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A new approach to evaluate the relaxation times of various collision events responsible for thermal transport
has been reported through which various de�ciencies of earlier models of lattice thermal conductivity have been
resolved. These investigations involve the evaluation of the phonon Green functions via a non-perturbative
approach. The new expressions of relaxation times expressions for scattering of phonons by boundaries, atomic
impurities, phonon�phonon scattering, electron�phonon scattering are the new features of the theory. The lattice
thermal conductivity of three samples of GaAs has been analyzed on the basis of modi�ed Callaway model and
fairly good agreement between theory and experimental observations has been reported.

PACS: 63.20.kd, 66.70.Df, 63.22.Rc, 63.20.Ry

1. Introduction

The anharmonicities of lattice forces which are also
responsible for thermal expansion govern the heat trans-
port by lattice waves in solids along with various imper-
fections and the external boundaries of crystals. Ther-
mal conductivity has been commonly used as fundamen-
tal transport property which successfully characterizes
the broad range of crystalline solids and is physically im-
portant in understanding the acoustical behavior of low
dimensional systems nowadays. It was enumerated in lit-
erature [1, 2] that the theory of lattice thermal conduc-
tivity (LTC) based on the Boltzmann transport equa-
tion approach via relaxation time approximation [3�5]
su�er from the usual shortcomings of kinetic theory. The
phonon transport theory acquired a more rigorous basis
with the use of energy �ux correlation techniques [1, 6�8],
but these theories could not probe into successful numer-
ical estimates. Callaway [9] presented a very successful,
more amenable to calculations and widely accepted but
simple phenomenological model of LTC in the form

κ =
kB(β~)2

2π2v

∫ ωD

0

τ(ω) ω4 eβ~ω(eβ~ω − 1)−2dω, (1)

where τ(ω) is the total relaxation time for all scattering
processes. In his model Callaway has however, assumed
(i) the Debye spectrum for phonons which allows neglect-
ing the anisotropy and dispersion e�ects, (ii) no distinc-
tion between phonon polarization (single mode relaxation
time), and (iii) additivity of frequency dependent phonon
relaxation times (frequent use of Matthiessen's rule). If
one considers the scattering processes as independent,
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the scattering probabilities may be taken as additive so
that

τ−1(ω) =
∑
i

τ−1
i (ω), (2)

where τi(ω) represents the relaxation time for a single
scattering process and is normally obtained by pertur-
bation techniques. The assumptions made by Callaway
decisively entered some inadequacies in his LTC expres-
sion and Erdos and Haley [10] for the �rst time criti-
cally reviewed them with some justi�cations. The objec-
tions appearing due to the assumption of no distinction
between phonon polarizations was for the �rst time re-
moved by Holland [11] with the help of two-mode anal-
ysis. In his work, Holland extended the Callaway model
by considering the separate contributions of longitudi-
nal acoustic and transverse acoustic phonons including
some dispersion and using di�erent forms of relaxation
times. This theory has been further re�ned by several
authors [12�15] to analyze the lattice thermal conductiv-
ity of several samples with the help of better dispersion
and relaxation times and obtained excellent �ts. In the
Sharma�Dubey�Verma (SDV) [14] and Tiwari�Agrawal
(TA) [15] models improved attempts have been made to
involve the contribution of phonon dispersion. The work
of several authors [16�25] has made signi�cant contri-
butions with newer concepts to improve and repair the
original Callaway's phenomenological model and really
opened new windows in the �eld. In the mean time it is
noteworthy to comment that some authors [26�29] have
made signi�cant contribution to the theory of LTC based
on variational and many body approaches. However, the
adequate justi�cation to some questions remained unat-
tempted. The comments and investigations on the addi-
tivity of relaxation time were further made by Altukov
and Zavt [30] but the successful attempts to resolve this
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di�culty were made by Gairola [31] and Bahuguna et al.
[32] with sound justi�cations. The low temperature re-
gion of lattice thermal conductivity curve till maximum is
of extreme importance in the analytical study of experi-
mental data where a large number of scattering processes
impart to the thermal transport, which comes into play
via Callaway's model. The work of Boriodo et al. [33�36]
added a feature to the theory of LTC from �rst princi-
ples approach in which they have presented a method to
describe LTC free of adjustable parameters.
In the present paper the new approach [31, 32] has

been utilized to analyze the lattice thermal conductiv-
ity of GaAs samples with some additional �ndings and
an excellent agreement between theory and experimental
data has been reported in the following sections.

