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ABSTRACT

Purpose: To evaluate and compare the capability of ANFIS (Adaptive Neuro-Fuzzy-Inference 
System), ANN (Artificial Neural Network), and MNLR (Multiple Non-linear Regression) 
techniques in the estimation and formulation of Discharge Correction Factor (Cd) of modified 
Parshall flumes as based on linear relations and errors between input and output data.
Design/methodology/approach: Acknowledging the necessity of further research in 
this field, experiments were conducted in the Hydraulics Laboratory of Civil Engineering 
Department, National Institute of Technology, Kurukshetra, India. The Parshall flume 
characteristics, associated longitudinal slopes and the discharge passing through the flume 
were varied. Consequent water depths at specific points in Parshall flumes were noted 
and the values of Cd were computed. In this manner, a data set of 128 observations was 
acquired. This was bifurcated arbitrarily into a training dataset consisting of 88 observations 
and a testing dataset consisting of 40 observations. Models developed using the training 
dataset were checked on the testing dataset for comparison of the performance of each 
predictive model. Further, an empirical relationship was formulated establishing Cd as a 
function of flume characteristics, longitudinal slope, and water depth at specific points using 
the MNLR technique. Moreover, Cd was estimated using soft computing tools; ANFIS and 
ANN. Finally, a sensitivity analysis was done to find out the flume variable having the greatest 
influence on the estimation of Cd.
Findings: The predictive accuracy of the ANN-based model was found to be better than 
the model developed using ANFIS, followed by the model developed using the MNLR 
technique. Further, sensitivity analysis results indicated that primary depth reading (Ha) as 
input parameter has the greatest influence on the prediction capability of the developed 
model.
Research limitations/implications: Since the soft computing models are data based 
learning, hence the prediction capability of these models may dwindle if data is selected 
beyond the current data range, which is based on the experiments conducted under specific 
conditions. Further, since the present study has faced time and facility constraints, hence 
there is still a huge scope of research in this field. Different lateral slopes, combined lateral-
longitudinal slopes, and more modified Parshall flume models of larger sizes can be added 
to increase the versatility of the current research.
Practical implications: Cd of modified Parshall flumes can be predicted using the ANN-
based prediction model more accurately as compared to other considered techniques.
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Originality/value: The comparative analysis of prediction models, as well as the 
formulation of relation, has been conducted in this study. In all the previous works, little to 
no soft computing techniques have been applied for the analysis of Parshall flumes. Even 
the regression techniques have been applied only on Parshall flumes of standard sizes. 
However, this paper includes not only Parshall flume of standard size but also a modified 
Parshall flume in its pursuit of predicting Cd with the help of ANN and ANFIS based 
prediction models along with MNLR technique.
Keywords: Parshall flumes, Discharge Correction Factor, Adaptive Neuro-Fuzzy Inference 
System, Artificial Neural Network, Multiple Non-linear Regression
Reference to this paper should be given in the following way: 
D. Saran, N.K. Tiwari, Estimation of discharge correction factor of modified Parshall flume 
using ANFIS and ANN, Archives of Materials Science and Engineering 105/1 (2020) 17-30. 
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flumes. Even the regression techniques have been applied only on Parshall flumes of standard sizes. However, this paper 
includes not only Parshall flume of standard size but also a Modified Parshall flume in its pursuit of predicting Cd with the 
help of ANN and ANFIS based prediction models along with MNLR technique. 
Keywords: Parshall flumes; Discharge Correction Factor; Adaptive Neuro-Fuzzy inference system; Artificial Neural Network; 
Multiple nonlinear regression. 
 
 
 
 
 
 
 
 
 
 
1. Introduction 

 
It becomes a matter of prime importance for a hydraulic 

engineer to accurately measure the irrigation water as it is 
conveyed to the farmers from canals and ditches [1]. 
Defective measurements lead to a reduction in the supply of 
water to farms to such an extent that it causes a serious 
hindrance in the full maturity of crops, thus causing 
insurmountable losses to the farmer [2]. 

Weirs were one of the earliest devices which were 
installed for accurate measurement of discharge. However, 
high loss of head, combined with constant choking of weirs 
due to debris, demanded periodic maintenance of weirs. As 
a result, over the years, the popularity of weirs decreased [3]. 

These problems ended with the invention of Parshall 
Flume, created by R.L. Parshall in 1928. Originally known 
as "Improved Venturi Flume", it was a modified version of 
Venturi Flume created by V.M. Cone in 1917. The basic 

modifications were the reduction in convergence and 
divergence angles, along with the elongation of throat and 
inclusion of a drop through the throat of the flume [1,4]. Due 
to the presence of converging side walls as well as drop in 
the floor, the water passing through the flume is accelerated 
and gradually transforms from subcritical flow to 
supercritical flow. As a result, the problem of choking of 
flume due to debris is eliminated [5]. Furthermore, accurate 
measurement of discharge now becomes possible by taking 
just one water depth reading at a specific point in the flume 
[1,2,6,7]. The sketch of the Parshall Flume has been shown 
in Figure 1. 

