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inequality (2) follows and the theorem is proved.

We remark that our avgunent may also bo applied to some *dugl”
problems dealt with in the Jash section of the paper by Bredibin and
Linnik [21.
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Additive problems invelving squares,
cubes and almost primes

by

[ Yu. V., Lowwix |

We consider here certain additive problemg of the binary type in
the sense of [3]§1, namely the representation of large numbers by the
sums of two squares and two cubes, two squares and three cubes, one
souare and 2 ternary cubic form and a product of two primes and a ternary
cubic form. Only in the case of two squares and three cubes we succed
in solving the corresponding equation for all large numbers; in other
cases we solve the equations for ecertain large classes of numbers. No agym-
ptotic iy obtained, only certain crude lower estimates are obtained. How-
ever in same cases the possibility of obtaining asymptotic formulae with
help of the dispersion method [3] is indicated.

§ 1. Consider the diophanting equations:
(1.1) ' n = &+ttt
(1.2) n=E+y+a+y’+

with non-negative &, %, %, ¥, 2

There are many reasons to believe that the equation (1.1) is solvable
for all large numbers n, but we cannot prove it. We shall consider here
only even numberg n = 2¥,. Wo can represent any cven number 7, in
the form ® = 2%3%92°3%n, where 1< a<<3; 0<KA<B; ux0,v20,
(g, 6) = 1. We shall call the corresponding number 243, the kernel
of even nmmober n. Clearly if 2°8%n, iz vepresentable in the form
(1.1) so is m. Therefore we shall consider only the kernels of the even
numbers n.

In. what follows, €, Gy Cayeevy Koy gy Hayoen
tants, &, &1, ... sinall positive constants.

TomoreM 1. Let I'(K,, K., K, be the set of all even numbers
n subject to conditions: . )ﬁ:e Lernels 2°37n, = K3 2) the number ny hos

will be positive cons-
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o divisor & = ub+v* which is the sum of two squeres and satisfies
the inequalities

(1.3)

Their, K, and K, > K being given and sufficienty large, Ky = K (K, K,)

being sufficiently large, the mumber nel'(Kyy Ky, Ky) can be vep ted

im the form (1.1) with the representation number tending to infinity as sy - oo,
- » ; HpTp

Horeaver, in the representation {L.1) arcty - - ewn be ehosen within g, (e, = 0)

!
£

. P T
from any given angle rpe((),m;)v-).
axl
TumoreM 2. AT large wivmbers w cun bo veprosented in the form (1.2}

- . oo g . ¢
with the representation number cvcecding o ,m™> " Moreover, :1.'1‘(:1@;»-!»

can be chosen within & from o given angle ¢« (0, 2) with the same estimato

of ‘the represewiation number.

Theorem 2 is an easy consequence of Theorem L. The method of the
proof of Theorvem 1 iy essentially the same as that of the theorem, on the
representation of numbers by six cubes (sco [2], pp.-88~T0). We pass now
to the proof of Theorem 1. Putting I, == a-y, replacing the number
nel'(i0,, K, Ky) by its kernel 2N, = 2°8%n,, wo gobt the equation:

N, = R4 - 3H (w—H 20+ -t
If I, is sufficiently large and
(1.4) Hye [N (L)', (2N (145"

the numbers # and 4 in (1.1) are non-negative (see [27], pp. 59-69). Define
now H, as follows: H| is the largest uneven divisor of & - wf o As
2N, 2 0{mod 16), we have: §/8 < H) = §, and I, is the sum of bwo squares.
Tn gubgequent reasonings there will be however o cage when wo shull be
_obligecl to multiply H; thus defined by am uneven bounded fastor which
i also o sum of two squares and wse the nwmber thus obtained as H .
We‘ put now: 'Z‘N | = 2H,N,. The mumber H; & uneven, snd the number
2H,) = -4} Is the sum of two squares. For sufficiontly large K, K,
g.nd Ky = K (K, K,), we can find as many primey P =3 as we "WL%J;
in any prescribed (admisssible) arithmetic progrossion such that H,

= ZH}P and H, satisfies (1.4). Hence, {L.1) is roducoed to solving the
equation

(1.5) ‘ .?H;N.2 =2H?P* 43 .QHiszi & y?
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in integer @y, &, 7 (we put o— H /2 = 2, > 0; H, is even and. so @y is
integer). Wow, 2 = ui--v, we can pub: &-o" = (1] +0])(§+7)
= 9H | (&4 3) and reduce (1.7) to the equation:

