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Using the Lie algebraic method, the stretching vibrational energies of fullerenes C7¢ and Cgo are calculated
in the one-dimensional U(2) framework. By constructing the model Hamiltonian with the help of Casimir and
Majorana invariant operators in this frame work, we calculated the local mode vibrational energy levels of the

fullerenes C7¢ and Csgp.
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1. Introduction

The study of excited vibrational states of polyatomic
molecules have been one of the most interesting and ad-
vanced topics in the field of molecular spectra in the theo-
retical as well as experimental background in recent past
due to the development and introduction of new laser
techniques. In 1979 the introduction of algebraic ap-
proach to the molecular spectra by Wulfman fetched a
revolutionary change in the theoretical field (the alge-
braic approach to the Morse oscillator) to study the vi-
brational states of the molecules [1]. Two years later, in
1981, a new theoretical concept, known as vibron model
(based on U(4) Lie algebra) to study the molecular spec-
tra was introduced by Iachello [2]. This new model seems
to offer a concrete and complementary technique to the
traditional approaches used in molecular spectroscopy.
The vibron model was originally developed for diatomic
and triatomic molecules [3] and thus U(4) Lie algebra
can be used to calculate the stretching and vibrational
excitations of polyatomic molecules. But U(4) model
becomes complicated when the number of atoms in a
molecule increases more than four. On the other hand,
U(2) model, introduced by Wulfman and Levine [1], is
found to be successful in explaining the stretching vi-
brations of polyatomic molecules such as tetrahedral, oc-
tahedral and benzene-like molecules. The brief review
and the research work done with the algebraic models
up to the year 2000 and its outlook and perception in
the first decade of the 21st century was presented by
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Tachello and Oss [4]. Recently it was found that the Lie
algebraic method [5, 6] was extremely successful and ac-
curate in calculating the vibrational frequencies of poly-
atomic molecules compared to the other methods such as
the Dunham expansion and potential approach method
reported earlier [4].

After introduction of the Lie algebra at the end of the
nineteenth century by Lie, only in recent past, it is much
more familiar and popularized in the field of physics.
This Lie algebra is the unitary algebra U(n + 1). Hence,
one can formulate quantum mechanics in n dimensions
in terms of the unitary algebra U(n + 1). In this work,
we concentrate on the Lie algebraic techniques to Crg
and Cgg. This Lie algebraic model does not take into
account rotational motions. Nonetheless, it can be used
to obtain a complete picture of the vibrational behavior
of complex situations, falling even beyond the possibil-
ities of a three-dimensional approach. We will see how
this simple model can account for anharmonic couplings
between local modes (both stretching and nondegener-
ate bending vibrations), anharmonic (Fermi) resonances,
symmetry adaption of wave functions, and some other
important aspects of molecular spectroscopy.

Both the molecules Crg and Cgg, considered in this the-
oretical work have the same symmetry (Dsp). The sym-
metry is an extremely important concept in the develop-
ment of scientific knowledge. The beauty of symmetry
rests in its connection to a possible invariance in a phys-
ical system. Such invariance leads directly to conserved
quantities, which in a quantum mechanical framework
allow one to observe specific degeneracies in the energy
spectrum and to introduce a meaningful labeling scheme
for the corresponding eigenstates.

(407)
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Till date, no extensive experimental study of the vi-
brational spectra of Cgg is reported, but is the only
quantum mechanical approach of parametric method 3
(PM3) which comes forward to analyze the study of vi-
brational spectra of fullerene Cgy with its different en-
ergy bands [7, 8], whereas there are sufficient experimen-
tal study of vibrational spectra of fullerene Cyq [9]. By
using the one-dimensional U(2) algebraic model we cal-
culate the stretching vibrational energies of fullerene Crq
and Cgg which is an excellent alternative mathematical
treatment for determination of energy bands of fullerenes
Cro and Cgg in spectroscopic point of view.

The advantage of the algebraic models, as compared to
that of the Dunham models is that typically the models
need fewer parameters to obtain the same level of accu-
racy. The algebraic models also provide a simultaneous
description of bending and stretching modes. Finally the
models produce not only energies but also wave functions
(similar to that of the potential approach) and hence they
can be used to compute other observables. The algebraic
models are particularly useful for large molecules where
a few number of parameters plays a major role. Our pur-
pose here is to show that the model can be brought to
spectroscopy accuracy. Further, the species studied in
this work is interesting due to its importance not only in
human life but also in scientific research.

2. Review of the theory

It is necessary to begin with a brief review of the theory
of the algebraic model. Recently, an algebraic method
has been introduced as a computational tool for the anal-
ysis and interpretation of experimental ro-vibrational
spectra of large and medium-size molecules. This method
has been used extensively in chemical physics and molec-
ular physics. This method is based on the idea of dy-
namical symmetry, which, in turn, is expressed through
the language of the Lie algebras.