Hordes of studies have been conducted by various 
investigators around the world, providing different formulae 
for the calculation of discharge. S.R. Abt, et.al. [8] 
conducted experiments on a 7.62 cm Parshall flume at 
varying longitudinal slopes and provided a formula for 
measurement of discharge. Similarly, S.R. Abt, et.al. [9]  
 

 
 

Fig. 1. Sketch of Parshall flume 

1.	��Introduction
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ran experiments on the Parshall flume of the same size, 
however in this case the discharge measurement formula 
was established taking into account the effect of lateral 
slopes. This was followed by A. Genovez, et.al. [10], who 
carried out experiments on 30.5 cm and 61 cm flumes. Here 
the effects of all three i.e., lateral slopes, longitudinal slopes, 
and combined lateral-longitudinal slopes were studied, with 
correction factors being formulated for each of the three 
effects. The results of the study were then compared with the 
similarly conducted tests on 2.54 cm, 5.08 cm, and 7.62 cm 
Parshall Flumes. Subsequently, S. Abt, et.al. [11] conducted 
experiments on 30.5 cm Parshall flume under different 
lateral slopes. In this case, variation in submergence 
conditions was also introduced. Henceforth, 2 corrections, 
one for submerged conditions and another for lateral slopes 
were formulated in this case. Similar, but advanced 
experiments were performed by S.R. Abt, et.al. [12] on 2.54 
cm, 5.08 cm, 7.62 cm, 30.4 cm, and 61 cm size flumes under 
varying lateral slopes, longitudinal slopes, and submergence 
conditions, with correction factors being formulated for each 
anomaly. B.J. Heiner, et.al. [13] carried out experiments on 
61 cm Parshall flume and studied the effects of incorrect 
Staff Gauge location as well as absence and incorrect design 
of entrance wing walls on the discharge formula of the 
flume. Accordingly, correction factors were given for each 
anomaly. 

The application of Soft computing and regression 
techniques has notably gained popularity in recent times. 
New artificial intelligence methods have been successfully 
applied for the prediction of required data. Correction 
factors have been computed successfully using linear 
regression analysis and multiple variable regression analysis 
by [8-12]. Further, prediction models have been developed 
in recent times using soft computing techniques during the 
analysis of various aspects of Parshall flumes. B.M. Savage, 
et.al. [14] used Flow 3D, a Computational fluid dynamics 
(CFD) software to validate the usage of numerical modelling 
in creating discharge correction coefficients for Parshall 
Flumes of different sizes possessing varying head location 
conditions and entrance locations. N.K. Tiwari, et.al. [15] 
used ANFIS, ANN, and Fuzzy Logic for the prediction of 
oxygen transfer in the case of modified Parshall flumes. 
Similarly, M. Kumar, et.al. [16] applied Kernel function 
based regression approaches for estimating the oxygen 
transfer performance of plunging hollow jet aerator. Finally, 
D. Bodana, et.al. [17] applied ANN as well as Gaussian 
process regression (GPR) for the estimation of penetration 
depth in plunging hollow jet. 

In this work, the predictive accuracy of Adaptive neuro-
fuzzy inference system (ANFIS), Artificial neural network 
(ANN), and Multiple nonlinear regression (MNLR) 

techniques have been analyzed by checking the prediction of 
Cd by the above-mentioned techniques. This was done using 
the data obtained by conducting various experiments in the 
laboratory. The value of Cd has been correlated with six 
variables: Throat width (W), Throat length (F), Sill height 
(K), Longitudinal slope (S), water depth reading at primary 
point (Ha), and at a secondary point (Hb) in the flume. The 
performance of the developed models was compared 
amongst themselves. Finally, sensitivity analysis was carried 
out to find the most influential input parameter. 
 
2. Materials and methods 
 
2.1. Experimental setup and collection of data 
 

The experiments were conducted in a standard 
recirculating channel 4 m long, 0.25 m wide, and 0.30 m deep. 
The channel possessed a maximum discharge capacity of 
approximately 6 L/s. It was connected to a recirculating closed 
device, which continuously supplied water to the channel by 
redrawing water from the storage tank 1.27 m long, 0.635 m 
wide, and 0.635 m deep. The actual discharge through the 
channel was measured with the help of Cipoletti Weir 
installed downstream of the channel, using the formula [18]; 

 

Q=3.367 LH1.5  (1) 
 

in which L=Weir Length (ft.), H=Head (ft.) and 
Q=Discharge (cfs). However, in metric units, the formula 
becomes: 
 

Q=1.857 LH1.5  (2) 
 

where L=Weir Length (m), H=Head (m) and Q=Discharge 
(m3/s). The Cipoletti Weir used in the Laboratory was found 
to have Weir Length (L) = 0.142 m, hence the formula boiled 
down to: 

 

Q= (0.263694 H1.5) ×1000  (3) 
 

where H=Head (m) and Q=Discharge (L/s). This flow 
passing through the channel was controlled with the help of 
a flow regulating valve. The experimental setup has been 
shown with the help of a schematic diagram in Figure 2. 

