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The paper deals with the problem of vessel identification.

The presented method is based on fractional

Brownian analysis of vessel power spectrum. The measurements for three vessels were carried out with the use of a
mobile measuring module in the Gulf of Gdansk; next, the information obtained from sound spectra was identified.
Two classifiers connected with fractional Brownian motion were used: the first-order increments and the standard
deviation. Finally, classification decision was made using the Mahalanobis distance. Numerical experiments were

performed using MATLAB.
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1. Introduction

Problem of ship identification by its radiated sound is
regarded as difficult. This is by the reason of its complex-
ity [1-2]. On the other hand, vessel recognition is very
important, particularly from the military point of view.
In the literature, different methods are presented, from
traditional line spectrum and average spectrum analysis,
through wavelet analysis, Bayesian analysis, and neural
networks, to fractal analysis [3-6]. Among a number of
studies, those concerned with detection of objects buried
in the sea bottom or source localization in water are im-
portant and challenging [7—11]. The aim of this paper is
to present a method of vessel identification based on frac-
tional Brownian analysis of its power spectrum. In [3],
the Authors suggest that ship sound can be treated as
fractal signals. This is thanks to [12-14] where it has
been shown that the power spectra of ship sound de-
crease by 6 decibels per octave at frequencies, and are
similar to 1/f signals. Using this hypothesis, the classi-
fication process for three different vessels was conducted.
17 power spectra were measured for each ship.

The measurements were carried out using a multi-
sensor mobile measuring platform designed and made
by Polish Naval Academy and were brought off in the
Gulf of Gdansk near the seaway to the port of Gdynia.
The module was placed on the seabed at a depth of 20 m
and connected with the ship-base by means of a hybrid
electric-fiber optic cable of a length of 1 km. In order
to reduce the impact of noise from the ship-base, it was
anchored at a distance of about 800 m from the mea-
suring platform. Moreover, at the time when the mea-
surements were performed, all sources of noise such as
engines or generators were excluded, and all devices were
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battery-powered. The recorded vessels sailed directly over
the measuring module or close to it. The vessels’ routes
were recorded via AIS (Automatic Identification System)
which contained information about the current position
of the vessel [6].

Numerical experiments were performed using MAT-
LAB. In each experiment, 16 samples of a vessel were
randomly selected to form a training class. Then, for re-
maining 3 samples, one of each vessel (testing class), the
Mahalanobis distance from each ship pattern was com-
puted to find the closest one. The experimental results
show that the presented method is effective, and results
were close to those achieved in [3] even though the num-
ber of samples was small.

2. Fractional Brownian motion

Fractional Brownian motion (fBm) is recently widely
used in engineering applications. The main reasons
that make fBm encountered in applications are the self-
similarity (which intuitively means that its behavior is
stochastically the same, up to a space-scaling, regardless
of the timescale), and short or long-memory of a pro-
cess. And these two features are commonly observed in
phenomena dealt with in physics, bioengineering, com-
munications engineering, and finance [14-16].

By definition, the fractional Brownian motion with pa-
rameter H(0 < H < 1) is a centered Gaussian process
By ={Bpg (t) : 0 <t < oo} such that By (0) = 0 and

E*(By (t +s) — By (t)) = E(By (1))s*", (1)
where E denotes the expected value, and t,s > 0 rep-
resent time. The parameter H is called the Hurst pa-
rameter [17]. From definition it is easy to see that fBm
with parameter H is H self-similar process, i.e. By (at)
has the same distribution as o By (t) for any positive
number a. It is known that the covariance function p for
fBm is given by the formula

p(s,t) = E(Bu (s) Bu(t)) =
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Fig. 1. First-order increments for fBm with H = 0.2.

Let X = BH(]{J+1) — BH(]{J) for k = 0,1,... be
the incremental process of fBm By (Fig. 1), and v, =
E(X1Xk) be the corresponding auto-covariance function.
Then

1
=5 (=1 =282 & (k + 1)*") (3)
for k = 1,..., and the Hurst parameter H determines

the sign of covariance of future and past increments of
fBm [15]. In particular, if

e H = 4, then cov (X,41,X,) = 0, and according to
property of Gaussian process By has independent
increments;

. % < H < 1, then cov (X,4+1,X,) > 0, and by
the Taylor expansion for f(z) = 22, one ob-
tains 1 ~ H (2H — 1) k*#=2_ therefore the series
Y peq vk = o0, and the fBm process By is long-

range dependent,

0 < H < 3, then cov (X,11,X,) < 0, and con-
sequently the series Zgozl v, < 00, and the By is

short-range dependent.
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Fig. 2.  Spectrum of fBm sample with H = 0.2 in log-
log plot.

