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In this paper, the structural, elastic and thermodynamic properties of CdO under di�erent pressure range have
been reported. An extended interaction potential model (including the zero point energy e�ect) has been used for
this study. Phase transition pressures are associated with a sudden collapse in volume. At compressed volume, the
present oxide is found in cesium chloride (CsCl) phase. The calculated second order elastic constants and their
various combinations have been reported in di�erent pressure range. The calculated values have been compared
with available results. Our values have been found in good agreement with existing �ndings.
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1. Introduction

The group-IV wide-gap semiconductor materials are
very important because of their opto-electronic techno-
logical applications. They are used as commercial short
wavelength light-emitting diodes, laser diode candidates
by p-type doping with nitrogen, transparent conductors,
solar cells, high-density optical memories, and visual dis-
plays. These properties arise because of the role of
d-electrons in the valence band in hybridization [1�3].
Many researchers have focused on a cadmium oxides
(CdO) because of a wide range of technical applications
for example as transparent electrodes, display devices,
sensors, diodes, gas sensors etc. These uses of CdO stand
on its speci�c optical and electrical properties [4]. Cad-
mium oxide is an n-type semiconductor that crystallizes
in rock-salt structure at normal conditions. It presents
an optical band gap of about 2.3 eV, with an indirect
band gap of 1.36 eV [5].
The phase transition pressure of CdO from NaCl (B1)

to CsCl (B2) has been studied at 85 GPa, by Schleife
et al. [6] and 515 GPa by Ja�e et al. [7]. The experi-
mental research on the compressibility and phase transi-
tion of CdO up to 176 GPa at room temperature using
high-resolution angular-dispersive X-ray di�raction from
synchrotron source combined with the diamond anvil cell
technique have been studied by Liu et al. [8]. The phase
transition from NaCl (B1) to CsCl (B2)-type structure
for CdO was observed at pressure about 90.6 GPa by
them. The bulk modulus and equilibrium lattice param-
eter were estimated by �tting the energy as a function
of volume according the Murnagham equation of state
(EOS) [9]. Guerrero-Moreno and Takeuchi [10] have
studied the NaCl (B1) to CsCl (B2) structural phase
transition of CdO at about 89�91 GPa range. Peng et al.
[11] have predicted the pressure dependent Poisson ra-
tio, Debye temperature and shear elastic wave velocities
using plane wave pseudopotential method.
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Recently, Dakhel et al. [12] studied the electrical
and optical properties, transparent conducting proper-
ties, band-gap narrowing from various doping with CdO
like iron-doped CdO, samarium-doped CdO, dysprosium-
-doped CdO and europium-doped CdO. The �rst-
-principles calculations of the elastic and thermodynamic
properties for CdO in both the B1 (rocksalt) phase and
B2 (cesium chloride) phase have been performed within
the framework of density functional theory, using the
pseudopotential plane-wave method by Li et al. [13].
X-ray structure factors and Compton pro�les of CdO are
presented by Dhaka et al. [14]. They also performed the
theoretical calculations employing the �rst-principles lin-
ear combination of atomic orbitals (LCAO) method using
the CRYSTAL code. First-principles calculations of the
crystal structures, and phase transition, and elastic prop-
erties of cadmium oxide (CdO) have been carried out
with the plane-wave pseudopotential density functional
theory method by Peng et al. [15]. Li et al. [13] commit-
ted that, however, the accuracy of the predicted phase
transition pressure, which was determined from the over-
lap of the energy-volume curves of B1 and B2 phases,
is somewhat questionable. The several factors altering
such predictions are the relativistic correction, nonzero
temperature, and zero-point motion e�ect not being in-
cluded in these calculations. Thus, accurate di�raction
measurements for CdO were performed in order to check
the validity of the theoretically predicted high pressure
phase transition.

