ArticleOriginal scientific text

Title

Rehydration of CTMA Modified DNA Powders Observed by NMR

Authors 1, 1, 1, 1, 2,

Affiliations

  1. Institute of Physics, Jagiellonian University, Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
  3. Department of Chemistry and Technology of Polymers, Cracow Technical University, Kraków, Poland

Abstract

The rehydration of salmon sperm deoxyribonucleic acid (DNA) and cetyltrimethylammonium chloride (C19H42ClN) complexes was observed using hydration kinetics, sorption isotherm, and high power proton relaxometry (at 30 MHz). The hydration kinetics shows (i) a very tightly bound water not removed by incubation over silica gel (A0h = 0.061 ± 0.004), (ii) a tightly bound water saturating at A1h = 0.039 ± 0.011, with the hydration time t1h = (1.04 ± 0.21) h, a loosely bound water fraction (iii) with the hydration time t2h = (19.1 ± 3.2) h and the contribution progressively increasing with the air humidity. For the hydration at p/p0 = 100%, after t0 = (152.6 ± 2.5) h of incubation the swelling process begins. The swelling time was t3h = (12.5 ± 5.4) h, and the swelling amplitude A3h = 0.140 ± 0.016. The sorption isotherm is sigmoidal in form and is fitted by the Dent model with the mass of water saturating primary binding sites Δ M/m0 = 0.102 ± 0.021. Proton free induction decay is a superposition of the immobilized proton signal (Gaussian, with T2S* ≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1* ≈ 100 μs) and loosely bound water fraction with the amplitude proportional to the mass of water added (T2L2* ≈ 1000 μs).

Keywords

82.56.Na

Bibliography

  1. A.J. Steckl, Nat. Photon. 1, 3 (2007)
  2. V.A. Bloomfield, D.M. Crothers, I. Tinoco, J.E. Hearst, D.E. Wemmer, P.A. Killman, D.H. Turner, Nucleic Acids: Structures, Properties, and Functions, University Science Books, Sausalito 2000
  3. R.H. Horton, L.A. Moran, K.G. Scrimgeour, M.D. Perry, J.D. Rawn, Principles of Biochemistry, Pearson Prentice Hall, New Jersey 2006
  4. L.L. Wang, J. Yoshida, N. Ogata, Chem. Mater. 13, 1273 (2001)
  5. Y.G. Yang, P.G. Yin, X.Q. Li, Y. Yan, Appl. Phys. Lett. 86, 203901 (2005)
  6. H.W. Fink, C. Schonenberger, Nature 398, 407 (1999)
  7. A.Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, V.T. Volkov, D.V. Klinov, H. Bouchiat, Science 291, 280 (2001)
  8. H. Harańczyk, J. Czak, P. Nowak, J. Nizioł, Acta Phys. Pol. A 112, 397 (2010)
  9. H. Dong Han, N. Hyunsoo, Y. Kyung-Hwa, S. Hye-mi, L. Hae-Yeon, T. Kawai, Chem. Phys. Lett. 355, 405 (2002)
  10. O. Krupka, A. El-Ghayoury, I. Rau, B. Sahraoui, J.G. Grote, F. Kajzar, Thin Solid Films 516, 8932 (2008)
  11. J.G. Grote, J.A. Hagen, J.S. Zetts, R.L. Nelson, D.E. Diggs, M.O. Stone, P.P. Yaney, E. Heckman, C. Zhang, W.H. Steier, A.K.Y. Jen, L.R. Dalton, N. Ogata, M.J. Curley, S.J. Clarson, F.K. Hopkins, J. Phys. Chem. B 108, 8584 (2004)
  12. H.W. Fink, H. Schmid, E. Ermantraut, T. Schulz, J. Opt. Soc. Am. A 14, 2168 (1997)
  13. P. Dutta, S.K. Mandal, J. Phys. D, Appl. Phys. 37, 2908 (2004)
  14. C. Yumusak, T.B. Singh, N.S. Sariciftci, J.G. Grote, Appl. Phys. Lett. 95, 263304 (2009)
  15. Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, Adv. Mater. 12, 1281 (2000)
  16. S.L. Lee, P.G. Debenedetti, J.R. Errington, B.A. Pethica, D.J. Moore, J. Phys. Chem. B 108, 3098 (2004)
  17. W. Węglarz, H. Harańczyk, J. Phys. D, Appl. Phys. 33, 1909 (2000)
  18. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)
  19. R.W. Dent, Textile Res. J. 47, 145 (1977)
  20. H. Harańczyk, A. Leja, K. Strzałka, Acta Phys. Pol. A 109, 389 (2006)
  21. H. Harańczyk, A. Leja, M. Jemioła-Rzemińska, K. Strzałka, Acta Phys. Pol. A 115, 526 (2009)
  22. H. Harańczyk, A. Pietrzyk, A. Leja, M. Olech, Acta Phys. Pol. A 109, 411 (2006)
  23. H. Harańczyk, M. Bacior, M. Olech, Antarctic Sci. 20, 527 (2008)
  24. H. Harańczyk, On Water in Extremely Dry Biological Systems, WUJ, Kraków 2003
  25. H. Harańczyk, W.P. Węglarz, S. Sojka, Holzforschung 53, 299 (1999)
  26. H. Harańczyk, K. Strzałka, G. Jasiński, K. Mosna-Bojarska, Coll. Surf. A 115, 47 (1996)
  27. H. Harańczyk, M. Bacior, P. Jastrzębska, M.A. Olech, Acta Phys. Pol. A 115, 516 (2009)
  28. N. Funduk, G. Lahajnar, L. Miljković, S. Skočajić, D.W. Kydon, L.J. Schreiner, M.M. Pintar, Zobozdrav. Vestn. 41 (Suppl. 1), 139 (1986)
  29. H. Harańczyk, K.G. Soga, R.J. Rumm, M.M. Pintar, Magn. Res. Imag. 9, 723 (1991)
  30. J.R. Zimmerman, W.E. Brittin, J. Phys. Chem. 61, 1328 (1957)
  31. A. Timur, J. Petrol. Technol. 21, 775 (1969)
  32. S.Y. Lee, W.J. Cho, P.S. Hahn, M. Lee, Y.B. Lee, K.J. Kim, Appl. Clay Sci. 30, 174 (2005)
  33. A. Wishnia, J. Phys. Chem. 67, 2079 (1963)
  34. C. McAufliffe, J. Phys. Chem. 70, 1267 (1966)
  35. Ch. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York 1980
Pages:
485-490
Main language of publication
English
Published
2012-02
Exact and natural sciences