Instead of analyzing stochastic processes in the time
domain, processes can also be analyzed in the frequency
or spectral domain [16]. A time-domain series can be
transformed into a frequency-domain series, without any
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loss of information, by the Fourier transform. Figure 2
illustrates the spectrum of fBm with parameter H = 0.2.

3. Classification experiment

The experiment was conducted for three different ves-
sels. 17 power spectra were measured for each ship. In or-
der to compensate different ships velocities, each sample
was normalized by dividing by the maximum value in
the spectrum. The power spectra of considered vessels
are presented in Fig. 3. One can observe similarity of
power spectra plots to the {fBm one (Fig. 2).
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Fig. 3.

Power spectra of three considered vessels:
(a) ship A, (b) ship B, (c) ship C.

Let (v1,...,vn) denote values of the collected data.
Define first-order increments sequence

Lo =V1,Tp =Upy1 —Up forn=1,..., N —1, (4)
and estimators for expectation and variance, respectively,

| Nk
Be= 2 (Vigg —v;) for k=1,..., N —k, (5)
2 1 2
%= N % 2 (Vi — Vi — k)
fork=1,..., N —k. (6)
For each sample, the sequences z, : n=0,1,..., N -1}

(first-order increments sequence, Fig. 4) and oy : k =
1,..., N—k (Fig. 5) were constructed. Obviously, by def-
inition of fBm, both sequences determine the Hurst pa-
rameter for ideal fractional Brownian motion. It should
be admitted that ship sounds may not be ideal fBm sig-
nals and consequently, the increments of v, may change
their distribution, fail to satisfy (1), and not give con-
stant H; similarly, ox may not be constant and differ
for different k. However, it is assumed that sequences
given by (4) and (6) provide information essential for



A-48

the vessels identification. One can observe the similar-
ity of first-order increments sequences for three vessels
presented in Fig. 4 to that of {Bm, Fig. 1.
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Fig. 4. First-order increments z,, for three vessels:
(a) ship A, (b) ship B, (¢) ship C.
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Fig. 5.
sels: (a) ship A, (b) ship B, (c¢) ship C.

{0k} sequence for all 17 samples for three ves-

In the next step, 16 samples for each vessel were ran-
domly selected to form a training class. Then, for re-
maining 3 samples, one of each vessel, forming the testing
class, the Mahalanobis distance from each ship pattern
was computed by the formula (for the squared distance)

@ (zy)=(=-mQ " (z—m)", (7)
where z = (zg,z1,..., x¢) is testing observation (x; for
i=0,1,..., t given by formula (4)), y is a group of obser-

vations for a given vessel i.e. y = (yo,¥y1,---, yt), where
yi = (x%,...,m}(")T, i=20,1,...,t, and t was assumed

to be 10 due to small number of collected samples. @ is
the covariance matrix of random vector y,

Q = [COV (yi7 yj)]i,j:O,l,.,.,t , COV (ym yj) =
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For each testing sample, three distances from three dif-
ferent patterns were computed, and the minimum val-
ues were found. Finally, decision was made to classify a
testing sample as the one from a vessel with minimum
Mahalanobis distance.

The similar computations were conducted using {o}
sequence instead of z, as it was considered in [3].
The main difference was the small number of samples
which enforced reduction of patterns.

All numerical experiments were repeated 3 times in se-
ries of 1000 drawings each, and were performed in MAT-
LAB. The classification accuracy regarding three vessels
and different classifier criteria is presented in Tables I
and II.

TABLE I

Classification results using first-
order increments criterion.

Vessel A | Vessel B | Vessel C
[%] [%] [%]
94.1 100 57.6
95.1 100 58.1
94.3 100 61.4

TABLE II

Classification results using
{0k} sequence criterion.

Vessel A | Vessel B | Vessel C
K [%] [%]
92.5 94 67.7
92.6 95.1 63.5
93.8 93.3 68.3

The obtained results of the classification are adequate
for vessel B. The method that used increment sequence
gave 100% of correct answers, so the results are much
better than those obtained when using {oj} sequence
criterion. For vessel A, identification results were still
sufficient, slightly better when using {x,} sequence cri-
terion, and similar to those obtained in [4] with the use of
neural networks. For some reason, classification results
were rather poor for vessel C. Present authors believe
that a larger collection of samples would improve recog-
nition results in the case of vessels B and C.

4. Conclusions

The problem of vessel identification by its radiated
sound was considered in this paper. It was shown that
methods based on fractional Brownian analysis were ef-
fective in ship recognition. Two features were used to
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construct two different classifier criteria. The one based
on increment sequence gave 100% of accuracy in recogniz-
ing ship B, even though the number of recorded samples
was too small to obtain perfect accuracy with the use of
the criterion based on standard deviation of increments
sequence.

In the further research, a larger number of different
vessels types, and most importantly a larger number of
samples for each vessel, should be taken into considera-
tion. Further, other features that characterize fBm like
the Hurst parameter should be developed.
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