2. Theory

In order to investigate the quantum dynamics of the
system and to explore the underlying microscopic mech-
anism of thermal transport, we consider the Hamiltonian
of the second quantized form as

H = He +Hp +Hep +HA +HD, (3)

where He, Hp, Hep, HA and HD stand for unperturbed
electron Hamiltonian, harmonic phonon Hamiltonian,
electron�phonon Hamiltonian, anharmonic Hamiltonian
up to quartic order and defect Hamiltonian, respectively,
and can be expressed as [37�40]:

He =
∑
q

~ωqb
∗
qbq, (4a)

Hp =
∑
k

~ωk

4
(A∗

kAk +B∗
kBk), (4b)

Hep =
∑
q,k,σ

(
gkb

∗
Qσbqσ

)
Bk, (4c)

HA =
∑
s≥3

∑
k1...ks

~Vs(k1, k2 . . . ks)Ak1Ak2 . . . Aks , (4d)

HD =
∑
k1,k2

~[−C(k1, k2)Bk1Bk2 +D(k1, k2)Ak1Ak2 ].

(4e)

The operators Ak = ak + a∗−k = A∗
−k and Bk = ak −

a∗−k = −B∗
−k represent the phonon �eld and momentum

operator, they satisfy the commutation relation,

[Bk, Ak′ ] = 2δk−k′ , (5)

[Ak, Ak′ ] = [Bk, Bk′ ] = 0. (6)

In the above equations, ak (a∗k) and bqσ (b∗qσ) are the
phonon and electron annihilation (creation) operator
with phonon wave vector k (for brevity we have taken
k ≡ kj, j being polarization index) and electron wave
vector q, respectively (σ stands for spin (↑ or ↓) and gk
is the electron�phonon coupling constant). The coe�-
cients C(k1, k2) and D(k1, k2) depend upon change in
mass and force constant, due to substitutional impurity,
respectively and given by [8, 40, 41]:

C(k1, k2) =

(
M0

4Nµ

)
(ωk1ωk2)

1/2[e(k1)e(k2)]

×

[
N∑
l

ce i (k1+k2)Rl −
n∑
i

e i (k1+k2)Ri

]
, (7)

D(k1, k2) = (4N)−1(ωk1ωk2)
−1/2

×
∑
l,l′

(
ϕl,l′

M0

)
[e(k1)e(k2)]e

i (k1Rl+k2R
′
l), (8)

where c = n/N and µ = MM ′/(M ′ − M). Here
M−1

0 = c/M ′ +(1− c)/M is the e�ective atomic mass as
seen by the phonon in the crystal, Rl label the equilib-
rium position of the l-th atom in the crystal, the symbol
i designates the position of impurity atom, e(k) is the
polarization vector and ϕl,l′ represents the change in the
harmonic force constant due to defects. For convenience,
we have used index k to denote kj, where k is the phonon
wave vector and j labels the branch of the frequency spec-
trum. The anharmonicity coe�cients Vs(k1, k2 . . . ks) are
the Fourier transform of s-th order anharmonic force con-
stant and are symmetric with respect to the pair of lattice
vibration indices ks:

V3(k1,k2,k3)

=
1

3!