A Parshall flume of width 2.54 cm and a modified 
Parshall flume of width 3.18 cm were constructed and 
installed in the working section of the tilting channel. The 
dimensions of the Parshall flume and Modified Parshall 
flume used in the current study have been given in Table 1.  

To ensure complete inflow of water through the Parshall 
flume and modified Parshall flume, wing walls were 
constructed and fitted at the entrance and exit of the flumes. 
A typical view of model Parshall flume has been shown in 
Figure 3. 

2.	�Materials and methods

2.1.	�Experimental setup and collection of data
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Fig. 2. Illustrative diagram of the experimental setup 
 

Table 1. 
Measurements of utilized models 

S. 
No Model 

Width of 
the throat, 

W, cm 

Length of 
the throat, 

F, cm 

Height of 
Sill, K, 

cm 

1. Parshall 
flume 2.54 7.62 1.91 

2. 
Modified 
Parshall 
flume 

3.18 8.57 1.98 

 

 
 

Fig. 3. View of a Parshall flume model 
 

To simulate longitudinal settlements, wooden planks 
were constructed and installed lifting the upstream section 
of the flumes, thereby creating a longitudinal differential 
settlement between the upstream and downstream sections 
of the flume. A series of 128 tests were conducted, with the 
flow rate ranging from 0.304 l/s to 4.936 l/s. Flume slopes 
of 0, 2.1, 4.2, and 6.3% were tested, with 32 tests being 
performed under each slope. During each test, the actual 
discharge, obtained using Cipoletti weir, and the measured 
discharge was recorded. The measured discharge was found 
using the relation given by [7]; 

Q=0.338 Ha
1.55    (4) 

 
where Q=Discharge (cfs) and Ha=Flow depth (ft). However, 
in Metric units the formula changes to: 

 
Q=0.0479 Ha

1.55  (5) 
 

in which Q=Discharge (L/s) and Ha=Primary flow depth 
(cm).  
 

The test procedure was same for all the 128 tests. Once 
the Parshall flume was installed at the target slope, flow was 
initiated. The flow took approximately 15 minutes after its 
initiation to achieve a steady-state. After achieving steady-
state, the flow depth in the respective flume was measured 
at 2 specific points, namely Ha and Hb with the help of a 
point gauge. Utmost care has been taken while measuring Ha 
and Hb using point gauges with least count 0.01 mm. While 
Ha is the depth of water at a point 2/3rd upstream of the crest 
of the flume, Hb is the depth just upstream of the junction of 
the throat and diverging section of the flume. Further, both 
the depths were measured taking the floor of the converging 
section as zero elevation. The locations of Ha and Hb have 
been shown in Figure 1. Consequently, the value of 
measured discharge was calculated corresponding to the 
actual discharge passing through the flume. After this, the 
discharge was increased, and the process was repeated. 
Upon successful completion of all tests for a particular slope, 
the slope was changed, and a similar test process was 
adopted for the new slope. Further, after completion of all 
the experiments for one flume, another flume was installed 
in the channel and the same process was repeated. With the 
actual discharge and measured discharge values for each of 
the 128 tests recorded, the Discharge Correction Factor (Cd) 
was computed as the ratio of actual discharge to the 
measured discharge which is given as: 

 

Cd= Actual discharge/Measured Discharge  (6) 
 

As mentioned earlier, since:  
 

Actual Discharge = (0.263694 H1.5) ×1000  (7) 
 

and  
 

Measured Discharge = 0.0479 Ha
1.55  (8) 

 

Henceforth: 
 

Cd= {(0.263694 H1.5) ×1000}/ (0.0479 Ha
1.55) (9) 

 

So in this way, Cd for each of the 128 tests were 
computed. The dataset acquired by performing all the 
experiments has been presented in Table 2. 
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Table 2.  
Experimental Dataset 
Throat width of 
model, W, cm 

