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ABSTRACT     In the article block matrix theory is employed to model 
of the branched kinematics chains. It allows for convenient const-
ruction of total dynamic matrix of complex branched kinematic system 
of head positioning system used in hard disk drives, with respect to 
enlargement of numbers of branches in kinematics chain. It allows 
giving the general expressions for individual matrix elements (in terms 
of basic kinematic parameters) before and after it inversion. In chap-
ter 3 the block matrix inversion is discussed and finally in cheapter 4 
the exemplary simulation results of time optimal control is presented. 
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1. HEAD POSITIONING SYSTEM,  
SCHEMATIC REPRESENTATION 

 
The head positioning system of modern magnetic mass storage devices 

– hard disk drives – belongs to very complicated system resulting from construction. 
The construction features of head positioning system results from mutual 
cooperation with spindle system (which usually drives a few data disk). Typical head 
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positioning system may be regarded as specific mechatronics system which 
consists of such components as: driving system, control system and measurement 
system. This article focus on driving system and some parts of control system. 
The block schema of head positioning system regarded as mechatronics system 
is in Figure 1 presented [1].  
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Fig. 1. Block schema of head positioning system regarded as mechatronics system 
 

The driving system consists of such components as: E-block, slider suspensions, 
sliders gimbals, flexible printed circuit etc. The shapes of above mentioned 
components depending on data areal densities of hard disk drive (which 
determine the length and the width of data track on rotating disk) and numbers 
of disk in spindle system. In Figure 2 the exemplary drive transmission unit 
taken from HDD (Western Digital WD400 40GB) in which the head positioning 
system cooperate with one side of data disk is presented.  
 

Fig. 2. Basic components of typical 
drive transmission unit working with 
one side of data disk: 
(1) VCM motor winding, 
(2) pivot,  
(3) E-block,  
(4) slider suspension,  
(5) slider,  
(6) flexible printed circuit 

 
The brand new construction of driving system of head positioning system uses 
additional micromotors (PZT motors) [10, 11], beside the main VCM motor, as 
an auxiliary drive. The additional micromotors are helping in proper seeking and 
following the data tracks [5, 7-9]. In Figure 3 two different construction of slider 
suspensions are shown. 
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a) 

 

Fig. 3. Slider suspensions: a) without PZT 
micromotor, b) with PZT micromotor (1) 

b) 

 
 

Analyzing the fixation system (Fig. 3a) between slider suspension (4) and 
end tip of E-block (5), which consists of two elastic stripes (3), it is easy to spot 
that it may be regarded as rotating joint. In this joint acts torque generated by 
spring (which is formed by two elastic bars). In Figure 3b the connection bet-
ween end tip of E-block (5) and suspension (4) may be regarded as two 
successive rotating joints with rotating axes perpendicular to each other. In the 
first joint acting torque generated by PZT micromotor (1) and spring (2) formed 
by so-called Φ-shape hinge. The second rotating joint is formed, like in previous 
case, by two elastic stripes (3). Seeing some similarities of the robot manipulators 
to the structure of drive transmission unit, one can be represented by kinematic 
chain consisting with kinematic pairs (perfectly stiff) connected by rotating (or 
prismatic) joints (with one degree of freedom). The real kinematic structure  
of the drive transmission unit presented in Figure 3 may be represented in simplified 
form as is shown in Figure 4. For simplicity the spring elements producing 
torque in joints are not represented in this figure.  

Rotating joint in Figure 4a here and after will be denoted by small letter 
“r”, the first rotating joint in Figure 4b will be denoted by capitol letter “R”, the 
second one, as in previous case will be denoted by small letter “r”. 
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Fig. 4. Schematic repre-
sentation of real kinematic 
chain of slider suspensions 

