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Implications of the fractal potential in the system dynamics using an extended scale relativity model assuming
the fractal character of the particle movements, are established. So, in the dissipative approximation of the model
it is shown that the fractal potential comes from the non-differentiability of the space-time, i.e. by means of
imaginary part of a complex speed field. In the dispersive approximation of the same model, the fractalization
of the differential part of the complex speed field induces a normalized fractal potential which controls through
coherence the system dynamics. In such context the type I superconductivity results: the temperature dependences
of the superconducting parameter, the accumulator effect etc.
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1. Introduction

A way to analyze the dynamics of the physical systems
is to consider that the particle movements take place on
fractals (the complexity of these dynamics is substituted
by fractality) [1-6]. There are some arguments which can
justify such hypothesis: (i) by interaction, the trajectory
is no longer everywhere differentiable. The “uncertainty”
in tracking the particle is eliminated by means of the frac-
tal approximation of motion; (ii) the complex dynamical
systems, which display chaotic behaviour, are recognized
to acquire self-similarity and manifest strong fluctuations
at all possible scales [7-12]. Every type of “elementary”
process of motion induces both spatio-temporal scales
and the associated fractals. Moreover, the movement
complexity is directly related to the fractal dimension:
the fractal dimension increases as the movement becomes
more complex [1]. Different definitions were given for
the fractal dimension (the Kolmogorov dimension, the
Hausdorff dimension etc. [1-5]), but once we choose the
fractal-type dimension in the study of motion we must
work with it until the end.

Therefore, considering that the complexity of the phys-
ical processes (from the system’s interactions) is replaced
by fractality (situation in which the particle movements
take place on fractal curves), it is no longer necessary to
use notions as collision time, mean free path, etc., i.e.,
the whole classical “arsenal” of quantities from the dy-
namics of physical systems. Then, the physical systems
will behave as a special interaction-less “fluid” by means
of geodesics in a fractal space-time. The theory which
treats the interactions in the previously mentioned man-

ner is the scale relativity (SR) [5, 9-11, 13-22]. It is
based on a generalization of Einstein’s principle of rel-
ativity to scale transformations. Namely, “one redefines
space-time resolutions as characterizing the state of ref-
erence systems scale, in the same way as speed charac-
terizes their state of motion. Then one requires that the
laws of physics apply whatever the state of the reference
system, of motion (principle of motion-relativity) and of
scale (principle of SR). The principle of SR is mathemat-
ically achieved by the principle of scale-covariance, re-
quiring that the equations of physics keep their simplest
form under transformations of resolution” [5, 13].

The standard SR theory can be formulated both in the
Schrédinger version and also in the hydrodynamic one
considering that only the spatial coordinates are fractals,
the time being an affine parameter. However, the hydro-
dynamic version implies the existence, at all resolution
scale [5, 13|, of a potential analog to the Bohm potential
from the quantum mechanics [23-28]. We remind that
the Bohm formulation of quantum mechanism in terms
of quantum potential [23-28] has been and still is, a con-
tinuous matter of dispute, often in rather philosophical
terms above all concerning the fundamental meaning of
quantum mechanics. Regarding concrete applications,
such a theory has been used as a theoretical tool for un-
derstanding and interpreting several processes in different
fields [29-43], from molecular physics to plasma physics,
from scattering theory to simulation of quantum wires
[44, 45], to name a few.

Since the role of such potential was not sufficiently
considered in the frame of an extended scale relativity
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(ESR) theory [46], the purpose of the present paper is to
investigate its role in the system dynamics.

The plan of the paper is as follows: in Sect. 2 a short
reminder on ESR is presented; in Sect. 3, through the dis-
sipative approximation of the ESR, the expression of the
fractal potential is established; in the dispersive approxi-
mation of the ESR, at non-differentiable scale, the fractal
potential controls through coherence (accumulator effect)
the system dynamics. Such situation is explicitly treated
for type I superconductivity in Sect. 4.