(1.4) Ny~ HEP = 3PL+ 84 5,

where N,—H P > N, as easily scen, ie. to the representation of a posi-
tive number by a positive ternary quadratic form. The asymptotic theory
of such representation was worked out by the author and A. V. Malyshev.
The complete account of this theory is given in A. V. Malyshev’s work
[57; fox the ergodic background of the theéory see [4]. We need the following
theorem of A. V. Malyshev ([5], p. 175):

TurRorEM (A. V. Malyshev). Let f = f(m, #., ¥5) be @ positive pri-
mitive ternary quadratic form with wneven relatively prime tnoariants [2, 47,
Let g be a prime not dividing 24, let g be a postiive integer such that (g; 2024)
=1, Iy, by, by integers such that {g,b;,bs, b)) = 1. Consider a posilive
integer m such that (mn, q) = 1 for which the congruence:

(1.7 Flmy, ma, ) = m (mod 3022 4m)

is primitivey solvable and the conditions [{by, by, by) =m (mod g), and

(— dm

4

)=+

ave fulfilled. Let Ay, be o domain on the ellipsoid f(my, 44, 25) = m consi-
sting of @ bounded number of conver domains and sublending on f-elliptic
solid angle Azl >0 from the centre of the ellipsoid. Denole by
Tastybgly Arm) The number of primitive representabions (%y, Ty, @y) of
the number m by the form f, for which the conditions

(g, @y dy)edymy (&, Pay @) == (B, bay By) (m0d g)
are fulfilled. Then there ewist positive constanis Iy, » >0, x>0 de
pending only upon 2, 2,4, g, i and the shape of the domain Ay, such thei
for m = my '

ah (— Am) < 1y 0,0, (Ap) < & R(— dm)

where h(— dm) is the class number of properly primetive positive binary
quadratic forms of determinant Am.
Hence we must verify the conditions of this theorem in the case (1.6)

\ , A 2N, .
for suitably chosen H; and P, N, heing equal to SE The ternary
[, _
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quadratic form on the right hand side of (1.6) has the invarviants: © = 1.
4 = 3P; hence the congruence (1.7) has the form:

(1.8) 3Pxh -k - af == m (mod 24Pm)

where m = N, —~H7P" Here the relevant moduli are 8, 3 and P as it is
seen from elementary considerations. Let us fix now £ ag o prime numnber
P =1(mod4), so that P = o’--b*; (#,8) ==1. Then the congruence
3Pal+ay+ay = n (mod P) is primitively solvable for = 4 0 (od P).
For # = 0 a primitive solution will be (0, a, b). Hence for sueh moduli
then are always primitive solutions. Now as regards the moduolus 8, we
have chosen the number H; so that H 2 0 (mod 8). Now P* == P (mod 3)
and hence N, —H P = ¥,—P (mod 3). If N, == 0 {mod 3) thon ¥,-P
=1 or 2 (mod 3), and the congruence 3Pw}--oi+af = N, —HPP (mod 3)
will have the primitive solutions (0,1, 0) or (0,1,1) respectively, I
N, .0 (mod 8), we can choge the prime number P in fhe progression
with the difference 12 so that ¥,—H{P = 1 (inod 8) and the congruence
is again primitively solvable.

Consider now the iodulus 8; we shall prove that the prime P always
can he chosen (mod 24) g0 that the congruence

3P al +uh 2 Ny— HEP? (mod 8)

is primitively solvable. As H, and P are uneven, we can replace our con-
gruence by:

(1.9) 3Pul + i af = N,—P (mod. 8).

We shall consider all possible cases of the residuacity of N, (mod 8):

1° N, =1 (mod 8).- Take P =5 (nod8); Ny—P = 4 (mod 8) and
4 = 1511412422 (miod 8). :
2° Ny =3 (mod 8). Take P =1

mod 8); Ny P =22 22124~ 12 (nod 8),

3° N, = —3 (mod 8). Take P =1 (mod &)y NyweP v n 301218
{mod 8). . .

4° Ny = —1(mod 8). Take P =5 (mod8); Ny—P . =9 v (812
(mod 8). ) .