In connection with molecular spectroscopy, dynamical
symmetries explored in this work constitute a big step
forward over a conventional use of symmetry arguments,
especially those concerning the description and classifica-
tion of energy spectra denoting specific degeneracy pat-
terns. The dynamical symmetries contain within them-
selves both the degeneracy aspects of a physical system
and the complete machinery for describing transitions
among different states. All these tasks can be carried
out in the extremely compact and convenient framework
of the Lie groups and the Lie algebras. The use of dy-
namical symmetry, a very powerful technique related to
the dynamical group, leads to a conveniently simple form
of the second-quantized Hamiltonian operator. The most
important steps leading to the formulation of a dynam-
ical symmetry have been presented. This formulation
should be thought as a very effective, specialized version
of the usual second quantized realization of a quantum
problem. In such a realization (1) the wave equation
is replaced by an algebraic equation, (2) the wave func-
tions are replaced with a Fock space, and (3) the most

general algebraic expansion, in terms of (boson) creation-
-annihilation operators, is restricted to invariant or the
Casimir operators of sub-algebras of the dynamical al-
gebra. Such “ultimate” algebraic structure turns out to
be, for n-dimensional problems, the Lie algebra U(n+1).
These three steps constitute the basic components for the
definition of the dynamical symmetry realization of the
Hamiltonian operator.

Thus we obtain an effective Hamiltonian operator by
applying Lie algebraic techniques that conveniently de-
scribes the ro-vibrational degrees of freedom of the phys-
ical system [10]. The algebraic methods are formulated
in such a way that they contain the same physical infor-
mation of both ab initio theories (based on the solution
of the Schrodinger equation) and of semi-empirical ap-
proaches (making use of phenomenological expansions in
powers of appropriate quantum numbers). However, by
employing the powerful method of group theory, the re-
sults can be obtained in a more rapid and straightforward
way [11]. In the Lie algebraic approaches, U(4) and U(2)
algebraic models have been extensively used. The U(4)
model deals with the rotation and the vibration simulta-
neously, but it becomes quite complicated when the num-
ber of atoms in a molecule are more than four. The U(2)
model was particularly successful in explaining stretching
vibrations of polyatomic molecules such as benzene-like
and octahedral and icosahedral molecules. Thus, here we
use the U(2) algebraic model to study the higher excited
vibrations of fullerene C7g and Cgg.

For introducing the U(2) algebraic model, we use the
isomorphism of the Lie algebra of U(2) with that of the
one-dimensional Morse oscillator. The most appealing
feature of the Morse potential is that one can solve the
associated Schrodinger equation in an exact way for one-
-dimensional problems or in a quasi-exact way for two or
three-dimensional problems, the error often being smaller
than 1 part in 103-10'° (for zero angular momentum).
Such an approximation comes from the fact that analyt-
ical solutions can be achieved only under the constraint
that V(r) — oo for r—0. Such a condition is only ap-
proximately fulfilled by the Morse potential [10].

The eigenstates of the one-dimensional Schrédinger
equation, hy) = ey with a Morse potential [12]:

h(pz) = p2/2u + D[1 — exp(—ax)]*, (1)

which can be put into one to one correspondence with
the representations of U(2) D O(2), characterized by
the quantum numbers |N,m) with the provision that
one takes only the positive branch of m, i.e. m = N,
N —2,...,10r 0 for N = odd or even (N = integer).
The Morse Hamiltonian corresponds in the U(2) basis
to a simple Hamiltonian, h = ¢y + AC, where C' is the
invariant operator of O(2) with eigenvalues m? — N2.
The eigenvalues of h are

£ =¢go+ A(m* — N?), (2)

where m = N, N —2,...,1 or 0 (N = integer) and A is
the normalization constant.
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Introducing the vibrational quantum number v = (N —
m)/2, Eq. (2) can be rewritten as

£ =¢go—4A(Nv — %),

where
v=0,1,...N/2

N -1

or B)

(where N = even or odd). (3)

The value of €y, A and N are given in terms of u, D,
and « by using the following relations:

g0 =—D, —4AN = ha(2D/pu)*/?,
4A = —h%a®/2p.
One can verify that these are the eigenvalues of the Morse

oscillator.

Now consider a molecule with n bonds. In the alge-
braic model, each bond ¢ is replaced by an algebra with
Hamiltonian h; = eo; + A;C; [13] where C; is the in-
variant operator with eigenvalues —4(N;v; — v?). The
bonds interact with a bond-bond interaction. Two types
of interaction are usually considered in term of two op-
erators C;; and M;;, called the Casimir and Majorana
operators, respectively, where the Casimir operator has
only the diagonal matrix element, whereas the Majorana
operators have both diagonal and off-diagonal matrix el-
ements. They are invariant operators of the combined
algebras 0;;(2) and U;;(2) in the group lattice. Their
physical meaning can be seen from the matrix elements

given by Eq. (5) and Eq. (6).