Throat length of 
model, F, cm 

Sill height of 
model, K, cm 

Longitudinal 
slope, S, % Ha, cm Hb, cm Cd, Output 

2.54 7.62 1.91 0 4.66 2.96 0.584 
2.54 7.62 1.91 0 8.92 7.92 0.821 
2.54 7.62 1.91 0 12.1 8.64 0.892 
2.54 7.62 1.91 0 14.65 10.03 0.88 
2.54 7.62 1.91 0 17.3 12.33 0.879 
2.54 7.62 1.91 0 19.49 14.55 0.84 
2.54 7.62 1.91 0 20.95 15.64 0.845 
2.54 7.62 1.91 0 21.83 16.23 0.866 
2.54 7.62 1.91 0 5.2 0.73 0.493 
2.54 7.62 1.91 0 8.7 3.42 0.853 
2.54 7.62 1.91 0 12.14 7.06 0.889 
2.54 7.62 1.91 0 14.89 9.71 0.858 
2.54 7.62 1.91 0 17.55 12.43 0.86 
2.54 7.62 1.91 0 19.51 14.02 0.84 
2.54 7.62 1.91 0 21.03 15.54 0.841 
2.54 7.62 1.91 0 21.86 16.17 0.864 
2.54 7.62 1.91 2.1 3.62 0.83 0.864 
2.54 7.62 1.91 2.1 8.28 2.46 0.921 
2.54 7.62 1.91 2.1 11.58 5.27 0.955 
2.54 7.62 1.91 2.1 14.22 7.66 0.922 
2.54 7.62 1.91 2.1 16.67 11.31 0.931 
2.54 7.62 1.91 2.1 18.74 12.87 0.894 
2.54 7.62 1.91 2.1 20.22 13.79 0.893 
2.54 7.62 1.91 2.1 21.18 15.24 0.907 
2.54 7.62 1.91 2.1 4.77 1.44 0.563 
2.54 7.62 1.91 2.1 8.6 2.52 0.869 
2.54 7.62 1.91 2.1 11.48 5.86 0.968 
2.54 7.62 1.91 2.1 14.13 8.35 0.931 
2.54 7.62 1.91 2.1 16.76 11.55 0.923 
2.54 7.62 1.91 2.1 18.66 12.91 0.899 
2.54 7.62 1.91 2.1 20.11 14.26 0.901 
2.54 7.62 1.91 2.1 21.16 15.2 0.908 
2.54 7.62 1.91 4.2 4.6 0.5 0.596 
2.54 7.62 1.91 4.2 8.09 2.31 0.955 
2.54 7.62 1.91 4.2 11.7 6.37 0.94 
2.54 7.62 1.91 4.2 14.03 7.86 0.941 
2.54 7.62 1.91 4.2 16.79 10.67 0.921 
2.54 7.62 1.91 4.2 18.58 12.52 0.906 
2.54 7.62 1.91 4.2 20.01 14.48 0.908 
2.54 7.62 1.91 4.2 20.96 14.79 0.922 
2.54 7.62 1.91 4.2 3.66 2.13 0.85 
2.54 7.62 1.91 4.2 7.83 2.2 1.005 
2.54 7.62 1.91 4.2 11.57 5.89 0.956 
2.54 7.62 1.91 4.2 14.15 8.16 0.929 
2.54 7.62 1.91 4.2 16.59 10.58 0.938 
2.54 7.62 1.91 4.2 18.75 12.5 0.893 

http://www.archivesmse.org
http://www.archivesmse.org


22

D. Saran, N.K. Tiwari

Archives of Materials Science and Engineering RESEARCH PAPER

Throat width of 
model, W, cm 

Throat length of 
model, F, cm 

Sill height of 
model, K, cm 

Longitudinal 
slope, S, % Ha, cm Hb, cm Cd, Output 

2.54 7.62 1.91 4.2 19.95 13.89 0.912 
2.54 7.62 1.91 4.2 21.05 14.5 0.916 
2.54 7.62 1.91 6.3 5.15 1.2 0.5 
2.54 7.62 1.91 6.3 9.07 3.66 0.8 
2.54 7.62 1.91 6.3 11.9 5.48 0.916 
2.54 7.62 1.91 6.3 13.68 8.34 0.979 
2.54 7.62 1.91 6.3 17.07 10.52 0.897 
2.54 7.62 1.91 6.3 19.17 12.8 0.863 
2.54 7.62 1.91 6.3 20.63 14.18 0.866 
2.54 7.62 1.91 6.3 21.57 15.8 0.882 
2.54 7.62 1.91 6.3 5.31 0.75 0.477 
2.54 7.62 1.91 6.3 7.34 1.39 1.111 
2.54 7.62 1.91 6.3 12 5.9 0.904 
2.54 7.62 1.91 6.3 14.57 8.42 0.888 
2.54 7.62 1.91 6.3 17.2 10.85 0.887 
2.54 7.62 1.91 6.3 19.32 12.91 0.852 
2.54 7.62 1.91 6.3 20.66 14.38 0.864 
2.54 7.62 1.91 6.3 21.57 14.83 0.882 
3.18 8.57 1.98 0 5.03 1.48 0.516 
3.18 8.57 1.98 0 8.03 2.28 0.966 
3.18 8.57 1.98 0 10.69 4.49 1.081 
3.18 8.57 1.98 0 13.15 6.61 1.041 
3.18 8.57 1.98 0 15.28 8.76 1.066 
3.18 8.57 1.98 0 16.89 10.45 1.05 
3.18 8.57 1.98 0 18.15 11.74 1.056 
3.18 8.57 1.98 0 19.11 12.5 1.064 
3.18 8.57 1.98 0 4.3 1.79 0.662 
3.18 8.57 1.98 0 8.03 2.03 0.966 
3.18 8.57 1.98 0 10.6 4.44 1.096 
3.18 8.57 1.98 0 12.81 6.3 1.084 
3.18 8.57 1.98 0 15.47 9.07 1.045 
3.18 8.57 1.98 0 17.04 10.59 1.037 
3.18 8.57 1.98 0 18.23 11.52 1.049 
3.18 8.57 1.98 0 19.08 12.47 1.067 
3.18 8.57 1.98 2.1 4.88 1.14 0.544 
3.18 8.57 1.98 2.1 7.72 1.59 1.027 
3.18 8.57 1.98 2.1 10.62 4.09 1.092 
3.18 8.57 1.98 2.1 12.89 6.25 1.073 
3.18 8.57 1.98 2.1 15.27 8.38 1.066 
3.18 8.57 1.98 2.1 17.13 10.19 1.027 
3.18 8.57 1.98 2.1 18.57 11.63 1.019 
3.18 8.57 1.98 2.1 19.44 12.43 1.036 
3.18 8.57 1.98 2.1 4.47 1.02 0.623 
3.18 8.57 1.98 2.1 7.84 1.42 1.003 
3.18 8.57 1.98 2.1 10.67 3.94 1.084 
3.18 8.57 1.98 2.1 12.99 6.38 1.061 
3.18 8.57 1.98 2.1 15.34 8.44 1.059 
3.18 8.57 1.98 2.1 17.34 10.17 1.008 
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Throat width of 
model, W, cm 