(
~
8N

)1/2
∆(k1,k2,k3)ϕ3(k1,k2,k3)

(ωk1ωk2ωk3)
1/2

,

ϕ3(k1,k2,k3) =
1

M3/2

′∑
l,l′

∑
x1,x2,x3

ϕ(3)
x1,x2,x3

(l, l′)

× e(k1)e(k2)e(k3)e
2π i (k1,k2,k3)·r0(l,l′) (9)

and

V4(k1,k2,k3,k4)

=
~

4!(4N)

∆(k1,k2,k3,k4)ϕ4(k1,k2,k3,k4)

(ωk1
ωk2

ωk3
ωk4

)1/2
,

ϕ4(k1,k2,k3,k4) =
1

M2

′∑
l,l′

∑
x1,x2,x3,x4

ϕ(4)
x1,x2,x3,x4

(l, l′)

× e(k1)e(k2)e(k3)e(k4)e
2π i (k1,k2,k3,k4)r0(l,l

′), (10)

where

∆k =

{
1 if k = 0 or a reciprocal lattice vector,

0 otherwise. (11)

In the above expression e(ki) are the eigenvectors and
the prime over summation states that the exclusion of

the terms with l = l′ and ϕ
(s)
x1,x2,...xs(l, l

′) are the expan-
sion coe�cients [42].

In order to obtained the line shape of phonon spectrum
let us consider the evaluation of the double time temper-
ature dependent retarded Green function

Gk,k′(t− t′) = ⟨⟨Ak(t);A
∗
k′(t′)⟩⟩

= − iθ(t− t′)⟨[Ak(t), A
∗
k′(t′)]⟩ (12)

via Hamiltonian (3) with the help of quantum dynamical
equation of motion technique and Dyson's equation ap-
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proach which results in the following form:

Gk,k′(ω) =
ωkηk,k′

π
[
ω2 − ω̃2

k − 2ωkP̃ (k, k′, ω)
] , (13)

where ω̃k is the renormalized phonon frequency and
P̃ (k, k′, ω) is the self-energy operator or response func-
tion,

P̃ (k, k′, ω + iϵ) = lim
ϵ→0+

∆k(ω)− iΓk(ω), (14)

where ∆k(ω) is the shift in the phonon frequency of the

perturbed mode and is the real part of P̃ (k, k′, ω) and the
imaginary part Γk(ω) is the phonon frequency linewidth
at the half maximum of the phonon frequency peak. In
the new approach (quantum dynamical many body the-
ory) of line widths, the relaxation times for various scat-
tering processes can be expressed as [31, 32]:

τ−1(ω) = Γk(ω), (15)

where the phonon frequency line width of di�erent con-
tribution is given by

τ−1(ω) = ΓD
k (ω) + Γ 3A

k (ω) + Γ 4A
k (ω) + ΓAD

k (ω)

+Γ ep
k (ω) + τ−1

CB + τ−1
R (ω). (16)

In above equation various superscripts D, A, 3A, 4A,
AD and ep stand for the contribution coming from de-
fect scattering, anharmonic (cubic 3A and quartic 4A)
phonon scattering, anharmonic�defect interference scat-
tering and electron�phonon scattering. τ−1

CB and τ−1
R (ω)

describes the combined boundary and resonance scatter-
ing relaxation times, respectively. A brief account of
these quantities is broadly described as follows.

2.1. Combined boundary scattering

At very low temperatures the �rst and the foremost
scattering phenomenon which dominantly contributes to
the thermal conductivity is the combined boundary scat-
tering which can be described by [43, 44]:

τ−1
CB = v/L(B), (17)

where L(B)−1 = 1
2v (t

−1
1 + t−1

2 ), BI = 1.7858t−1(t−1
1 +

t−1
2 )−1 is the internal boundary parameter which is re-
lated to large scale �uctuations in the crystal micro
boundaries, where t is the time taken to traverse the path
l in the absence of internal boundaries. The phonon is
traversing the free path in time t1 with average phonon
velocity v before scattering from the microboundary. Af-
ter scattering, it will not traverse exactly the same path
in reverse direction, but it may be assumed that the
phonon apparently reaches the previous position after
time t2 to repeat scattering. Hence, L(B) is di�erent
from the Casimir length L and will o�er higher ther-
mal resistance than L and the conductivity curve falls
o� more rapidly as shown in Fig. 1.

2.2. Point defect scattering

At very low temperatures below the conductivity max-
imum the scattering due to isotopic point impurities etc.