The algebraic model Hamiltonian we consider thus has
the following form [5]:

H=FEo+Y ACi+Y AiCi+> MjMy. (4)
i=1 i<j i<j
In Eq. (4), C; is an invariant operator with eigenvalues

4(1/,;2 — N;v;) and the operator Cj; is diagonal with matrix
elements

(Ni,vi; Nj, v;|Cij | Ny, vi; Ny, vj)
= 4[(vi +v3)* = (vi + v)(Ni + N;)], (5)

while the operator M;; has both diagonal and off-
-diagonal matrix element

(Ni, vis Nj, v;| Myj| Ny, vi; Ny, vj)
= (NiVj + le/i - 21/1‘1/]') s
(Ni,vi + 1; Nj, v; — 1| M| Ny, vi; Ny, vj)
=~y (vi + DN = wi) (N — v + 1)]Y2,
(Ni,vi — 1;Nj 4 1| M| Ny, vi; Nj, vj)
1/2
= —[vi(y; + D(N; —v;)(N; —vi + 1) 2, (6)

Equation (6) is a generalization of the two-bond model
to n bonds [11].

The role of the Majorana operators M;; is to intro-
duce off-diagonal couplings between pairs of local modes.
In the simplest case of equivalent interacting bonds, the
Majorana operator naturally leads to a solution for sym-
metrized coupled modes, in which the invariance of the
Hamiltonian operator, under bond exchange, is explicitly
taken into account. A rather appealing feature of this al-
gebraic model is that such a “symmetrizing” property of
the Majorana operator, actually quite a trivial one for
two equal bonds, can readily be extended to any molec-
ular geometry, even a very complex one. The key point
is that the basic information characterizing the specific
molecular geometry can easily be incorporated by intro-
ducing proper linear combinations of the Majorana op-
erators.

In purely local limit of N oscillators, these oscilla-
tors are somehow correlated with each other through
the C;; operators, which account for (diagonal) cross-
-anharmonicities, represented by the following equation:

c  C;
i =Ci— Nig | — + =
Cu=C ’ (Nz' " Nj)
Nij = Ni+N;j. (7)
Furthermore, following Eq. (7), it should be noted that
one basically subtracts from C; those terms arising from
uncoupled single-oscillator contributions. In the special
case of a pair of equivalent oscillators ¢ and j (N; = N;),

the above equation can be replaced by the following ma-
trix elements:

(viv;|Cijlvivs) = —4(v; — v;)?, (8)

where

i.e., the matrix elements do not depend on N; (NVj).
As a result, C;; will account for different contributions
throughout different polyads and within the same polyad;
the most important aspect of C;; is the dependence of its
matrix elements on the product v;v;.

The simplest basis to diagonalize the Hamiltonian
is characterized by the representation of local mode
chain [13]:

UM (2) ® UP(2) ® UG(2) D

1 1 !
| [N1], [Na], [Ns];

SOM(2) @ SO@(2) ® SOB)(2) 5 SO(2)

1 1 1 L)
v, v, Vs; 14 > )
where, below each group we have indicated the eigen-
values that label their irreducible representations.
Explicitly this basis is given by
HN1]7 [NQL [N3]§V1V2V3>
= |[N1]; v1)|[Na]; v2 )| [Ns); vs) (10)
where
(N — V)' v,
[N;v) = W(L) “[[N], 0)




410 R. Sen et al.

Here, N is the total number of bosons fixed by the po-
tential shape, v corresponds to the number of quanta in
the oscillator and J_ is the angular momentum operator
(has both raising J, lowering J_ connecting different
energy states) in U(2) algebra. The quantum numbers
v; correspond to the number of quanta in each oscillator
while V is the total vibrational quantum number given
by

i=1

For a particular polyad, the total vibrational quantum
number is always conserved. The inclusion of M;; in
the local Hamiltonian operator cannot affect the conser-
vation rule. In Eq. (4), C; is an invariant operator of
uncoupled bond with eigenvalues 4(v? — N;1;) and the
operator Cj; for coupled bonds are diagonal with matrix
elements [Eq. (5) and Eq. (6)].

3. Results and discussion

In this work we use the algebraic parameters A, A’, \,
A and N, the vibron number, to study the vibrational
spectra of the C7y and Cgg molecules. After considering
the common coupled and uncoupled bond-bond interac-
tion in the molecular configuration in case of C7g and Cgq
and also considering the Majorana couplings, on the ba-
sis of the symmetry of the molecules, the number of al-
gebraic parameters are reduced to four. In this regard,
one should note that this is the unique beauty of the al-
gebraic model where one needs only a fewer parameters
to describe the vibrational spectra of a molecule with a
good accuracy.