Throat length of 
model, F, cm 

Sill height of 
model, K, cm 

Longitudinal 
slope, S, % Ha, cm Hb, cm Cd, Output 

3.18 8.57 1.98 2.1 18.5 11.53 1.025 
3.18 8.57 1.98 2.1 19.29 12.47 1.049 
3.18 8.57 1.98 4.2 4.77 0.13 0.563 
3.18 8.57 1.98 4.2 7.93 1.52 0.985 
3.18 8.57 1.98 4.2 10.65 3.81 1.088 
3.18 8.57 1.98 4.2 13.04 5.95 1.054 
3.18 8.57 1.98 4.2 15.48 8.33 1.044 
3.18 8.57 1.98 4.2 17.35 9.89 1.007 
3.18 8.57 1.98 4.2 18.72 11.26 1.007 
3.18 8.57 1.98 4.2 19.5 12.04 1.031 
3.18 8.57 1.98 4.2 4.39 1.2 0.641 
3.18 8.57 1.98 4.2 7.52 0.87 1.07 
3.18 8.57 1.98 4.2 10.7 3.64 1.08 
3.18 8.57 1.98 4.2 12.89 5.87 1.073 
3.18 8.57 1.98 4.2 15.23 7.93 1.071 
3.18 8.57 1.98 4.2 17.13 9.86 1.027 
3.18 8.57 1.98 4.2 18.37 11.1 1.037 
3.18 8.57 1.98 4.2 19.25 11.84 1.052 
3.18 8.57 1.98 6.3 5.05 0.65 0.516 
3.18 8.57 1.98 6.3 7.84 1.1 1.003 
3.18 8.57 1.98 6.3 10.59 4.07 1.097 
3.18 8.57 1.98 6.3 13.16 5.51 1.039 
3.18 8.57 1.98 6.3 15.56 7.67 1.036 
3.18 8.57 1.98 6.3 17.46 9.32 0.997 
3.18 8.57 1.98 6.3 18.46 11.29 1.029 
3.18 8.57 1.98 6.3 18.74 11.41 1.097 
3.18 8.57 1.98 6.3 3.73 0.22 0.825 
3.18 8.57 1.98 6.3 7.16 0.45 1.154 
3.18 8.57 1.98 6.3 9.99 2.91 1.201 
3.18 8.57 1.98 6.3 12.41 4.78 1.139 
3.18 8.57 1.98 6.3 14.89 7.77 1.11 
3.18 8.57 1.98 6.3 16.87 8.81 1.052 
3.18 8.57 1.98 6.3 18.11 10.64 1.06 
3.18 8.57 1.98 6.3 19.01 11.61 1.073 

 
2.2. Data set 
 

The data set used in the soft computing techniques 
consisted of 128 experimental observations. Further, this 
data was bifurcated into 2 data sets, viz., Training dataset (88 
observations) and Testing dataset (40 observations). 
Random selection was done from the total readings for the 
formation of the training dataset and testing dataset. The 
input parameters were Throat width of flume (W in cm), 
Throat length of flume (F in cm), Sill height of flume (K in 
cm), Longitudinal slope (S in %) and water depths at specific 
points (Ha in cm and Hb in cm) while the output parameter 
was Discharge correction factor (Cd). The salient features of 
training and testing datasets have been tabulated in Table 3. 

2.3. Modelling techniques and application in the 
present problem 
 
Multiple nonlinear regression (MNLR) 

The usage of nonlinear regression is highly encouraged 
in cases where the linear models are not capable of 
modelling complex phenomena. In the present study, a 
multiple-nonlinear relationship has been considered by 
taking Cd as the dependent variable and the parameters W, 
F, K, S, Ha, and Hb as the independent variables. The 
nonlinear regression was established using training data set 
expressing Cd in terms of W, F, K, S, Ha, and Hb based on 
the following relationship: 

2.3.	�Modelling techniques and application in the 
present problem

2.2.	�Data set
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Cd = (pr1×W)+ (pr2×F)+ (pr3×K)+(pr4×S)+ (pr5×Ha)+ 
+(pr6×Hb) +pr7  (10) 
 

where pr1, pr2, pr3, pr4, pr5, pr6, and pr7 are constants 
associated with the corresponding variables. Application of 
Multiple nonlinear regression yielded the following 
relationship: 

 

Cd = (0.0021×W) + (0.0791×F) + (-0.1085×K) + 
+(-0.0047×S) + (0.0691×Ha) + (-0.0681×Hb) + 0.0942 (11) 

 

where W, F, K, Ha, and Hb are in cm and S is in %. 
 