6% N, =2 (mod 8). Take P == (mod 8); Ny—P =01 s 1¥ (mod 8).
8° Ny =4 (mod 8). Take P #= 1 (mod 8); Hy~P = 3 = 3-1* (mod. 8);

Now,_ 81N, in view of the properties of the kemel 2*3%n,, so we
have enumerated all possible cases. We must now find a prime ¢424P

satisfying the condition -
(1.10) 3PN, AH )

S
q. :
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Let Ky = Ky(K,, K,) be a large constant; consider a given sequence
of seme primes: gq; =1 (mod4); ;< K, ¢ < @ < ... < ¢, < E;. Con-
sider the initial number 2N, = 2H; N,. Let 2N, = gligl... ¢t M where
(M, 0...¢)=Ly>200=1,2,...,7). Wecan write: 28, = (¢}*... ¢’r)°
X gt g M; 0y, < 5. Olearly, if the equation (1.1) i3 solvable for
the number ¢! ... M = 2N it is solvable for the number 2., and if I,
is sufficiently large, so is 2N, and 2N <I'(K,, K., K,) for sufficiently
large values of 2,. Hence we can replace 2N by 2N’ in our reasonings.
If all the numbers »; are = 1, we can include g into the factor 2H; of
the murober 2N, and so in (1.10) @, will not divide ¥,. We take then
g = g;,- If a number », = 0, g;1 N, and we take g = g;. So we can suppose
gt N, in the relation (1.10). Now, by a well known estimate of André
Weil

S
= Y
fep g

it N, # 0 (mod g). Hence, for sufficiently large g, we can chooge P (mod 24¢)

80 as to satisty the condition (1.10). )

Hence, all the conditions of A. V. Malyshev’s theorem are satistied
and (1.6) is primitively solvable. The number of solutions will be = 0, Nt*—*
and so will tend to infinity as # = 2N, —+ co. Moreover, in virtue of the

same theorem arctg % can be made equal to any angle 975(0, g-«) up
1

to ¢, > 0 and so also arctg 1;- Theorem 1 is thus proved.

We pass now to the proof of Theorem 2. Let n be a large number;
we eonsider the numbers n—2; In™ <2< {n'® and try to choose such
numbers§ # as to make n—z" belong to I'(K,, K,, K,) for some suitably
chosen K, K,, K, = K (K, K,). For sufficiently large K, and X, > K,

we consider prime numbers & = B (mod 12) subject to condition (1.3).
13
The number of them is larger than C, I’—;—%. Ag §—12£0 (mod 3), 2* will run,

over all the residues of &, and so it ean be chosen such that "2t
== 0 (mod &); moreover, § is the sum of two squares. Now 2° = z (mod 3)
and 5o # can be chosen so that n—2° = 0 (mod 3) but # —2* = 0 (mod 9).
Hence in chooging the prime numbers P (as in the proof of Theorem 1),
we need not take the progressions mod 24, bhut only mod. 8. Now if =
is uneven, weo take z to be uneven so that 2° =2z (mod 8) and go we can
make n—2° =9 (mod 8). If » is even, we taks z =2 (mod 16), so 2z°
= 8 (mod 16), then n—2" is even but n—2" = 0 (nod 16), so the kernel

of »is 2N, > % The choice of the prime numbeér P =1 (mod 4) can

27 — Acta Arithmetica XXI,
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he made so that n—z2* = 0 (mod ), and the nwmber ¢ in the relation
(1.10) can be chosen so that n—a" % 0 (mod ¢) and the relation (1.10)
iy satisfied. Different values of & correspond to different values of a--y
and so to different representations. By the theorem of ALV Malyghoev,

even if we fix arctg Zj up to a given g >0, the reprosentation nnber
1

for given P, H, of the mumber N,—HP'> iN,:= o™, will bo

= ot Hence the total representation number will bo ot andl

Theorem 2 i proved.

The method applied to the cquations (1.1) and (1.2) is applicable
also to the more general equations: n == Qy(&, 9) -+ (&, ), where (£, n)
is a positive (in general non-primitive) binary quadratic form and @, (x, ¥)
a cubic form withy a rational root and the corresponding cguation
n = Q. (£, )+ Qs (@, 4)+- A2 (4= 0). But if Q;(w,y) has only irrational
roots ag, say, in the case of the oquations # = Q,(&,n)-+o* By, the
method does not work.