 
Whole kinematic chain of the drive transmission unit may be expressed by 
connection of bough and branches. Bough consists with E-block and rotating 
joint which is directly driven by VCM motor. Branches consist with slider suspension, 
slider gimbals, slider, heads etc. The number of branches joints and links 
depends on interpretations and what way the real kinematic chain of branches 
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was replaced by simplified kinematic chain, it may have at least one degree  
of freedom up to few (for example 3) degrees of freedom. Here and after 
kinematic chain of drive transmission unit represented by bough and branches 
will be called as the branched kinematic chain. Exemplary branched kinematic 
chain of drive transmission unit of head positioning system consists with bough 
and four branches with two degrees of freedom. Total numbers of degrees of 
freedom is equal 9 DoF in this case. This branched kinematic chain will be 
denoted by symbolic form “4G9rp” what means: four branches (G) nine degrees 
of freedom – branches type – “rp” (single branch consist of two joints rotating “r” 
and prismatic “p”). Small letter “p” denotes that translation axis of prismatic joint 
is perpendicular to rotating axis of bough. 
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Fig. 5. 4G9rp branched 
kinematic chain 

 
 
 
2. FORMULATION OF DYNAMIC EQUATIONS  
    – BLOCK MATRIX REPRESENTATION 

 
Mathematical model of branched kinematic chain may be expressed in 

terms of Lagrange equation, in matrix form as follows:  

QGqCqD =++ ���r               (1) 

where Dr, C, G, Q – matrices respectively: inertial, centrifugal and Coriolis force, 
gravitational force or torque, generalized forces; q�� , q�  – vectors of generalized: 
acceleration and speed. 
The crucial problem lies in haw formulate the inertial matrix Dr for branched 
kinematic chains. The procedure of Dr matrix formulation basing on following 
steps depicted in Figure 6. The procedure of formulation of drive system of 
head positioning system consists with eleven steps, but we focus on only the 
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most important steps crucial to proper and convenient formulation of dynamic 
equations of branched kinematics chain. 
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Fig. 6. Block diagram describing the way of dynamic model 
of head positioning system formulation 

 
Step 1. Forward kinematics – in this step it is necessary to describe the 

kinematic chain following the Denavit-Hartenberg rules [2]. Finishing this step 
the homogenous transformation matrix will be given for all coordinate system 
fixed with branched kinematic chain [3, 4, 6]. For chosen exemplary branched 
kinematic chain the described chain according to Denavit-Hartenberg rule is 
presented in Figure 7, separately for bough and single branch “a”. 
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Fig. 7. Description of kinematic chains:  
a) bough, b) exemplary branch. The common 
joint are denoted by bold dotted line 
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Fig. 8. Positions of mass centers of 
rp branch links 

 
Step 2. Forward kinematics of centers 

of gravity – in this step it is necessary to 
formulate homogenous matrices which 
describes the position and orientation for 
centers of gravity of every link in branched 
kinematic chain, in terms of base coordinate 
system (fixed with bough). In Figure 8 positions 
of mass centers for branches “a” is shown. 

 
General homogenous transformations matrices, determined with help  

of Denavit-Hartenberg rules, of mass centers of bough and first, second links  
of branches are given by: 
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where ac1, acg2, acg3, dg1 – positions and offsets of mass centers of branches 
g∈{a, b, c,…}, dg3 – translations of prismatic joints, s1, sg2, c1, cg2 – 
abbreviations of sine and cosine functions of angle Θ1, Θg2. Sign “±” changes to 
“+” for branches situated above base coordinate system. 
 

Step 3. Instantaneous kinematics of centers of gravity – in this step it is 
necessary to formulate jacobian matrices of every center of masses. Jacobian 
matrices expressing relation between vector of generalized joint speeds of 
branched kinematic chain and linear and angular speed vector in base coordinate 
system (fixed with bough). The general form of jacobian matrices is given by 
following formulas: 
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where z0 = [0,0,1]T; zg1, zg2 – unit vectors of coordinate systems which are given 
in homogenous matrices by Eqn. (2) and Eqn. (3) (every first three elements  
of third column), o0, og1, oc1, ocg1, ocg2, ocg3 – vectors representing origins  
of coordinates systems fixed with base, “r” joints, all center of masses (see 
Figure 5), S(zi) – skew symmetric matrix for vector zi. 
 