ANFIS 
Adaptive Neuro-Fuzzy Inference System, also known as 

Adaptive Network-based fuzzy inference system (ANFIS), 
is a soft computing technique which integrates both fuzzy-
logic and neural network principles, primarily because of its 
ability to encapsulate the benefits of both the techniques in 
a single structure [19]. Delving into the architecture of 
ANFIS reveals that the structure of ANFIS consists of five 
layers, namely the fuzzification layer, the rule layer, the 
normalization layer, the defuzzification layer, and the 
summation layer. Similar to ANN, ANFIS also uses a 
training dataset to realize its learning. In this way, the most 
suitable ANFIS structure about the target problem is 
obtained. This obtained structure is then subjected to a set of 
data points which the structure has never seen before, known 

as testing data. The aim of subjecting the obtained ANFIS 
structure to testing data is to see its impact on completely 
unknown data. The suitability of the subjected ANFIS 
structure is indicated by the error values given by the ANFIS 
model. Lower the error values, the more suitable the ANFIS 
model [20]. One such ANFIS based model developed using 
the Gaussian membership function (MF) has been shown in 
Figure 4. 

 

 
 

Fig.4. View of an ANFIS-based model 
 
Table 3. 
Features of Training Data and Testing Data 

Training 
Parameter W F K S Ha Hb Cd 

Unit cm cm cm % cm cm - 
Min 2.54 7.62 1.91 0 3.62 0.13 0.477 
Max 3.18 8.57 1.98 6.3 21.86 16.17 1.201 
Mean 2.86 8.095 1.945 3.15 14.226 8.238 0.936 

Median 2.86 8.095 1.945 3.15 15.37 8.94 0.948 
Std. 

Deviation 0.321 0.477 0.035 2.361 5.468 4.860 0.148 

Kurtosis -2.047 -2.047 -2.047 -1.369 -1.102 -1.290 1.867 
Skewness -4.48227E-14 -8.3E-14 2.23E-13 6.48E-16 -0.441 -0.170 -1.309 

Testing 
Parameter W F K S Ha Hb Cd 

Unit cm cm cm % cm cm - 
Min 2.54 7.62 1.91 0 3.73 0.22 0.5 
Max 3.18 8.57 1.98 6.3 21.83 16.23 1.138 
Mean 2.86 8.095 1.945 3.15 13.259 7.393 0.923 

Median 2.86 8.095 1.945 3.15 13.905 8.245 0.935 
Std. 

Deviation 0.324 0.481 0.035 2.377 5.104 4.525 0.163 

Kurtosis -2.108 -2.108 -2.108 -1.380 -0.868 -1.069 1.253 
Skewness -1.93997E-14 2.04E-14 6.9E-14 1.41E-15 -0.381 0.011 -1.290 
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Artificial Neural Network (ANN) 
Artificial Neural Networks (ANNs) are computational 

programs biologically inspired by the neural networks 
constituting the animal brain. ANNs collect their knowledge 
by observing patterns in the input data and henceforth  
train themselves through experience, and not through 
programming.  

A typical ANN consists of an input layer, one or more 
hidden layers, and an output layer. Each layer consists of 
Processing Elements (PEs), also known as artificial neurons 
inspired by the neurons present in the human brain. All the 
neurons are connected to each other. Technically, the 
connections are known as edges. Hence, neurons and edges 
together constitute a neural network. These neurons and 
edges have a coefficient associated with them, known as 
weight, which adjusts itself as the training proceeds [21]. 

After structuring of an ANN, it is required to train it. 
There are two ways to train a particular ANN, namely 
supervised learning and unsupervised learning [21]. In our 
current study, we have used a particular class of ANN of 
supervised learning where Multilayer Perceptron (MLP) has 
been utilized with the help of WEKA open-source software. 
In the case of MLP, the neurons do not form a cycle, and 
hence it is a type of feedforward neural network. Further, 
MLP uses a supervised learning technique known as 
backpropagation for its training. MLP is sometimes 
informally also referred to as a "vanilla" neural network, 
especially when it consists of only a single hidden layer [22]. 
Figure 5 shows an ANN structure developed for the current 
study consisting of 6 input variables constituting an input 
layer, 9 neurons constituting a hidden layer, and an output 
(Cd) constituting an output layer. 
 

 
 

Fig. 5. View of an ANN structure 
 

ANN has been used extensively for solving problems in 
the field of water resources engineering. I.A. Juma, et.al. 
[23] analysed hydraulic characteristics of hollow semi-

circular weirs using ANN. Similarly, G. Tayfur, et.al. [24] 
applied MLP for estimating hydraulic conductivity in 
heterogeneous, unconfined aquifers. Furthermore, N.K. 
Tiwari, et.al. [25] applied ANFIS and ANN for the purpose 
of estimating the sediment removal efficiency of tunnel 
desilter. Lastly, N.K. Tiwari [26] implemented ANFIS, 
ANN and Fuzzy Logic (FL) with the aim of developing 
models which can be used for the estimation of oxygen 
aeration efficiency of hydraulic jump under sluice gate. 
 