Fig. 1. E�ect of combined boundary scattering length
on LTC.

emerges from the next dominant collision processes and
has been described by Klemens [3, 13] as

τ−1
D (ω) = Aω4, (18)

where A = ν0Γ
4πν3 and Γ =

∑
i fi

(
1− mi

m̄

)2
. Similar re-

sults for the impurity scattering relaxation time can be
obtained from ΓD

k (ω) after some algebraic simpli�cation
in the following form [40, 45]:

ΓD
k (ω) = 8πϵ(ω)

∑
k1

R(−k, k1)R
∗(−k, k1)

×ωk1δ
(
ω2 − ω̃2

k1

)
≈ A1ω

4 +A2ω
2 (19)

with

R(k1, k2) = (ωk2/ωk1)C(k1, k2) +D(k1, k2)

+ 4
∑
k′
2

C(−k1, k
′
2)D(−k′2, k2)ω

−1
k (20)

and

ϵ(ω) =

{
1 for ω > 0,

−1 for ω < 0.
(21)

The coe�cients A1 and A2, respectively, describe the
mass and force constant changes occurring as a result
of the presence of isotopic defects in the host crystal and
can be readily obtained from Eq. (19). The contribution
of force constant changes due to substitutional point de-
fects is the new addition in the Klemens [3, 13] theory of
LTC and its importance will be discussed in the section
describing analysis of LTC. However, the e�ects of mass
and force constant changes are depicted in Figs. 2 and 3.

Fig. 2. Variation of LTC at di�erent impurity concen-
trations.
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Fig. 3. E�ect of force constant changes on LTC of
GaAs (sample III).

2.3. Phonon�phonon scattering

As the temperature rises towards conductivity max-
imum more and more phonons get excited and thus
the three-phonon processes are invoked and appear as
the dominant scatterers. These processes have been de-
scribed in the form [4, 14, 46]:

τ−1
ph =

{
Bω2T 3 at low T,

B′ω2T 2 at high T.
(22)

The ω and T dependences of τ−1
ph have been freely varied

without any appropriate justi�cation by a large number
of authors [4, 11, 12, 14, 15, 47]. The work of several
authors [4, 11, 12, 47] on phonon�phonon processes (ef-
fective around LTC maximum) and the investigations by
Pomeranchuk [48, 49] on four-phonon processes (signi�-
cant at high temperatures) are worth mentioning. The
use of frequency line width enables to �x the problem
via the following expressions [40, 45] for three- and four-
-phonon processes:

Γ 3A
k (ω) = 18πϵ(ω)

∑
k1,k2

|V3(k1, k2,−k)|2

× η1
[
S+αω+αδ(ω

2 − ω2
+α) + S−αω−αδ(ω

2 − ω2
−α)

]
≈ λV ω2

kθ(ωL − ωk)/16πNβ~a0v2p ≈ Bω2T, (23)

Γ 4A
k (ω) = 48πϵ(ω)

∑
k1,k2,k3

|V4(k1, k2, k3,−k)|2

× η2
[
S+βω+βδ(ω

2 − ω2
+β) + 3S−βω−βδ(ω

2 − ω2
−β)

]
≈ (~/48M)(a0~ηϕIV V/4π2βϕIIν3)2

× (ω̃2
k + ω̃2

k1
− ω̃2

k+k1
) ≈ BHω

2T 2, (24)

where λ is the dimensionless quantity and ωk =
ωL sin(πka0) which shows the exact frequency and tem-
perature dependence. The various symbols appearing in
the above equations are obtainable in the form [40]:

S±α = nk2 ± nk1 , (25)

S±β = 1± nk1
nk2

± nk2
nk3

± nk3
nk1

, (26)

ω±α = ω̃k1 ± ω̃k2 ; ω±β = ω̃k1 ± ω̃k2 ± ω̃k3 , (27)

ηi−1 =
ωk1ωk2 . . . ωki

ω̃k1 ω̃k2 . . . ω̃ki

; nk =
ω̃k

ωk
coth

β~ω̃k

2
. (28)

Obviously, as described in Eqs. (23) and (24), B and

BH along with mass and crystal volume chie�y depend
on the cubic and quartic force constants. At conductiv-
ity maximum umklapp processes contribute more e�ec-
tively as compared to normal processes. However, Call-
away [9, 29] has taken the relaxation time for normal
three-phonon processes and for umklapp processes pro-
portional to (ω2T 3)−1 and (eθ/aTω2T 3)−1, respectively.
The four-phonon processes contribute at high tempera-
tures and are not considered in the present case. The
role of three- and four-phonon processes in semiconduc-
tors has been reanalyzed by Boriodo et al. [33�36] with
the help of an ab initio approach.