Seeing at the interesting properties of this less explored
CdO and the fact that no work has been done with the
potential model including zero point energy e�ects, the
extended interaction potential (EIP) model has been ap-
plied, which includes the zero point energy e�ect in the
potential model. In the present model three-body in-
teractions forces have been included. It is seen from the
current literature that three-body potential (TBP) model
has been found to be remarkably successful in giving the
uni�ed description of structural and elastic properties of
ionic and semiconducting crystals [16�23]. In this TBP
model, the three-body interactions owe their origin to
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the quantum mechanical foundation and also to the phe-
nomenological approach [24, 25] in terms of the transfer
(or exchange) of charge between the overlapping electron
shells of the adjacent ions in solids. This TBP approach
has been extended to include the Hafemeister�Flygare
(HF) type [26] overlap repulsion operative up to the sec-
ond neighbour ions for describing, the lattice static and
mechanical properties of binary ionic solids and alloys.
Also, Tosi and Fumi [27] have demonstrated the signif-
icance of van der Waals (VDW) attraction due to the
dipole�dipole (d�d) and dipole�quadrupole (d�q) inter-
actions to describe the cohesion in ionic solids and they
are generally ignored in the �rst principle calculations.
This model is also able to explain the Cauchy violation
(C12 6= C44) in the second order elastic constants while
two-body potential model could not explain this viola-
tion.

An extended interaction potential model has been ap-
plied by including zero point energy e�ects in TBP for
the prediction of phase transition pressures and associ-
ated volume collapses in calcium oxide. The zero point
energy is the ground state energy of the compound. This
term shows a small e�ect in the Gibbs free energy but
to make model realistic it cannot be ignored completely.
The purpose of this work is to provide an improved model
suitable for the study of structural, elastic, thermophys-
ical and thermodynamic properties of cadmium oxide.
The rest of this paper is organized as follows: the method
of calculation is given in Sect. 2, the results and conclu-
sion are presented and discussed in Sect. 3.

2. Potential model and method of calculation

Application of pressure directly results in compression
leading to the increased charge transfer (or three-body
interaction e�ect [28]) due to the deformation of the over-
lapping electron shell of the adjacent ions (or non-rigidity
of ions) in solids. Also we have considered zero point en-
ergy e�ects, which is the lowest possible energy that the
compound may possess. The energy of the compound is
ε = hν/(ehν/kt − 1) + hν/2, here ν, h, t, and k are the
frequency, Planck constant, temperature and Boltzmann
constant of the compound. It is clear from the above
expression that even at absolute zero the energy of the
compound cannot be zero but at least hν/2. Hence there
arises a need to include the zero point energy term in
TBP approach for better agreement with experimental
approaches.

These e�ects have been incorporated in the Gibbs free
energy (G = U +PV −TS) as a function of pressure and
three-body interactions (TBI) [28], which are the most
dominant among the many-body interactions. Here, U is
the internal energy of the system equivalent to the lat-
tice energy at temperature near zero and S is the entropy.
At temperature T = 0 K and pressure (P ) the Gibbs free
energies for rock salt (B1, real) and CsCl (B2, hypothet-
ical) structures are given by

GB1(r) = UB1(r) + PVB1(r), (1)

GB2(r′) = UB2(r′) + PVB2(r′), (2)

with VB1 (= 2.00r3) and VB2 (= 1.54r′3) as unit cell vol-
umes for B1 and B2 phases, respectively. The �rst terms
in (1) and (2) are lattice energies for B1 and B2 struc-
tures and they are expressed as

UB1(r) =
−αmZ

2e2

r
−

12αmZe
2f(r)

r
−
(
C

r6
+
D

r8

)
+ 6bβij exp ((ri + rj − r)/ρ)

+ 6bβii exp ((2ri − 1.414r)/ρ)

+ 6bβjj exp ((2rj − 1.414r)/ρ) + 0.5h
〈
ω2
〉1/2
B1

,

(3)