2. A short reminder on the extended scale
relativity model

Nottale suggests in his works the possibility to for-
mulate the physical principles at different scales con-
sidering the geometry of space is continuous but non-
-differentiable, therefore it is fractalic (i.e., explicitly
scale-dependent) [5, 9-11, 13-22]. His theory was math-
ematically substantiated by Ben Adda and Cresson’s
works [47-54]. Several generalizations of SR theory are
given in [29, 34, 46, 55]. The non-differentiability implies
the followings:

(i) a continuous and a non-differentiable curve (or al-
most nowhere differentiable) is explicitly scale dependent,
and its length tends to infinity, when the scale interval
tends to zero. In other words, a continuous and non-
-differentiable space is fractal, in the general meaning
given by Mandelbrot to this concept [1];

(ii) there is an infinity of fractals curves (geodesics)
relating any couple of its points (or starting from any
point), and this is valid for all scales;

(iii) the breaking of local differential time reflection
invariance. The time-derivative of a function F' can be
written twofold

dF . F(tfdh) - F(t)’

dt dt—0 dt¢

dF . F(t)— F(t— dt)

o A, TR (1a,b)

Both definitions are equivalent in the differentiable case.
In the non-differentiable situation these definitions fail,
since the limits are no longer defined. “In the framework
of scale relativity, the physics is related to the behav-
ior of the function during the “zoom” operation on the
time resolution §t, here identified with the differential el-
ement d¢ (“substitution principle”), which is considered
as an independent variable. The standard function F'(t)
is therefore replaced by a fractal function F(¢t, dt) (for
details see [47-54]) explicitly dependent on the time res-
olution interval, whose derivative is undefined only at the
unobservable limit d¢ — 07 [5, 9-11, 13-22]. As a conse-
quence, this leads us to define the two derivatives of the
fractal function as explicit functions of the two variables ¢
and dt,
d,F

F(t+ dt,dt) — F(t, dt)
dt dtgr(l)_,_

dt ’

d_F F(t,dt) — F(t — dt, dt)
Sdt i dt
The sign “+” corresponds to the forward process and “”
to the backward process;

(iv) the differential of a fractal function F(¢, dt) can
be expressed as the sum of two differentials, one which
is not scale-dependent, dF”’(t), and the other dependent
on it, dF" (t, dt), therefore [47-54]:

dF(t,dt) = dF'(t) + dF"(t, dt). (3)
Particularly, the differential of the generalized coordi-
nates, dy X (¢, dt), can be decomposed as follows:

dL X (¢, dt) = drax(t) + d+&(¢t, dt), (4a,b)
where dLa(t) is the “classical part” and d&(¢, dt) is the

“fractal part”. Starting from here, multiplying by dt—!
and using the substitutions

. (2a,b)

CdeX _ diw _di€

Vi= T VET g Y=g (5a—c)
we obtain the velocity field

Vi=vy+ug; (6a,b)

(v) the fractal part of F, i.e. F”| satisfies the relation

B (6) = F" () ~ [t =], (7)
where 0 depends on the fractal dimension D (for details
see [47-54]).

Particularly, the differential of the "fractal part” of
d4+ X, becomes

d+& = V2D(dt)Y/Pr, (8a,b)
The significances of the Nottale coefficient D [5] result
from the random walk (Brownian motion) or its general-
ization, the Levy motion [5, 9-11, 13-22];

(vi) the local differential time reflection invariance is
recovered by combining the two derivatives, d/d¢ and
d_/dt, in the complex operator

d 1 fdy+do) i dy—do )
dt 2 dt 2 dt '
We call this procedure “an extension by differentiability”

(Cresson’s extension — for details see [47-54]).