2.4. Interference scattering

The phonons present in the anharmonic �elds (cubic
and/or quartic) start interacting with the phonons of lo-
calized �elds and give rise to impurity anharmonic inter-
action modes (interference modes). These modes give rise
to the interference scattering of phonons due to simul-
taneous involvement of localized and anharmonic �elds.
This scattering dominates near and above of thermal con-
ductivity maximum where conventional impurity scatter-
ing starts losing its in�uence. The phonon line width for
this scattering is given by [40]:

Γ 3D
k (ω) = 16

∑
k1

|C(−k, k1)|2ω−2
k (Γ 3A

k (ω))k→k1

≈ (3λV µ−2/πβ~a0)
[
(M2

0 c(1− c)/4NµV )2
]
ω4
k

≈ Dω4T. (29)

Here µ−2 is the second negative moment and c is the
impurity concentration. The processes like Γ 4D

k (ω) con-
tribute at high temperatures and are not discussed here.
The e�ect of interference scattering events (Γ 3D

k (ω) only)
has been shown in Fig. 4.

Fig. 4. In�uence of interference scattering on LTC.

2.5. Electron�phonon scattering
The possibility of electrons carrying heat as well as

acting as scatterers was entertained by Ziman [50] con-
sidering the parabolic bands and derived the relaxation
time in the form

τ−1
ep = DT ln

(
1 + exp(η∗ −N/T − PTx2 + x/2)

1 + exp(η∗ −N/T − PTx2 − x/2)

)
,

(30)
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where x = ~ω
kBT , D =

χ2m∗2
d kB

4π~4ϱvl
, N =

m∗
dv

2
l

2kB
, P = kB

8m∗
dv

2
l
.

Here χ, m∗
d, ϱ, vl and η∗ are deformation potential, den-

sity of states e�ective mass, density of the crystal, lon-
gitudinal phonon velocity, and reduced Fermi energy, re-
spectively. Based on this formalism su�cient attempts
were made to understand the role of electron�phonon col-
lision events [5, 20, 51].

In order to understand the phenomenon of electron�
phonon scattering with the help of present approach we
use the similar quantum dynamical approach (dealt in
preceding sections) to obtain the electron Green func-
tion

Gq,q′(t− t′) = ⟨⟨b∗q(t); bq′(t′)⟩⟩

= − iθ(t− t′)⟨
[
b∗q(t), bq′(t

′)
]
⟩ (31)

via Hamiltonian (3) in the form

Gq,q′(ω) =
4ωqδqq′

2π
[
ω2 − ω̄2

q + i4ωqΓq(ω)
] . (32)

After some algebra the line width for electron�phonon
collision processes can be described in the form [52�54]:

Γeph(ω) = x2T 2
[
Ae1 coth(3x/2)−Ae2(e

x/2 + 1)−1
]
,

(33)

where Ae1 and Ae2 are constants which depend on ma-
terial characteristics and electron�phonon coupling con-
stant gk. This term is very sensitive because the neg-
ative term changes the scenario according to the values
of Ae1 and Ae2 and its utmost e�ect in superconduc-
tors [54]. The variation of Γeph(x) = τ−1

eph with x and T

is shown in Fig. 5 with Ae1 = 0.4895× 103 K−2 s−1 and
Ae2 = 1.4685× 103 K−2 s−1, which clearly exhibits that
electron�phonon scattering lifetime is a highly sensitive
quantity and acquires both negative and positive values.
In the inset the variation of Γeph(x) with temperature
shows that for higher values of x its value rises with T .

Fig. 5. Variation of τ−1
eph versus x (in inset τ−1

eph

versus T ).

The behaviour of electron�phonon line width Γeph(x)
on LTC is depicted in Fig. 6 when both reduced frequency
x and temperature T are simultaneously varied.