UB2(r′) =
−α′mZ2e2

r′
− 16α′mZe

2f(r′)

r′
−
(
C ′

r′6
+
D′

r′8

)
+ 8bβij exp ((ri + rj − r′)/ρ)

+ 3bβii exp ((2ri − 1.154r′)/ρ)

+ 3bβjj exp ((2rj − 1.154r′)/ρ) + 0.5h
〈
ω2
〉1/2
B2

,

(4)

with αm and α′m as the Madelung constants for NaCl
and CsCl structure, respectively. C (C ′) and D (D′)
are the overall VDW coe�cients of B1 (B2) phases,
βij (i, j = 1, 2) are the Pauling coe�cients. Ze is the
ionic charge and b (ρ) are the hardness (range) parame-
ters, r (r′) are the nearest neighbour separations for NaCl
(CsCl) structure, f(r) is the three-body force parameter.
The term 〈ω2〉1/2 as the mean square frequency related

to the Debye temperature (θD) as

〈ω2〉1/2 = kθD/h.

Here, θD can be expressed as [29]:

θD = (h/k)[(5rBT)/µ]1/2,

with BT and µ as the Bulk modulus and reduced mass
of the compounds.
These lattice energies consist of long range Coulomb

energy (�rst term), three-body interactions correspond-
ing to the nearest neighbour separation r (r′) (second
term), VDW interaction (third term), energy due to the
overlap repulsion represented by HF type potential and
extended up to the second neighbour ions (fourth, �fth
and sixth terms), and last term indicates zero point en-
ergy e�ect term.

3. Results and discussion

The Gibbs free energies contain three model parame-
ters [b, ρ, f(r)]. The values of these parameters have been
evaluated using the �rst and second order space deriva-
tives of the cohesive energy (U) expressed as [19�23]:[

dU

dr

]
r=r0

= 0, (5)[
d2U

dr2

]
r=r0

= 9kr0BT. (6)

Using these model parameters and the minimization tech-
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nique, phase transition pressures of CdO has been com-
puted. The input data of the crystal and calculated
model parameters are listed in Table I.

TABLE I

Input parameters and generated model parameters
for CdO.

Solid
Input parameters Model parameters
r0 [Å] B [GPa] b [10−12 erg] ρ [Å] f(r)

CdO 2.389a 148a 14.70236 0.264 0.17402
a Ref. [8]

3.1. Structural properties

The B1 (NaCl) structure is most stable in these com-
pounds and at high pressure they transform to body
centered B2 (CsCl) structure. As the stable phase is
associated with minimum free energy of the crystal,
we have followed the technique of minimization of the
Gibbs free energies of real and hypothetical phases. We
have minimized GB1(r) and GB2(r′) given by Eqs. (3)
and (4) at di�erent pressures in order to obtain the in-
terionic separations r and r′ corresponding to B1 and
B2 phases associated with minimum energies. The fac-
tor ∆G [GB1(r) ∼ GB2(r′)] plays an important role in
stability of structures. The phase transition occurs when
∆G approaches zero (∆G → 0). The phase transition
pressure (Pt) is the pressure at which ∆G approaches
zero. At Pt these compounds undergo a B1�B2 transi-
tion associated with a sudden collapse in volume show-
ing a �rst order phase transition. Figure 1 shows present
computed phase transition pressure for NaCl-type (B1)
to CsCl-type (B2) structures in CdO at 91 GPa, while
the experimental value is 90.6 GPa. The present phase
transition pressure illustrated by arrows in Fig. 1 and its
value have been listed in Table II and compared with
their experimental [8] and other theoretical results [6, 7,
10, 11, 13, 15]. It is interesting to note from Table II and
Fig. 1 that the phase transition pressures (Pt), obtained
from the present model, are in general in closer agree-
ment with experimental data [8] and match equally well
with other theoretical results [6, 7, 10, 11, 13, 15].

TABLE II
Phase transition and volume change of CdO.