The values of vibron number (N) can be determined
by the relation,

We

N; = ~1, i=12,... (12)

WeZe
where w, and wex. are the spectroscopic constants.

For the C7p and Cgg molecules in stretching mode, we
can have the values of w, and wex, for the CC bond
from the study of Nakamoto [14] and that of Huber and
Herzberg [15]. Using the values of w, and wez, for the
bond CC we can have the initial guess for the value of the
vibron number N. It may be noted here that in the al-
gebraic approach, there is provision to change (not more
than +20%) the value of N to get better results. This is
equivalent to change the single-bond anharmonicity ac-
cording to the specific molecular environment, in which
it can be slightly different.

To obtain a starting guess for the parameter A we use
the expression for the single-oscillator fundamental mode
which is given as

E(v=1)=—4A(N —-1). (13)
Using Eq. (13), A can be obtained as

- E
A74(1—N)’ (14)
where A and E are the average values of the algebraic
parameters A’s and E’s.

Now we can have the initial guess for A using E
(Eq. (14)). The role of A is to split the initially degenerate
local modes. Such an estimate is obtained by considering

the following simple Hamiltonian matrix structure:
—4A(N —1)—4A’(2N — 1)+ AN — AN (15)
—4A(N —1) —4A (2N - 1)+ AN )’

—AN

We easily find that
E, — Es

A= —= 1

and
Ey — By
U = 1 17
N (17)

To have better results a numerical fitting procedure (in
a least-square sense) is required to obtain the parame-
ters A, A’, X\ and )\ starting from the values as given by
Eq. (14), Eq. (16) and Eq. (17). Initial guess for A’ may
be taken as zero.

The fitting parameters used in the study of vibrational
spectra of fullerene Crq is given in Table I. Experimental
and calculated energies [cm™!] of fullerene C7¢ have been
shown in Table II.

s " TABLE I
Fitting parameters™ of fullerene Crg.

vibron number Stretching parameters
N A A N

140 —0.962 0.382 —0.097

*A, X\, X all are in cm—! whereas N is dimensionless.

TABLE II
Experimental and calculated energies (cm™!)
of fullerene Crg.
Percentage
Nlormlal I 11 A(I — IT) of error

eve Ref. [8] | Calculated A\II—II| «100%

V1 458 453.39 +4.61 1.006%

123 535 534.87 +0.13 0.024%

V3 642 641.83 +0.17 0.026%

V4 674 667.31 +6.69 0.992%

Vs 795 799.75 —4.75 0.597%

17 1086 1077.44 +8.56 0.788%

vy 1134 1131.76 +2.24 0.197%

A(rms) = 4.882 cm 1.

The fitting parameters used in the study of vibrational
spectra of fullerene Cgq is given in Table III. Experimen-
tal and calculated energies [cm~!| of fullerene Crq have
been shown in Table IV.
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TABLE III
Fitting parameters®™ of fullerene Csgp.

vibron number Stretching parameters

N A A N
140 —2.181 0.3428 —0.0708

*A, X\, X all are in cm™—! whereas N is dimensionless.

TABLE IV
Simulated and calculated energies (cm™*)
of fullerene Cgg.
Percentage

Nll;rmlal I 11 A(I = II) of error

ve Ref. [15] Calculated A\II—II\ «100%

121 1214.91 1213.10 +1.81 0.148%

Vo 1271.06 1272.57 —1.51 0.118%

vs 1310.77 1309.08 +1.69 0.128%

V4 1343.83 1345.31 —1.48 0.110%

U5 1379.20 1382.11 —2.91 0.210%

Vg 1416.69 1418.61 —1.92 0.135%

vy 1450.31 1455.12 —4.81 0.331%

A(rms) = 2.560 cm ™1,

4. Conclusion

The algebraic model presented here is a model of cou-
pled one-dimensional Morse oscillators describing the CC
stretching vibrations of the molecules C7y and Cgg. By
making use of this algebraic model one can avoid the
complicated integrations in the solution of coupled dif-
ferential Schrédinger equations. For the CC stretching
inter-bond interactions this model can be used in a sim-
ple and straightforward way and reliable calculation of
the stretching bonds can be explained in terms of the
above fitting parameters. In this paper we presented
only a few modes of vibrations of C;y and Cgy which
are in good agreement with the results of experimental
and computer simulated semi-empirical PM3 molecular
modeling technique [8, 9]. It is hoped that with the fur-
ther advancement of the U(2) model, the higher order
modes of vibrations of C7g and Cgg also can be explained

with good accuracy considering the bent vibrations of the
molecules along with the stretch vibrations.
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