Applying this operator to the “position vector” yields
a complex speed

podX _1/dX+d X\ i/ dX-dX
oAt 2 dt 2 dt

VitV. V-V

= 5 1 9
- % (v +vo) + (ug +u)]
T R A e A
with
Ve YV o)+ )

(11a,b)
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The real part, V, of the complex speed, V, represents
the standard classical speed, which is differentiable and
independent of resolution, while the imaginary part, U,
is a new quantity arising from fractality, which is non-
-differentiable and resolution-dependent;

(vii) “in order to account for the infinity of geodesics in
the bundle, for their fractality and for the two values of
the derivative which all come from the non-differentiable
geometry of the space-time continuum, one therefore
adopts a generalized statistical fluid like description,
where instead of a classical deterministic speed or of a
classical fluid speed field, one uses a doublet of fractal
functions of space coordinates and time which are also
explicit functions of resolution time” [9-11]. Thus, the
average values of the quantities must be considered in
the previously mentioned sense. Particularly, the aver-
age of dL X is

(deX) = de (12)
with
(ds&) =0; (13a,b)

(viii) in such an interpretation, the “particles”, are iden-
tified with the geodesics themselves. As a consequence,
any measurement is interpreted as a sorting out (or selec-
tion) of the geodesics by the measuring device [5, 9-11,
13-22].

Let us now cousider a fractal function, f(X,t) and its
Taylor expansion up to the second order term (the second
approximation of the fractal motion). In this case, for the
points on the fractal, based on the non-differentiability
specified through the properties (i)—(viii) it results that
the motion can be described by the Nottale fractal oper-
ator [56]:

2 + V'V —iD(dt)#/Pr~1A,

ot
A generalization of this procedure for the third order ap-
proximation of the fractal motion is given by the fractal
operator [55]:

2_9

ot ot

+ ?D\/B(dt)(?’/DF)*lV?’. (14)

Details on the methodology of obtaining this operator
can be found in [55] (Eq. 17, p. 1564).

We now apply the principle of scale covariance, and
postulate that the passage from classical (differentiable)
mechanics to the “fractal” mechanics which is considered
here can be implemented by replacing the standard time
derivative d/dt by the complex operator 9/t (this re-
sult is a generalization of the principle of scale covari-
ance given by Nottale in [5, 9-11, 15-22]). As a conse-
quence, we are now able to write the equation of geodesics
(a generalization of the first Newton principle) in a frac-
tal space-time under its covariant form

oV oV
ot ot

+V -V —iD(dt)#/Pr)-1A

+(V-V)V —iD(dt)#/Po-1AV

2fo(dt)<3/DF VAV = 0. (15)

This means that the global complex acceleration field,
éV/ Ot, depends on the local complex acceleration field,
d;V, on the non-linearity (convective) term, (V - V)V,
on the dissipative term, AV, and on the dispersive one,
V3V. Moreover, the behavior of a fractal fluid is of vis-
coelastic or of hysteretic type which means that the frac-
tal space-time has memory. Such a result is in agreement
with the opinion given in [57]: the fractal fluid can be
described by the Kelvin—Voight or Maxwell rheological
model with the aid of complex quantities e.g. the com-
plex speed field, the complex acceleration field etc.

3. The dissipative approximation
of the extended scale relativity model.
The expression of the fractal potential

In the dissipative approximation of the ESR the rela-
tion (15) becomes a Navier—Stokes type equation [41]:
ov. _ov

o= tVVV

—iD(dt)F/PRI=IAY =0
(16)

with an imaginary viscosity coefficient

7 = iD(dt)®/Pr)=1,
If the motions of the fractal fluid are irrotational, i.e.
V x V =0, we can choose V' of the form

V =—2iD(d)”"" ' Viny (17)
with 1 the scalar potential of the complex speed. By
substituting (17) in (16), up to an arbitrary phase factor

which may be set to zero by a suitable choice of the phase
origin, a Schrédinger type equation results

DAt/ P2 Ay + iDdt@/DF)*l%‘f =0. (18)