Solid
Phase transition pressure [GPa] Volume collapse

[%]
present expt. others present others

CdO 91 90.6a 85b, 515c, 89�91d,
102.5e, 83.1f , 90.31g

6.3 6.5g

a Ref. [3], b Ref. [6], c Ref. [7], d Ref. [10], e Ref. [15],
f Ref. [11], g Ref. [13]

We have also computed the relative volume changes
V (P )/V (0) corresponding to the values of r and r′ at
di�erent pressures and plotted them against the pres-
sure in Fig. 2 for CdO. It is clear from Table II and
Fig. 2 that our calculated volume collapses (%) from our
present model for CdO is 6.3%, respectively. There is no
available experimental value of volume collapse for CdO

TABLE III

Calculated values of elastic constants (in GPa), bulk
modulus (in GPa), and anisotropy parameter and shear
modulus (in GPa) of CdO.

Solid C11 C12 C44 dB/dP dS/dP dC44/dP

CdO
present
others

expt.

192.68
183.99a

�

99.87
96.01a

�

51.46
45.78a

�

4.065
4.91a, 5b,

4.71c, 4.13d

4e

0.426
�

�

0.371
�

�
a Ref. [15], b Ref. [6], c Ref. [10], d Ref. [7], e Ref. [8]

TABLE IV

Calculated values of volume change, second order elastic
constants and bulk modulus for CdO.

P V/V0 C11 C12 C44 B

0 (present)

(others)

1.00

1.00

192.68

183.99

99.87

96.01

51.46

45.78

130.80

125.34

10 (present)

(others)

0.942

0.935

274.12

269.76

127.82

123.55

49.35

43.88

176.58

172.29

20 (present)

(others)

0.896

0.888

358.05

352.24

151.79

148.84

47.21

41.20

220.54

216.64

30 (present)

(others)

0.871

0.852

439.36

433.14

176.13

173.35

42.85

37.93

263.87

259.95

40 (present)

(others)

0.837

0.822

516.97

511.31

199.76

196.53

39.11

34.31

305.49

301.45

50 (present)

(others)

0.807

0.797

592.43

587.97

223.67

219.89

36.04

30.53

346.59

342.58

60 (present)

(others)

0.789

0.775

668.12

662.58

247.18

242.64

31.45

26.34

387.49

382.62

70 (present)

(others)

0.771

0.756

741.56

735.92

269.78

264.89

28.19

22.2

427.04

421.90

80 (present)

(others)

0.762

0.739

815.24

808.49

292.37

287.05

23.44

17.74

466.66

460.86

90 (present)

(others)

0.735

0.724

886.58

880.33

315.77

309.08

18.69

13.31

506.04

499.50

100 (present)

(others)

0.723

0.710

957.31

951.16

336.81

330.86

13.47

8.81

543.64

537.63

110 (present)

(others)

0.711

0.697

1027.72

1021.53

358.29

352.42

9.76

4.21

581.43

575.45

115 (present)

(others)

0.702

0.691

1063.25

1057.13

370.04

363.08

7.69

1.85

601.11

594.43

116 (present)

(others)

0.699

0.690

1071.32

1064.00

372.07

365.33

6.66

1.41

605.15

598.22

117 (present)

(others)

0.698

0.689

1078.49

1070.92

375.11

367.39

5.74

0.93

609.57

601.90

118 (present)

(others)

0.697

0.688

1085.64

1077.86

377.89

369.51

4.98

0.46

613.80

605.63

119 (present)

(others)

0.696

0.687

1092.31

1084.74

379.65

371.58

3.99

0.01

617.20

609.30

120 (present)

(others)

0.695

0.686

1099.16

1091.06

381.45

373.52

3.25

−0.53

620.68

612.70

121 (present)

(others)

0.694

0.685

1106.31

1098.43

383.94

375.77

3.20

−0.99

624.73

616.65

Others � Ref. [15]
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Fig. 1. Variation of ∆G (kJ/mol) with pressure for
CdO.