Fig. 6. In�uence of electron�phonon line width on
LTC.

2.6. Resonance scattering

The results of Pohl and Walker [55, 56] on resonance
scattering mechanisms indicate that the dips present in
the LTC curve at temperatures just above the maximum
in κ are also associated with impurities. In fact if one
examines the older data on Si [47] a similar dip can be
noticed. It was only when the oxygen was removed from
the Si that the dip disappeared from the data and the iso-
tope scattering could be used to obtain a good �t. Data
which can be characterized as having a bump or dip can
often be �tted by using a resonance-type relaxation time
of the form �rst used by Pohl [55, 57] which is given by

τ−1
R (ω) =

Rω2Tn

(ω2
0 − ω2)2 + (Ω/π)2ω2

0ω
2
, (34)

where R is a proportionality constant containing the con-
centration of impurities causing the resonance scattering,
ω0 is the resonance frequency, and Ω describes damp-
ing of the resonance. For GaAs sample use of (34) with
n = 0 can be obtained by considering inelastic scattering
of phonons by localized modes, in which the impurity
centers are polyatomic [58]. Figure 7 depicts that the
in�uence of resonance scattering only on LTC other col-
lision events has been overlooked.

Fig. 7. In�uence of resonance scattering on LTC.

3. Analysis of thermal conductivity

GaAs (III�V compound) the direct band gap semicon-
ductor with band gap 1.42 eV has the crystal structure
(zinc blende) composed of two sublattices, each face cen-
tered cubic (fcc) and o�set with respect to each other by
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half the diagonal of the fcc cube. Semi-insulating GaAs
is a semiconductor quality material which meets some
important requirements, namely: (i) lowest possible den-
sity of crystalline defects, such as dislocations, stacking
faults, and precipitates. (ii) Absence of undesirable sub-
strate active layer interface e�ects, e.g., light sensitivity
and back-gating. (iii) Thermally stable during epitaxial
growth or anneal of ion-implanted active layer. (iv) The
active layer properties by out di�usion of impurities from

substrate during thermal processing are not degraded.
Experimental observations reveal that the thermal con-
ductivity of such pure single crystal semiconductors is
zero at 0 K and rises approximately exponentially up
to a maximum value near 10 K (according to Grimvall
[29] the maximum crudely lies just below T = 0.1θD)
and falls o� somewhat faster than T−1 and in the rest
temperature range approximately varies as T−1 at higher
temperatures [28, 29, 59].

TABLE
Constants and parameters used in the analysis of thermal conductivity of GaAs.

Samples L(B) θD A1 A2 B D v R Ω ω0

[cm] [K] [s3×10−44] [s×10−23] [sK−1×10−23] [s3 K−1×10−44] [cm s−1×105] [s3 K−2×1030] [s−1×102] [s−1×1012]

I 0.1689 345 0.110 � 68.09911 0.399 3.3 2.998 0.010 6.91822

II 0.1292 345 0.2643 52.0882 152.050 0.5652 3.3 1.011 0.99 5.99015

III 0.053 345 6.990 2.6735 20.370 0.59484 3.3 � � �

Fig. 8. Analysis of thermal conductivity of GaAs
(sample I).

In order to examine present model, we have taken the
experimental data of Holland [12] for the purpose of anal-
ysis of sample I, sample II, and sample III (three samples)
in the temperature ranges (1.7�292.3), (1.7�170.3 K) and
(2.1�49.3 K), respectively. The modi�ed form of Eq. (1)
is taken as

κ = ξ

∫ ωD

0

ω4 eβ~ω dω

[τ−1
CB + Γ (ω) + τ−1

R (ω)](eβ~ω − 1)2
, (35)

where

ξ =
kB(β~)2

2π2v
, (36)

Γ (ω) = ΓD
k (ω) + Γ 3A

k (ω) + ΓAD
k (ω) + Γ ep

k (ω). (37)

The data used for the analysis are furnished in Table,
the detailed explanation of them is given in Sect. 2. Due
to the lack of availability of some data on anharmonic
potentials and impurity concentration we had no option
except taking A1, A2, B and D as adjustable parameters
for the purpose of analysis of LTC of GaAs. This has been

Fig. 9. Analysis of thermal conductivity of GaAs
(sample II).