For D = hi/2mg and Dy = 2, i.e. for movements on the
Peano’s curves [9-11] at the Compton scale, Eq. (18) re-
duces to the usual Schrodinger equation

h2 o _
o A G (19)
For ¢ = ﬁe‘s , with /p the amplitude and S the phase

of 9, the complex speed field (10), using (17) takes the
explicit form
V =2D(dt)#Pr)=lys — iD(dt)

(2/Dp)—1

Vinp,
V =2D(dt)¥Pr-1lys,

U = D(dt)*/P)=1¥1np. (20a—)
By substituting (20a—c) in (16) and separating the real
and the imaginary parts, up to an arbitrary phase factor
which may be set at zero by a suitable choice of the phase
of 1, we obtain
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% +V-(pV)=0 (21a,b)
with @ the fractal potential
AP
Q = —2moD?(dt)/Pr)—2 VL
oD(dt) 7
U2
= —m°2 — meDAt/ PPy . U (22)

The idea of fractal potential appears for the first time
in [58] as new potential term named “Bohm potential”.
Particularly, for movements on the Peano’s curves at the
Compton scale, the fractal potential can be assimilated
with “Bohm potential”. In SR theory, the fractal poten-
tial comes, logically, from the non-differentiability of the
fractal space-time.

For D = h/2my and Dr = 2, i.e. for movements
on Peano’s curves at the Compton scale, the fractal
potential becomes the usual quantum potential

h2 A 2
Vo _mUT gy,
2mo /p 2 2

Qom = —

4. The dispersive approximation of the extended
scale relativity model. Type I superconductivity

In the dispersive approximation of the ESR the rela-
tion (15) becomes a Korteweg—de Vries type equation
A ) N
— =——+ (V- V)V
o = o TV

2\[D\/>(dt)(3/DF) VR — 0. (23)

This means that in the fractal space-time, the dissipative
effects can be neglected compared with the convective
and dispersive ones.

If the motions of the fractal fluid are irrotational,
we can choose for the complex speed field the expres-
sion (17). The real part of the complex speed field
s (20b) and the imaginary one is (20c). Particularly,
for coherent, syncron motions

V=U (24)
and the complex speed field takes the equivalent forms

V = 2D(dt) P51y — 2iD(dt) (B 1w

= D(dt)(DLF%lVlnp— 1D(dt)(DLF)71V1np
=2nVS =nVinp,
n=D(dt) T (1 - i). (25a,b)

It results, both through the complex speed field, V, and
the structure coefficient, 7, the rheological behavior of
the fractal fluid.
Now, after the separation of real and imaginary parts,
q- (23) becomes
2 2
W ooV

2 2

2fD\F(che)Cf/DF) Vv =0,

%—U +V(V-U)

QIDf D(dt)®/Pr=1g3y = 0. (26a,b)

In the one—dlmensmnal differentiable case, i.e. for p =
const, Egs. (26a,b), with the dimensionless parameters

T=wt, E=kx, 0=&—vpT,
V
0)=— 27a-d

w() Vo (27a—d)
and the normalizing conditions

k 2 k3

Fo _ fDW(dt)WDF) 1= =1, (28)

6w w
by double 1ntegration becomes

1

§w’2 = F(w) = — (w3 - ghwz —gw — h) (29)

with g, h two integration constants and vp the normal-
ized phase velocity.

From here, through the fractalization of the differen-
tiable part of the complex speed field which improves the
substitutions
_ Uph 12 260

477 Vo
and the restriction h = 0, Eq. (29) becomes a Ginzburg—
Landau (GL) type equation [59]

d? da=f
a7 =r-r. (31)
Multiplying both sides of Eq. (31) by df/dg, and per-
forming integration over 3 we obtain

=i (30)

df /1
B §f4—f2+07 (32)
where
df\? 1
C= (dﬂ) —§f4+f2 (33)
B=Bo

Equation (33) is obviously a restriction imposed on the
order parameter, f, showing the boundary conditions.
A further integration of Eq. (32) leads to