Fig. 2. Variation of volume change V/V0 with pressure.

so we could not compare our results. Present results have
been compared with density functional theory, using the
pseudopotential plane-wave method by Li et al. [13]. It is
obvious from Fig. 2 that the compression curve shows the
same trend as reported by others [13]. The values of rela-
tive volume changes have also been calculated at di�erent
pressures. The comparisons of these values with plane-
-wave pseudopotential density functional theory method
[15] have been given in Table IV. Present results are close
as reported by Peng et al. [15].

3.2. Elastic properties

The lattice theoretical study of second order elas-
tic constants of cubic crystals has been applied by the
method of homogeneous �nite deformation. The knowl-
edge of second order elastic constants (SOEC's) and their
pressure derivatives are important for the understanding
of the interatomic force in solids.

The expressions of SOEC's are as follows:

C11 = (e2/4a4)
[
− 5.112Z(Z + 12f(r)) +A1

+ (A2 +B2)/2 + 9.3204zaf ′(r)
]
, (7)

C12 = (e2/4a4)
[
0.226Z(Z + 12f(r))−B1

+ (A2 − 5B2)/4 + 9.3204zaf ′(r)
]
, (8)

C44 = (e2/4a4)
[
2.556Z(Z + 12f(r))−B1

+ (A2 + 3B2)/4
]
. (9)

Using model parameters (b, ρ, f(r)), pressure deriva-
tives of SOEC's have been computed whose expressions
are as follows:

dB

dp
= −(3Ω)−1

[
13.980Z(Z + 12f(r)) + C1 − 3A1

+ C2 − 3A2 − 167.7648zaf ′(r) + 41.9420za2f(r)
]
,

(10)dS

dp
= −(2Ω)−1

[
23.682Z(Z + 12f(r)) + C1

+ (C2 + 6A2 − 6B2)/4− 50.0752zaf ′(r)

+ 13.9808za2f(r)
]
, (11)

dC44

dp
= −(Ω)−1

[
− 11.389Z(Z + 12f(r)) +A1 − 3B1

+
C2 + 2A2 − 10B2

4 1
+ 44.6528Zaf ′(r)

]
, (12)

B =
1

3
(C11 + 2C12) , S =

1

2
(C11 − C12)

and

Ω = −2.330Z(Z + 12f(r)) +A1 +A2

+ 21.9612zaf ′(r).

The values of Ai, Bi, and Ci (i = 1, 2) have been eval-
uated from the knowledge of b, ρ and VdW coe�cients.

The study of elastic behaviour under pressure is well
known to provide useful information about change in
the nature of the covalent and ionic forces induced in
the crystal as it is subjected to the phase transforma-
tion. The calculated values of SOEC's and their pressure
derivatives have been given at P = 0 GPa in Table III.
Our results have been compared with available experi-
mental [8] and theoretical results [6, 7, 10, 15]. Experi-
mental data are only available for pressure derivative of
bulk modulus.

Furthermore the SOEC's and bulk modulus have
been calculated at di�erent pressure range 0�121 GPa
and summarized in Table IV. Our calculated values of
SOEC's and bulk modulus have been compared with
the plane-wave pseudopotential density functional the-
ory method by Peng et al. [15] throughout the pres-
sure range. It is clear from this table that our cal-
culated values demonstrate the same trend as reported
by plane-wave pseudopotential density functional theory
method [15]. These SOEC's and bulk modulus have been
plotted with pressure range 0�121 GPa in Fig. 3. It is
obvious from the �gure that C11 varies largely under the
e�ect of pressure as compared with the variations in the
C12 and C44. Since the elastic constant C11 represents
elasticity in length. A longitudinal strain produces a
change in C11. The elastic constants C12 and C44 are
related to the elasticity in shape, which is a shear con-
stant. A transverse strain causes a change in shape with-
out a change in volume. Therefore, C12 and C44 are
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less sensitive of pressure as compared with C11. C44 de-
creases with increase of the pressure while the bulk mod-
ulus of CdO increases with increase of the pressure. In
Fig. 3 line+solid squares represent the present values and
line+solid triangles represent the data reported by Peng
et al. [15]. Present results show the same trend as re-
ported by plane-wave pseudopotential density functional
theory.