Step 4. Inertial matrix formulation – this is crucial point of the algorithm. 
In this step it is necessary to formulate the kinetic energy of branched kinematic 
chain. The kinetic energy of branched kinematic chain may be expressed by 
sum of kinetic energy of bough and consecutive branches: 

 

∑ ∑
=

++

++=

g

n

s
ggs

T
gsgsgs

T
gsgs

T
gsgs

T
g

TTTT

m

mE

2

0111111110

)(
2
1

)(
2
1

qJRIRJJJq

qJRIRJJJq

��

��

ωccccωcvcvcc

ωccccωcvcvcck

 (8) 

 
where gq�  – vector of generalized joint speeds, Jvcaj, Jωcaj – jacobians of linear 

[first rows of Eqns. (5-7)] and angular speed [second rows of Eqns. (5-7)],  
Rcgs – rotation matrices in homogenous transformation matrices given by Eqns. 
(2-4), Icgs – matrix of mass moment of inertia, mcgs – mass of the link concentrated 
in the center of masses. 
After that it is possible to rearrange the expression of kinetic energy according 
to generalized vector of joint speed to the quadratic form [1]:  
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Matrix Dr present in Eqn. (8) has internal structure correlated with real structure 
of branched kinematic chain. The block structure of inertial matrix is as follow: 
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where g ∈{a, b, c, …} – branch name, k – bough inertial matrix – 1×1, gk – bough- 
-branch mutual inertial coupling matrix – 1×n, g – branch inertial matrix – (n-1)×(n-1), 
n – sum of bough and single branch degrees of freedom.  
Matrix k of block matrix Dr consists on only one element, which is given by 
general form as follows:  
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where Jvc1_ij, Jvcgs_ij, Jωc1_ij, Jωcgs_ij – elements of jacobian matrices linear speed 
of bough and branches mass centers and angular speed of bough and 
branches mass centers respectively, rc1_ij, rvcgs_ij, rωcgs_ij – elements of rotation 
matrices of center of masses for bough and branches. 

For freely chosen branch “g”, general elements of inertial branch matrix 
are as follow, for diagonal elements (with column index k ≥ 2): 
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for elements lying outside the diagonal for rows w ≥ 2 and columns k > 2 with 
different subscripts:  
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The general forms for elements of inertia bough-branch mutual inertial coupling 
matrix are as follows: 
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for row w = 1 and column k ≥ 2.  
 
For specific “4G9rp” branched kinematic chain which is presented in Figure 5 
the following block matrix elements are as follow:  
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• k11 for k matrix: 
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• elements gij inertial branches matrices g are as follows: 
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• elements of inertia bough-branch mutual inertial coupling matrix gk: 
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The general structure of inertial matrix for “x_G_y_rp” kind of branched 

kinematic chain is in Figure 9 presented. When number of branches increases 
the inertial matrix extends for another column and row as is shown in Figure 9.  
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Fig. 9. Inertial 
matrix expansion 

 
Step 5. Coriolis and centrifugal force matrix formulation. These matrices 

are formulated basing on formulas given in [1-3]. 
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Step 6. Calculation of gravitational force matrix – it depends on position 
of whole drive with respect to gravitation field [2]. 

 
Step 7. Formulation of Lagrange equations. Having all necessary matri-

ces: inertial matrix Dr, centrifugal and Coriolis force matrix C, gravitational force 
or torque matrix G it is possible to rewrite Lagrange equations (1) to canonical 
form as follows: 
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In Eqn.(19) is necessary to invert inertial matrix Dr, it may be accomplish using 
its block structure.  
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For convenient matrix inversion we use definition of invert matrix: 
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and after some rearrangement we have: 

rrr D1DD det=adj   (22) 

where adjDr – adjunction matrix. 
Eqn. (22) may be written in block matrix form, as follow [1, 3, 4]: 
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In Eqn. (23) it is necessary to calculate unknown block elements Aij of block 
adjunction matrix. It results in 25 algebraic matrix equations to be solved. After 
inversion we get final inverted inertial block matrix [1]:  
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The k1 elementary bock matrix will be called as the leading elementary matrix  
of inverted bock matrix, and it is given by expression:  
 

11111
1 )( −−−−− −−−−= TTTT

kkkkkkkk dddcccbbbaaakk  (25) 
 
Expression of the leading elementary matrix extends when numbers of branches 
increases in very simple way which is shown in Figure 10.  
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Fig. 10. Expansion of the leading elementary matrix 

expression vs. number of branches increase 

 
The rest of diagonal elements are as follow: 
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When we add new fifth branch, then appears diagonal elements e1 described by 
formula: 
 

