfy such an equation. :
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ACTA ARITHMETICA
XXI (1972)

Sur les fonctions ¢-additives ou g-multiplicatives
par

Hunert DrrAxen {Pariy)

Nous considérons iei des fonctions réelles ou complexes définies
sur Pensemble N des enticrs = 0.

¢ étant un entier > 1, nous disong que la fonction f est g-addilive
8ty quel que soit v = 1, on g

f(ag"+0) = flag') +1(b)  pour

Ceci entraine évidemiment f(0) = 0. Légalité a done lien aussi pour
a =10,

Un exemple simple de fonetion g-additive est fourni par la fonetion
qui & Vontier # = 0 fait correspondre Ia somme des chiffres dans la, Tepré-
sentation de » dans le systéme de numération A base q.

Nous disons que f est q-muliiplicative si Pon a f(0) =1 ef, quel que
soit 7= 1, _ '

) flag +d) = flag")f(b)

Oette dgalité a évidemment lien aussi pour & = 0,

Une fonetion ¢-additive, on g-mulfiplicative, est complétement
déterminée par ses valours pour tous les entiers de la forme ag’, o r =0
of 1<a<g~1, ot colles-ci peuvent étre égales & des nombres donnés
arbitrairement.

Bn effet, en utilisant le systéme de numération 4 base g, on peut
écrire, de fagon unique, :

I<ag~1 et 0Cb<gm(Y).

pour 1<a<g—1 e b .

no= Mo(n)g, avec 0<e,(n)<g—1 pour bous » 0.

P}

On a @ailleurs ¢,(n) = 0 pour »> lognflogyg.

(4} Cette notion a 66 introduite par A. 0. Gelfond (Sur les nombres qui ond
des proprietds  additives et multiplicatives “donmdes, Aota Arithmetica, 13, 1968,
pp. 269-265). i

Gelfond dit que f cst “additive dane le systeme 2 hasge g”.