Fig. 3. Variation of SOEC's and bulk modulus with
pressure.

It is known that even the cubic crystal which has
isotropic structure, has elastic anisotropy as a result of
a fourth rank tensor property of elasticity. The elastic
anisotropic parameter of cadmium oxide has been calcu-
lated, using the following relation:

A =
2C44

C11 − C12
. (13)

The calculated values of anisotropic parameter A of
CdO have been depicted in Table V with various pres-
sures. For an isotropic crystal the value of A is 1. For
any values smaller or larger than 1, there was indicated
the presence of anisotropy.
The shear modulus G can be de�ned by the following

equation:

G = (GV +GR) /2, (14)

where GV = (2C + 3C44)/5, GR = 15(6/C + 9/C44)−1,
where C = (C11−C12)/2. GV is the Voigt shear modulus
and GR is the Reuss shear modulus.
We have also calculated the Young modulus Y , which

is related to the bulk modulus B and the shear modulus
G by the following equation [23]:

Y = 9BG(3B +G). (15)

Our calculated values of anisotropy A, shear modu-
lus G, Young's modulus Y of cadmium oxide at zero pres-
sure are also listed in Table V. These values of combina-
tion of elastic constants are compared with �rst principle
calculations performed by Peng et al. [15].

TABLE V

Calculated values of shear modulus (G), Young modu-
lus (Y ), anisotropy (A), Poison ratio (σ) and Debye tem-
perature (θD) for CdO.

P G Y A σ

0 (present)

(others)

49.43

45.06

131.70

120.70

1.108

1.041

0.332

0.339

10 (present)

(others)

58.87

53.90

174.07

146.44

0.674

0.600

0.335

0.358

20 (present)

(others)

69.57

59.73

188.85

164.11

0.457

0.405

0.357

0.374

30 (present)

(others)

78.35

63.82

213.88

176.97

0.325

0.292

0.364

0.387

40 (present)

(others)

86.90

66.74

238.12

186.45

0.246

0.218

0.370

0.397

50 (present)

(others)

95.37

68.88

262.07

193.66

0.195

0.166

0.373

0.406

60 (present)

(others)

103.05

70.15

283.97

198.34

0.149

0.126

0.377

0.414

70 (present)

(others)

111.27

70.98

307.13

201.64

0.119

0.094

0.380

0.420

80 (present)

(others)

118.63

71.61

328.08

204.26

0.089

0.068

0.382

0.426

90 (present)

(others)

125.37

71.88

347.41

205.77

0.065

0.047

0.385

0.431

100 (present)

(others)

132.18

71.88

366.81

206.43

0.043

0.028

0.387

0.436

110 (present)

(others)

139.74

71.65

388.12

206.40

0.029

0.013

0.388

0.440

115 (present)

(others)

143.29

71.50

398.22

206.24

0.022

0.005

0.389

0.442

116 (present)

(others)

142.94

71.46

397.52

206.17

0.014

0.004

0.390

0.443

117 (present)

(others)

143.22

71.40

398.45

206.06

0.012

0.003

0.391

0.443

118 (present)

(others)

143.42

71.35

399.17

205.97

0.008

0.001

0.391

0.443

119 (present)

(others)

144.08

71.33

401.03

205.95

0.007

3E−5

0.391

0.444

120 (present)

(others)

144.61

71.16

402.56

205.51

0.004

−0.002

0.391

0.444

121 (present)

(others)