B— ﬁo df
/\/f1 DI
Where

fla=1Fv1-2C. (35)
By the change of variable ¢ = f/f1, the integral (34)
becomes

Pl do

2 = :

V2 o V(1-¢H)(1-s%¢?)

where we made the notation

Writing f; and fo in terms of s, f2 = (2s2/1 + s?),
= (2/1 + s?), the integral (36) becomes

(34)

(36)
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B-fo _ [ d¢
VI+s2 Jo VO -6Y)(1 5292’
where the superior limit is

14 s2
¢r1=f SR

The integral (38) can be solved in the terms of the Jaco-
bian elliptic functions, sn(u;s) of argument v and mod-
ulus s [60]. The class of solutions results

_ 252 B — PBo .
F=y\12n <ms> (39)

In the limit s — 0, (39) can be approximated as

282 (B—[o
f= 1+3251n<m>—>0, (40)

while for s — 1 one obtains the kink solution

252 B — o
f= e tanh(m> . (41)
It is well known that the GL model also supports two
solutions: zero and hyperbolic tangent which correspond
to the Cooper pair [61]. Thus, we can build a field theory
with spontaneous symmetry breaking: the kink solution
spontaneously breaks the vacuum symmetry by tunneling
and generates Cooper type pairs [62].

We are able now to get the expressions of some super-
conducting parameters. Thus, from (38), by integration
and using the relation which defines the relative coher-
ence length [62-64], it results

& =(1+s)Y2K(s), (42)

where K(s) is the complete elliptic integral of the first
kind [60],

(38)

/2 252 \~1/2
K(s) = / (1 —s*sin” ¢) do. (43)
The relati\(f)e critical speed
v = (14 s%) 712K 1(s) (44)
and the relative pair breaking time
7= (1+s*)K?(s) (45)

are deduced from (42) and the relations which define
these parameters [62—64].

In the 1D case, we can express the relative charge car-
rier concentration as
2 25> of B—"D0o .
ny = |f| =Ty (m,s> (46)
In order to establish a direct connection with experimen-
tal observations in the physical systems, the acquired spa-
tial dependence of n, can be cancelled by averaging |f|?
on a period, 2K:

E(s) ]

2
r — 1-—
> [ K(s)
where E(k) is the complete elliptic integral of the second
kind of modulus s [60]:

/2 1/2
E(s) = / (1—s*sin®¢) "~ do. (48)
0
By using (45) and the London definition of the pene-

(47)

tration depth [62-64], we obtain the relative penetration
depth in the case of spatial gradients

R

For the relative critical field, using the definition of this
parameter [62-64] we derive the expression

Br:His2 2(1—1]3((‘:))) (50)

The relative critical current density

, 2 1 E(s)

SO L«s) sz
is obtained from (44) and (47) and the expression which
defines j, [62-64].

Taking into account that all the “superconducting” pa-
rameters suffer a discontinuity for s = 1 (as can be seen
in Fig. la—g), one can admit the following functional de-
pendence of the modulus of the elliptic function on the
reduced temperature:

s=t=T/1Tc. (52)
To avoid the confusion and to obtain the exact tempera-
ture dependences of the superconducting parameters, we
will admit adequate normalizations of these parameters
and the restriction s < 1. Thus, the dependence on ¢ of
the coherence length is

(51)

£(1)/€(0) = (2/m)(1+ %) K (2). (53)
{;: ) ’/‘ NIT
)
[ 1 o
" IEEE |
04 '// 7
T 00 /
pal e
8 \ 6uns

020

015 = \
/ |
010
/

005

1] a—

Fig. 1. The s dependence of the (a) relative coherence
length, (b) relative critical speed, (c) relative pair break-
ing time, (d) average relative concentration, (e) relative
penetration depth, (f) relative critical field, (g) relative
critical current density.
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Fig. 2. The comparison between the reduced temper-
ature dependence of the superconductor parameters as
given by Egs. (53)—-(55) and (57)—(60) (continuous line)
with the one given by BCS or other theories (dashed
line): (a) the relative coherence length, (b) the relative
critical speed, (c) the relative pair breaking time, (d) the
average relative concentration, (e) the relative penetra-
tion depth, (f) the relative critical field, (g) the relative
critical current density.