2.4. Implementation of ANFIS, ANN, and MNLR 
techniques 
 

Implementation of ANN, ANFIS, and MNLR requires 
the optimization of user-defined parameters, which was 
performed by applying several trials on the training data set 
as well as the testing data set. The accuracy of each trial was 
evaluated using two widespread statistical measures, namely 
the Coefficient of Correlation (CC) and Root Mean Square 
Error (RMSE). The smaller value of RMSE concludes a 
closer estimation of the experimental data by models, 
whereas larger values of CC infers to a stronger matching of 
trends in the experimental data by the predictions of the 
model. The accepted values of various user-defined 
parameters obtained after several trials have been given in 
Table 4. 
 
Table 4.  
User-defined parameters for models 
Technique User Defined Parameters 
ANFIS No. of membership functions (MFs): 3 3 3 3 3 3, 

Input MF Types: 
Gaussian MF(GAUSSMF), Triangular 
MF(TRIMF), Generalized Bell shaped MF 
(GBELLMF), Trapezoidal MF (TRAPMF) 

ANN Neurons:9, Learning Rate:0.3, 
Momentum:0.3, No. of Epochs: 500 

MNLR User defined 
Function:Y=(pr1×X1)+(pr2×X2)+(pr3×X3)+ 
+(pr4×X4)+ (pr5×X5)+(pr6×X6)+pr7 

 
 
3. Modeling results 
 
3.1. Results of the MNLR model 
 

The values predicted by the relationship obtained using 
the MNLR model were plotted against the observed values 
of their respective training as well as testing datasets, as 
shown in Figure 6.  

2.4.	�Implementation of ANFIS, ANN, and MNLR 
techniques

3.	�Modeling results

3.1.	�Results of the MNLR model
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Table 5.  
Performance segment of the models 

Model  Testing Data Rank 
 CC RMSE MAE MSE SDR  

ANFIS_GAUSSMF 0.8531 0.0998 0.0630 0.0099 0.0985 2 
ANFIS_TRIMF 0.6937 0.2237 0.1250 0.0500 0.2255 4 

ANFIS_GBELLMF 0.5100 0.7133 0.2590 0.5088 0.7090 5 
ANFIS_TRAPMF 0.4818 0.6656 0.2330 0.4430 0.6605 6 

ANN 0.8852 0.0776 0.0500 0.0060 0.0785 1 
MNLR 0.7884 0.1023 0.0670 0.0104 0.1035 3 

 

 
Fig. 6. Actual vs. Predicted Values of Cd using MNLR 
technique  
 

The regression equation which has been plotted in the 
figure reveals that the predicted values of Cd of training and 
testing data points lie closer to the line of perfect agreement. 
This clearly indicates a good estimation by the developed 
functional relationship. The values of CC, RMSE, Mean 
absolute error (MAE), Mean Squared error (MSE) and 
Standard deviation for residual (SDR) yielded by testing 
data were 0.7884, 0.1023, 0.0670, 0.0104 and 0.1035 
respectively (Tab. 5). 
 
3.2. Results of ANFIS models 
 

The development of ANFIS models was done using the 
hit-and trial process. Implementation of ANFIS in the 
current study was done using MATLAB, and it was a 
Sugeno type of approach, as shown in Figure 7. 

Designing an ANFIS model involves defining the 
number of MFs (membership functions) as well as input and 
output MF types. As an example, the rule diagram for Cd 
obtained using Gaussian MF (GAUSSMF) has been 
depicted in Figure 8. In the current study, five statistical 
measures, namely CC, RMSE, MAE, MSE and SDR yielded 
by different models obtained by adding different types of  
 

 
 

Fig. 7. Sugeno type of approach of ANFIS 
 

 
 

Fig. 8. Rules for Cd using Gaussian MF 
 
MFs were evaluated one by one, and the performance of each of 
these models was examined by analysing the value of CC in case 
of testing data. As shown by Figure 9 and Table 5, the GAUSSMF 
based model exhibits the highest predictive accuracy with 
CC=0.8531. In fact, the values of other parameters, RMSE=0.0998, 
MAE=0.0630, MSE=0.0099 and SDR=0.0985 are also impressive. 
GAUSSMF is followed by TRIMF, GBELLMF, and lastly, 
TRAPMF based model. 
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Fig. 9. Actual vs. Predicted Values of Cd using various 
ANFIS based model 
 
3.3. Results of the ANN model 
 

The development of the ANN model was also a trial and 
error process. Multilayer Perception (MLP) was used for the 
purpose of modelling. After several runs, it was decided that 
the model used in the current study will consist of 1 hidden 
layer. The hidden layer consisted of 9 neurons, with 
Momentum=0.3, learning rate=0.3, and no. of epochs=500. 
The values of CC, RMSE, MAE, MSE and SDR obtained 
using this ANN model were 0.8852, 0.0776, 0.0500, 0.0060 
and 0.0785 for the testing dataset. The performance of the 
ANN model has been shown in Figure 10. 
 