144.99

71.14

403.73

205.53

0.002

−0.003

0.392

0.444

Others � Ref. [15]

The Poisson ratio of a material in�uences the speed of
propagation and re�ection of stress waves. The Poisson
ratio is an important property to know the properties of
compounds. The Poisson ratio (σ) of present oxide have
been calculated, the expression of σ can be given in the
following form:

σ =
3B − 2G

6B + 2G
. (16)

As discussed above Poisson's ratio deals with the way
of stretching or compressing an object in one direction, it
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causes to compress or stretch in the other direction. The
ratio measures the extent of this e�ect in a particular
substance. The Poisson ratio has two limits: it must
be greater than −1, and less than or equal to 0.5. The
calculated values of the Poisson ratio σ for CdO are given
in Table VI and they are in abovementioned limit. Our
values of Poisson's ratio for CdO at di�erent pressures
are compared with plane-wave pseudopotential density
functional theory method [15]. Present results show the
same trend as reported by Peng et al. [15].

TABLE VI

Calculated values of sound velocity (in km/s) and Debye
temperature (θD) in K for CdO.

P vl vt vm θD

0 (present)

(others)

5.112

4.902

3.012

2.417 2.714

388.45

413.920a, 336.5b

10 (present)

(others)

5.503

5.439

3.378

2.556 2.876

417.59

448.644a, 364.9b

20 (present)

(others)

5.924

5.837

3.654

2.620 2.955

436.87

468.938a, 381.7b

30 (present)

(others)

6.221

6.169

3.706

2.654 2.999

452.32

482.623a, 392.5b

40 (present)

(others)

6.536

6.453

3.273

2.664 3.015

465.96

490.982a, 399.5b

50 (present)

(others)

6.722

6.694

3.391

2.664 3.018

476.13

496.569a, 404.3b

60 (present)

(others)

6.999

6.908

3.397

2.653 3.009

484.37

499.645a, 406.6b

70 (present)

(others)

7.198

7.120

3.4

2.637 2.993

491.45

501.185a, 407.7b

80 (present)

(others)

7.383

7.298 2.617 2.973

496.58

501.582a, 408.2b

90.31 (present)

(others)

7.573

7.476 2.595 2.950

503.76

501.244a, 407.9b

100 (present)

(others)

7.846

7.762 3.126 3.540

514.23

618.916a, 406.8b

105 (present)

(others)

7.925

7.876 3.186 3.608

519.47

632.580a

110 (present)

(others)

8.097

7.983 3.239 3.668

524.75

644.923a, 405.2b

120 (present)

(others)

8.286

8.187 3.341 3.782

533.61

668.668a, 402.8b

130 (present)

(others)

8.475

8.380 3.437 3.890

541.36

691.338a

140 (present)

(others)

8.637

8.563 3.526 3.990

549.84

712.526a

150 (present)

(others)

8.842

8.737 3.611 4.086

557.19

732.977a

a Ref. [13], b Ref. [15]

The values of shear modulus (G), Young's modu-
lus (Y ), anisotropy (A) and Poisson's ratio (σ) have been
plotted with pressure in Fig. 4. Present results have
been compared for all these values with plane-wave pseu-
dopotential density functional theory method reported

by Peng et al. [15]. It is apparent from Fig. 4 that
the values of shear modulus, Young's modulus and Pois-
son's ratio increase with pressure at the same time as the
values of anisotropy decrease with increasing the pres-
sure. In Fig. 4 line+solid squares represent the present
values and line+solid triangles represent the plane-wave
pseudopotential density functional data [15]. Present re-
sults demonstrate almost similar behaviour as accounted
by Peng et al. [15] except from G and Y . The plot of
other [15] shear modulus and Young's modulus increases
as a curved form, while our plot increases linearly with
pressure.

Fig. 4. Variation of shear modulus (G), Young's mod-
ulus (Y ), anisotropy (A) and Poisson's ratio (σ) with
pressure.