There is a well known hypothesis relating to the form w®--g®-f- 2
it 4, (m) iy the solution number of the equation: n = #*++y* 2% w3 0,
y=0,¢2 0, then
(1.11) D lpalm)f = O @)

M=)
This hypothesis, though highly probable one is nol yet proved or dis-
proved. However, on this hypothesis the application of the dispersion
method [3]1 to the equation (1.2) would he possible; namely considering
the equation:

(1-12) o= otk g (@ )

in non-negative integer variables, we make ¢® and #°-+-y°--2* run inde-

" pendently over the corresponding segments [0, 4] and [0, n* 1), g o 0
being a small constant. Then we apply the dispersion method taking
p=841; v=¢3 D =0o'+g4+" and consider the oequation
- o=g+D'v (see [3)). An asymptotic formula for (1.12) on the hypothosis
(1.11) ean thuy be obtained. The form. £2- 5% in (L.12) can be replucoed by
“any positive binary quadratic form. :

§ 2. There are ternary cubic forms for which the analogon of tho
bypothesis (1.11) can be proved. Consider for instance the termary gubic
form:

(2.1) Vilw,v,2) =&+ @la‘f‘za -+ (w"f"@/“—fo‘)ﬂ
under conditions:

(2.2} 220, y>0, 220, wty—e>0.
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Vi(@,y,#) is a ternary cubic form which is the sum of four positive
cubes. Now, to prove the analogon of the hypothesis (1.11) it is sufficient
to prove that the eguation

(2.3) Vi, 9, 2) — V3($’, y'a 5,) =10

under conditions that all its variables run independently over the inferval
[0, N] hias no more than O(N**) solutions. In fact, putting -y = H;;
o' +y = H, and fixing H,, H, we obtain the equation of the type:

(2.4) . 12.H, (uf - o) — 12H, (12 +42) = Hi—H}

14, v; being of order O{N) and H, = O(N); H; > 0. Now u;4 ] run over
O(N% values with no more than O(¥°) repetitions. Thus we can replace
(2.4) by the equation:

H, X, +H=H,X,+H,

where X; = O(N*) with O(¥N°) possible repetitions, X;>0, H;z=0.
Fixing now H, and X, we obtain O(N°) such solutions for the equation
(2.4) and O(N***) for the number of all solutions of {2.3). Hence we can
apply the dispersion method [3] for finding the asymptotic formula for
the number of solutions of .the equation:

(2.5) n o= Qy(&, n)+ Vylez, o, 02),

where Qz(f,.n) is a positive binary quadratic form and 0< o< #'Y

1—-ey .
0o, y,2<n °, & >0 being a small constant, ¢ independent upon
®,y,2 and m+y—2> 0. Bub if Q,(%,n) is veplaced by a single square,
the dispersion method fails to work. Consider the equation:

(2.8) no= 4 Ty(2, ¥, 2)

under conditions (2.2). We shall gtudy this equation with the method
of § 1 for cerlain sets of large numbers n. We consider again the numbers
n == 0 (mod 4), represented in the form: n = 2%3%92°3%n, where 2 < a < 5,
05§ B, (ny, 6) = 1 and call 2N, = 2°3"n, the kerncl of the number #.
Tt iy sufficient to solve the equation (2.8) for kernel mumbers. Let K,

K, > K, be given large constants and I"(Ify, Ky, K,) be the set of all

numbers n = 0 (mod 4) fmeh that 1) the kewmelsw 2°8°n;> K,

= K, (K, K,); 2) the number #, hag an even square divisor §? satisfying
L — —
Y, s Vi .

k. - T K’
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200 =15

4) in. each of the two progressions 2dm + 1 and 24m — 7 there exigt primes P
guch that

3} there is & prime gg, 3 << gp < 4Ky, K,) sueh that g,

2P
Pl (“ "g;;‘) =

and

@NyP 1
e

TapoREM 3. For ol numbers nel” (Ko, Ky, K,) the equation (2.6)

is solvable with the number of solutions = ¢,m*~*

Putting 2+3 = H, > 0, we get the equation:

o\ H\
(2.7) W= 52-}-%11%3111 [(m—j-) - (z_wL)],

: 2

where we fnust have y 20, &4y —¢ = 0, —«3= 0, Wa choose H; subject to
E ; H ‘
conditions (1.4) to meet thege requirements, Pub  — —»E}w = Py, :Z! =2 ),
oN, = W, N,, H, = 2H,P. Here wo choose 2, == & P Dbeing a prime,
we getb:

2N, = 2H\ N, = 4H2P* 3.2, P (& 4 y)) + £

Now 2H, = &*; putting & = 6,&, and dividing by 2H,, wo get the equa-
tion: -

(2.8) N, —2HPP = &+8P( i),

‘ gy o N . s .
where, N,—2H:P' > —é—oz— as oasily seem from the conditions (1.4).
‘We can now apply the theorem of A. V. Malyshev (see §1) to the equa-
tion (2.8). Here the corresponding ternary form hag the invariunty £ == 3P,