Figure 2a shows the relation (53) in comparison
with the one given by the BCS theory [62],
£(t)/€(0) = (1 — t?)~Y/2 (dashed line). In the rela-
tion (53)

K(t) /Oﬂ/2 (1—¢

The dependence on t of the critical speed is
(ve(t)/ve(0)) = (m/2)(1+£*) 2K (1), (54)
In Fig. 2b one can see the comparison between the (54)
dependence and the one given by the BCS theory [62] i.e.
ve(t) /ve(0) = (1 — t?)/2 (dashed line).

The dependence on t of the pair breaking time is

7(8)/7(0) = (4/7%) (1 + ) K>(¢). (55)
Figure 2c presents together the dependence (55) and the
one given by BCS theory [62], i.e. 7(¢)/7(0) = (1 —¢?)~1
(dashed line).

Comparing with the BCS theory [62], similar behaviors
of the coherence length (Fig. 2a), critical speed (Fig. 2b)
and pair breaking time (Fig. 2¢) can be observed.

In order to get the dependence of the concentration on
t one admits first that

n(t)/n(0) = [£(0)/§(t)]*f

sin2 ) /% dg.

3.7(14 %) 'K 2

By inserting (47) in (56) one finds
n(t)/n(0) = 3.7(1+ 1) 2K (1) {1 — [E(t) /K (1))} -
(57)
The concordance with the experimental data described
by n(t)/n(0) = (1—t*)'/? (dashed line) is relatively good
in the limits 0.5 < ¢ < 1, as can be seen in Fig. 2d.

The reduced temperature dependence of the penetra-
tion depth

A(t)/A(0) = 0.55(1 + t3) K (t){1 — [E(t)/ K (t)]} /2
(58)
is in agreement with the data of the bifluid model
At)/A0) = (1 — t*)~1/2? (dashed line — Fig. 2e, for
0.5 <t< 1.

In the case of the critical field,
Be(t)/B.(0) = 7.67(1 + t*) 2K ~%(¢)

x{1— [B(t)/K()]}? (59)
the agreement with the experimental data, which is well
described by Bc(t)/B.(0) = 1 —t? [62] (dashed line), can
be seen in Fig. 2f, where Eq. (59) fits data for 0.4 < ¢ < 1.

The dependence on t of the critical current density is
Je(t)/4e(0) = 26.7(1 + ) K 3(1)

{1 = [E()/K(1)]}- (60)
In Fig. 2g one can see the comparison between the (61)
dependence and the one given by the BCS theory [62],
ie. je(t)/4c(0) = (1—#2)1/2(1—t*)1/2 (dashed line). The
concordance is good in the limits 0.5 <t < 1.

Summarizing, we would emphasize that the derived ex-
pressions of the superconducting parameters (n(t), A(¢),
B.(t), jc(t)) are amendable to experimental verifications
in the range about 0.5 < t < 1. At the same time, £(?),
ve(t), 7(t) have similar behaviors for 0 < ¢t < 1.