The basic material properties, which are of interest
in many manufacturing and research applications, can
be determined quickly and easily through computations
based on sound velocities. Sound velocity can be easily
measured using ultrasonic pulse-echo techniques. In ad-
dition, to study the thermodynamic properties of these
compounds the average wave velocity vm have been cal-
culated on the lines of Guo et al. [29]. For calculating
the average wave velocity vm the expressions are

vm =

[
1

3

(
2

v3t
+

1

v3l

)]−1/3
, (17)

where vl and vt are the longitudinal and the transverse
elastic wave velocities, respectively, which are obtained
from Navier's equation in the following forms:
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vl =

√
3B + 4G

3ρD
, (18)

vt =

√
G

ρD
, (19)

where G is the shear modulus, B is the bulk modulus,
and ρD is the density. The calculated values of longitu-
dinal, transverse and average wave velocities are given in
Table V at various pressures. Due to the unavailability
of the experimental values of average wave velocities of
CdO, we could not compare our results. The average
wave velocities of CdO are compared with plane-wave
pseudopotential density functional theory method with
pressure range 0�150 GPa performed by Peng et al. [15].
We have plotted the longitudinal elastic wave velocity
(vl) with pressure in Fig. 6. This variation of longitu-
dinal elastic wave velocity has been compared with den-
sity functional theory, using the pseudopotential plane-
-wave method performed by Li et al. [13]. It is obvious
from Fig. 6 that our values of vl increases with increas-
ing the pressure throughout the pressure range. This
plot demonstrates the same behaviour as reported by Li
et al. [13].

Fig. 5. Variation of Debye temperature with pressure
for CdO.

Fig. 6. Variation of the longitudinal elastic wave ve-
locity (vl) with pressure.

With the knowledge of molecular force constant (f)
and the reduced mass (µ) of the cadmium oxide crystal
the Debye temperature of CdO has been calculated. The
detailed expressions are given in our earlier paper [21�23].
The frequency with the knowledge of the reduced mass
(µ) of the CdO is as follows:

ν0 =
1

2π

(
f

µ

)1/2

. (20)

This frequency gives us the Debye temperature

θD =
hν0
k
, (21)

with h and k as the Planck and Boltzmann constants,
respectively.
Also, thermophysical properties of CdO have also been

computed. The thermophysical properties provide us the
interesting information about the substance. The Debye
characteristic temperature θD re�ects its structure stabil-
ity, the strength of bonds between its separate elements,
structure defects availability, and its density. The calcu-
lated values of the Debye temperatures have been listed
in Table VI at di�erent pressures. Due to the lack of ex-
perimental data, we could compare them with plane-wave
pseudopotential density functional theory method with
pressure range 0�150 GPa performed by Peng et al. [15]
and �rst principle calculations performed by Li et al. [13].
The variation of the Debye temperatures (θD) with

pressure has been plotted in Fig. 5. This variation has
been compared with density functional theory (DFT) and
�rst principle calculations in Fig. 5. It is obvious from
the �gure that our values of θD increases with increase
of the pressure same as �rst principle calculations per-
formed by Li et al. [13]. While according to plane-wave
pseudopotential DFT method performed by Peng et al.
[15] the variation tendency of θD is to similar some extent
and there is a sudden increase in θD at pressure 85 GPa.
In view of overall estimation it is clear that the present

results are close to available experimental data. The ac-
complishment attained in the present investigation can
be ascribed to the inclusion of charge transfer (or three-
-body) and zero point energy e�ect.
Ultimately, it may be concluded that the present EIP

model has successfully predicted the compression curves
and phase diagrams giving the phase transition pressures,
associated volume collapses, elastic and thermodynami-
cal properties correctly for CdO. The inclusion of three
body interactions with zero point energy e�ect has im-
proved the prediction of phase transition pressures over
that obtained from the two-body potential and TBI with-
out zero point energy.
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