1111
11 ))(( −−−− +−= kkkk eeeekeee TT . (27) 
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4. IMPLEMENTATION OF “4G9RP” HEAD  
    POSITIONING SYSTEM 

 
Mathematical model of head positioning system with branched kinematic 

chain “4G9rp” with time optimal control system for position control is in Figure 11 
shown. Mathematical model of VCM motor is implemented in block subscribed 
by “VCM motor” and it is described in detail in [1]. In position time control 
algorithm the exactly knowledge about actual position and angular speed of 
bough is assumed. Time optimal control is implemented in block denoted by 
“TOC”. Mathematical model of branched kinematic chain was in “4G9rp” block 
implemented using “Matlab Function” sub block. The parameters of slider suspension 
driven by electrostatic motor, like stiffness and masses, were taken from [18] 
and uniformly used for all prismatic joints present in branched kinematic chain.  
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Fig. 11. Block schema of time optimal control of head positioning system 
with branched kinematic chain 

 
The angular displacement was used as reference signal in bough joint: 

45 degrees (at time t0 = 0 s), 10 degrees (at time t1 = 50 ms) and 45 degrees (at 
time t2 = 100 ms). Results of simulation are in Figures 12-17 presented. Angular 
displacement of bough is presented in Figures 12 and 13 presents the displacement 
of the head in perpendicular direction to the data track centre. 
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In Figure 14, the characteristic triangle shape of angular speed during time 
optimal control of bough joint is presented. The speed values reached more 
than 55 rad/s.  
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Linear displacement of slider/head in branch “a” relative to suspension is 

in Figure 15 presented. Maximum value of slider/head displacement in perpendicular 
direction to the center of data track reaching 6 nm during acceleration process 
(because of extremely high dumping ratio was assumed). When dumping ratio 
decreases 100 times (Fig. 16) the displacement of head during acceleration 
reached values close to 10 μm (this values is not reached in real case because 
of limited range of electrostatic motor motion to about 1 μm). 
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In next figures the electromagnetic variable of VCM motor during time 
optimal control of head positioning system are presented. In Figure 17 the 
torque generated by VCM motor is shown and corresponding to the torque 
armature current is presented in Figure 18.  
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Fig. 17. Electromagnetic torque generated by VCM motor 
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Fig. 18. Current flowing by VCM motor winding 

 
 
5. CONCLUSIONS 
 

Mathematical model of branched kinematic chain of head positioning 
system can be derived with the help of block matrix theory as well as in field  
of kinematics and dynamics. Formulated block matrices in chapter 2 have 
internal structure which corresponds to the structure of the branched kinematic 
chain; they consist with elementary inertial matrices related to bough, branches 
and expressions described mutual dynamic interactions between bough and 
branches links. The general expressions for all block matrices internal elements 
were given, as well as the method of inertial block matrix inversion.  

Presented method allows for fast implementation of different structure  
of branched kinematic chains for head positioning system, what is very valuable 
when the new methods supporting data areal densities increase are searching 
by manufacturers of hard disk drives.   

 
Scientific work financed from means for science in the years 2009 – 2011 as a research project 
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WYKORZYSTANIE MACIERZY BLOKOWYCH  
DO MODELOWANIA UKŁADU NAPĘDOWEGO  
ORAZ STEROWANIA DYSKÓW TWARDYCH 

 
 

Tomasz TRAWIŃSKI 
 

STRESZCZENIE       W artykule przedstawiono zastosowanie teorii 
macierzy blokowych do formułowania modeli matematycznych roz-
gałęzionych systemów pozycjonowania głowic pamięci masowych,  
z uwzględnieniem zwiększania liczby gałęzi łańcucha kinematycznego. 



152 T. Trawiński 

Metoda pozwala na zapisanie ogólnej postaci na każdy element 
macierzy bezwładnościowych przed i po jej odwróceniu. W rozdziale 3 
przedstawiono proces odwracania macierzy blokowej, a w rozdziale 4 
przedstawiono przykładowe wyniki symulacyjne, potwierdzające pra-
widłowe sformułowanie modeli. 

 