4 =1. We must congider the moduli 8, 8, P and a prime modulug g, 2 3
such that: : ‘

(2.9) (_“W) -1
: o

Congider the modulus 8. As 2H, = & i3 a square, we have N, 2H P
=0 (mod 8). Taking P =1 (mod 8) we have the primitive sclution of the’
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congruence: 1°4-3(1%+4-2%) = 0 (mod 8). Take the modulus 3. If 2]
=0 (mod 3) we choose H, prime to 3, hence N, ~2H P =N,--2P
(mod 3). I P =1 (mod3), N,—2P =1 (mod3). If 2N, = 0 (mod 3),
80 is 2H; and we can choose P =1 (mod 3) or P = 2 (mod 3) to make
Ny—2P =1 (mod 3). Hence we can choose the prime number P in one
of the progressions 24m -1 and 24m— 7 in a suitable way.

Now g,|N,, ¢t H, and the symbol at the left hand side of (2.9)
is equal to (%li) = +1 by the conditions of the theorem. This proves

0

the primitive solvability of (2.8) and Theorem 3. The representation
number will be = 6, NI™° > oini~®

§ 3. We congider now the equation:
(3.1) n =P+ Va2, 9, @)

with p, p, primes, =0, y =0, 2= 0, #+y—2 = 0. We consider two
given constants K, and K, > K, and the set I'"" (K, K,, K,) of all numbers
‘ ' nt ot
»n such that 1) % > K (K., K,;), 2) n has a prime factor pel}i—, _jf]
2 1
We have the theorem:

THROREM 4. Any number nel™ (K,, Ky, K,) con be represented in
the form (3.1). The number of representations is 3= e,ni ™%

For proof we write (3.1) in the form:
(3.2) n = pypa-t S 4 3H, (& —3H) -+ (e —$H)']

with H, =24y subject to usual conditions (1.4). Take now H;=2pP,
where p is the divisor of n of the condition 2), and P > 3 a prime number

H
in the interval requived by the relations (1.4). Put' p, = p, £— m2-1~ = &y,

H, .
g = ¥, In (3.2); hence we get:
. w 93 2 .8
(3.3) "1—; —A4p"P* = py 4 6P (w1 7).

: 1
Moreover the left hand side is » %—% By the theorems on the genera-
lized Hardy-Littlewood prablem, proved by B.M. Bredihin [1], the
. n 1wt
equation (3.3) is solvable with the number of the solutions > ¢, (—5) ;

which proves our theorem.
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On the analytic theory of quadratic forms
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K. G. RAMANATHAN (Bombay)

Dedicated to the memory of W. Sierpidiske

1. The analytic theory of quadratic forms, as developed by Siegel [6],
leads to a fundamental formula, now called the ‘Siegel formula’, which
ig ‘an identity for m > 4 between the theta series associated with the
genus of a quadratic form in m > 4 variables and the Bisenstein-Siegel
series apsociated with it. In a beauntiful reworking of the theory, Weil [10]
has obtained, among others, a proof of the Siegel formula for m > 4 by
an analytic method which Jends itgelf to important generalizations (see
the recent paper of J. Igusa, Inventiones Math. 1971).

In this note we present a proof of this formula for m = 3 by using
an idea due to Hecke [2]. In the case m = 2 a similar formula is proved
by Hecke [27 for definite forme and by Maass [4] for indefinite forms.
However the smmmation in these cases is over all classes of forms with
a given determinant. The result for summation over classes in a given
genus is, in general, false. In case m = 1, this formula is proved by Siegel
[8] and Maass [3]. In [6] Raghavan and Rangachari have extended
‘Weil’s methods to the case of quadratic forms in 4 variables with index < 1.

An interesting consequence of the analysis is that one proves, analy-
tieally, that the Minkowski-Siegel constant (for semi-simple algebraic
groups this is called the Tamagawa number) is two. However one has to
prove it first in the case m = 2. This i3 well-known by the clagsical re-
sults of Dirichlet-Minkowski—Siegel. .

Generalizations of this formula can be obtained for quadratic or
hermitian forms over srbitrary algebraic number fields and over guaber-
nion algebras. The generalization where one deals with representation
of matrices by matrices seems difficult and is related to the analytic
continuation of Hisenstein series in the Siegel half space. '

2. Let 8 be & semi-integral non-singular m rowed symmetric matrix
go that 28 is an infegral matrix with even diagonal elements. Pub

@ i = |28.