Since the general solution of GL equation is (39), the
superconductivity is controlled by means of the normal-
ized fractal potential,

1d2
Q(n,s) = —?dT?J; =(1-f?)
1—82 282 ﬁ—ﬁo'
- 1+s2+1+520”2(m’8) (©1)

also through cnoidal oscilation modes [46]. Thus, for
= 0 or s — 0 it results the non-quasi-autonomous
regime (of linear wave or of wave packet type),

Q(n,s=0,5s —0)

1-5° 25 o B—=10o
= N 2
1+32+1+52COS ( *14_52,3) (62)

and for s =1 or s — 1 the quasi-autonomous regime (of
soliton or of soliton packet type),

Qn,s=1,s—1)

1—s2 252 o B— Do
= h HER I
1+82—|—1+szsec ( *1—#32’8) (63)
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The normalized fractal potential (61) takes a very sim-
ple expression which is directly proportional to the den-
sity of states of the Cooper type pairs. When the density
of states of the Cooper type pairs, f2, becomes zero, the
fractal potential takes a finite value, ) = 1. The frac-
tal fluid is normal (it works in a non-quasi-autonomous
regime) and there are no coherent structures (the Cooper
type pairs) in it. When f? becomes 1, the fractal po-
tential is zero, i.e. the entire quantity of energy of the
fractal fluid is transferred to its coherent structures, i.e.
to the superconducting type pairs. Then the fractal
fluid becomes “superconducting” (it works in a quasi-
-autonomous regime). Therefore, one can assume that
the energy from the fractal fluid can be stocked by trans-
forming all the environment’s entities into coherent struc-
tures (Cooper type pairs) and then “freezing” them. The
“superconducting” fluid acts as an energy accumulator
through the fractal potential (61).

5. Conclusions

The main conclusions of the present paper are the fol-
lowing:

(i) Considering that the microparticle movements take
place on fractal curves, the role of the fractal potential
in the system dynamics through an extension of scale
relativity theories is analyzed;

(ii) The absence of the dispersion implies a general-
ized Navier—Stokes type equation. From here, for the
irrotational movement, both Schrédinger-type equation
and hydrodynamic model of the scale relativity theory
result. Thus, the fractal potential comes from the non-
-differentiability of the fractal space-time;

(iii) The absence of dissipation implies a generalized
Korteweg—de Vries type equation. In such conjecture,
through the fractalization of differentiable part of the
complex speed field, the fractal potential controls by
means of coherence the system dynamics. The status
of the fractal potential is detailed for type-I supercon-
ductivity. So, it resulted that: (iii;) the type-I su-
perconductivity is achieved by one-dimensional cnoidal
oscillation modes of the complex speed field; (iii) for
different coherence degrees, the one-dimensional cnoidal
speed oscillation modes contain the one-dimensional har-
monic waves, the one-dimensional waves packet, the one-
-dimensional solitons packet and the one-dimensional
soliton. The first two subsequences describe the non-
-autonomous regime for type-I superconductor, i.e. an or-
dinary fractal fluid behavior, while the last ones describe
the quasi-autonomous regime for type-I superconductor,
i.e. a coherent fractal fluid behavior by means of Cooper-
-type pairs. (iii3) We can build a field theory with spon-
taneous symmetry breaking corresponding to the normal
conductor—superconductor phase transition. The frac-
tal kink spontaneously breaks the “vacuum symmetry”
of the fractal fluid by tunneling, and generates coherent
structures (the Cooper pairs). Moreover, the fractal fluid
acts as an energy accumulator through the fractal poten-
tial (fractal soliton); (iiig) the temperature dependences

of the superconducting parameters, are obtained: the co-
herence length, the critical speed, the pair breaking time,
the charge carrier concentration, the penetration depth,
the critical field, the critical current density.

We note that the fractal (stochastic) processes [5, 6]
contained in the operator (14) with Dg # 2 are known
as “anomalous diffusion” (sub-diffusion for Dr < 2 and
super-diffusion for Dy > 2). Many expect that the
“Fokker—Planck equations” for anomalous diffusion do
not have the form of the ordinary diffusion equation. In-
deed, it is well-known that the “Fokker—Planck equations”
for anomalous diffusion have the form of the fractional
derivative equations, and the equations are called frac-
tional Fokker—Planck equations [47-54]. However, we are
able to use the non-fractional derivative equation in the
study of anomalous diffusion as it results from [2-5].
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