Fig. 10. Analysis of thermal conductivity of GaAs
(sample III).

done by numerically integrating Eq. (35). However, these
quantities can be exactly evaluated after collecting the
su�cient information about e�ective anharmonic forces
and impurity scenario which could not be made available
in the present case and may be undertaken in future on
the basis of the model presented in Sect. 2. It is observed
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that at low temperatures, below the thermal conductivity
maximum the major contribution to thermal conductiv-
ity comes from combined boundary scattering while the
point defect scattering invokes at relatively elevated tem-
peratures. The phonon�phonon and interference scatter-
ing processes dominate in the close vicinity of thermal
conductivity maximum and above. The resonance scat-
tering is also found e�ective in this region. Based on
the new formulation the present calculations are depicted
in Figs. 8, 9 and 10 which show an excellent agreement
with experimental observations. The samples of GaAs
have few impurities or crystal imperfections, i.e., a low
number of electrically active impurities and no crystal
faults are large enough to alter the thermal conductivity
in the boundary scattering region. Hence need of any
other scattering mechanism ceases.

4. Discussion and conclusions

The collision processes among phonons in the low tem-
perature region (close to absolute zero) are very rare be-
cause a very small number of phonons with longer wave-
lengths get excited and scattered from crystal boundaries
and microboundaries. Figure 1 exhibits high sensitivity
of internal boundary parameter below 10 K. As the tem-
perature starts rising the larger number of phonons with
shorter wavelengths are excited and their free paths are
limited by defects commencing the involvement of impu-
rity scattering. The variation of impurity scattering con-
tribution to thermal conductivity is depicted in Figs. 2
and 3. The contribution due to force constant changes
of the form is ≈ A2ω

2 which has never been included in
any of the earlier studies. The importance of this term
cannot be easily ignored because a very small change in
central or noncentral force constants drastically changes
the speci�c heat of a crystal. Let us note that the speci�c
heat term appears in LTC expression;

κ =
3

(2π)3

∫
v2 cos2(θ)α(k)Cph(k)d

3k.

Since the number of excited phonons continuously in-
creases with gradually rising temperature towards LTC
maximum, the probability of phonon�phonon scattering
becomes comparable to defect scattering. The maximum
of LTC appears when the mean free path for phonon�
phonon scattering roughly becomes equivalent to that
of impurity scattering which depends on the nature and
number of defects in the crystal and the corresponding
temperatures characteristic of the specimen rather than
of chemical composition of the material [29]. Obviously,
the possibility of interference scattering as shown in Fig. 4
takes the charge; i.e., phonons of impurity (localized)
�elds start interacting with the phonons of anharmonic
phonon �elds. It should be noted that the contribution
from boundary scattering in this region starts losing its
signi�cance because of a huge number of phonons (with
much shorter wavelengths and considerably small free
paths comparable with interatomic spacing) and other
scatterers which rarely allow the phonons to scatter from

crystal boundaries. The resonance scattering is also
found e�ective in this region (Fig. 7). The phonon�
phonon and interference scattering processes appear as
dominant scattering processes to o�er su�cient thermal
resistance in the close vicinity of thermal conductivity
maximum and above. At the same time phonons from
boundaries are rarely scattered and the impurity e�ects
also start diminishing its in�uence. A three-dimensional
graphics showing the variation of LTC with x and T is
depicted as Fig. 11.

Fig. 11. LTC of GaAs (sample III) as a function of x
and T .

This model entertains the e�ects of dispersion via
Γk(ω) which really ascertains the frequency spectrum of a
particular crystal including anharmonic e�ects and mass
and force constant changes due to the impurity insertion.
From present investigations based on the present model
it emerges that the thermal conductivity of GaAs type
crystals can be analyzed successfully and frequency line
width concept is capable to repair several de�ciencies left
in earlier models. The objections and de�ciencies occur-
ring in the Callaway model have been removed with the
help of this formulation and the theory is equally appli-
cable to analyze the thermal conductivity data of other
crystals and even that of high temperature superconduc-
tors [54].
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