3.4. Comparison of models 
 

Comparison among ANFIS, ANN, and MNLR based 
models indicates that the ANN-based model showcases 
highest predictive accuracy as compared to other models as 
the value of CC is highest (Tab. 5) and values are lying very 
 

 

 
 

Fig. 10. Actual vs. Predicted Values of Cd using ANN 
 
near to perfect line in comparison to other soft computing 
techniques, while the comparison within only ANFIS-based 
models shows that Gaussian MF-based model works better 
than other MF-based models. 

To compare the performance of various models, the 
values of CC, RMSE, MAE, MSE and SDR yielded by each 
model on testing data were analysed, which has been 
summarised in Table 5. Using this methodology of 
performance evaluation, the overall ranking of various 
models in the prediction of Cd is as follows: ANN (1st), 
ANFIS_GAUSSMF (2nd), MNLR (3rd), ANFIS_TRIMF 
(4th), ANFIS_GBELLMF (5th) and lastly, ANFIS_TRAPMF 
(6th). The performance of various ANFIS based soft 
computing models has been shown in Figure 11. 
 
3.5. Sensitivity analysis  
 

To find out the most influential input variable in the 
prediction of Cd, a sensitivity analysis was conducted. Since 
the ANN-based model showed the highest predictive 
accuracy for the used data set, hence sensitivity analysis was 
also conducted using the ANN-based model only.  

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1 1,2 1,4

Es
tim

at
ed

  C
d

Observed Cd

TRAINING
PERFECT‐
LINE

ANFIS_GA
USSMF

ANFIS_TRI
MF

ANFIS_GB
ELMF

ANFIS_TR
APMF

0

0,5

1

1,5

2

0 0,5 1 1,5 2

Es
tim

at
ed

 C
d

Observed  Cd

TESTING
PERFECT‐
LINE
ANFIS_GAU
SSMF
ANFIS_TRI
MF
ANFIS_GBE
LLMF
ANFIS_TRA
PMF

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1 1,2 1,4

Es
tim

at
ed

  C
d

Observed Cd

TRAINING

PERFECT‐
LINE

ANN

0

0,5

1

1,5

2

0 0,5 1 1,5 2

Es
tim

at
ed

 C
d

Observed  Cd

TESTING

PERFECT
‐LINE
ANN

3.3.	�Results of the ANN model

3.4.	�Comparison of models

3.5.	�Sensitivity analysis

http://www.archivesmse.org
http://www.archivesmse.org


28

D. Saran, N.K. Tiwari

Archives of Materials Science and Engineering RESEARCH PAPER

 

 
 
Fig. 11. Actual vs. Predicted Values of Cd using ANFIS and 
ANN approaches 
 
Table 6. 
Sensitivity analysis using the ANN-based model 

Input 
combination 

Input 
parameter 
removed 

ANN 

  CC RMSE 
W,F,K,S,Ha,Hb - 0.8852 0.0776 
W,K,S,Ha,Hb F 0.8238 0.0963 
W,F,K,S,Hb Ha 0.4693 0.149 
W,F,K,S,Ha Hb 0.7936 0.1017 
W,F,S,Ha,Hb K 0.8238 0.0963 
W,F,K,Ha,Hb S 0.8427 0.1008 
F,K,S,Ha,Hb W 0.8238 0.0963 

 
Initially, sensitivity analysis was carried out by retaining 

all the input parameters simultaneously i.e. no parameter is 
removed and corresponding values of CC and RMSE were 
measured. Subsequently, different sets of training data were 
generated by pulling out one input variable each time, and 
the corresponding results were recorded for CC and RMSE 
yielded by the testing datasets. The results of this analysis 

have been summarised in Table 6. It can be deduced from 
the Table that Ha plays the most important role in the 
prediction of Cd as compared to other input parameters. 
 
 
4. Conclusions 
 

In this study, the experimental values of the discharge 
correction factor (Cd) observed for a standard Parshall flume 
of throat width 2.54 cm and a modified Parshall flume of 
throat width 3.18 cm were modelled. Using the MNLR 
technique, a relationship was established with Cd as a 
function of throat width of the flume, throat length of the 
flume, sill height of flume, longitudinal slope of flume, and 
flow depths Ha and Hb. Further, the performance of this 
relationship was compared with ANN and ANFIS based 
models. The ANN-based model was created using MLP, 
while 4-different shaped based ANFIS based models were 
created using a different membership function each time. 
The membership functions used were GAUSSMF, 
GBELLMF, TRIMF, and TRAPMF. 

Based on the results obtained, it can be concluded that 
the ANN-based model with the highest value of CC and the 
lowest values of RMSE, MAE, MSE and SDR has highest 
predictive accuracy as compared to all other considered 
models. Amongst the ANFIS based models, GAUSSMF 
based model exhibits the highest predictive accuracy 
compared to GBELLMF, TRIMF, and TRAPMF based 
ANFIS models. 

The predictive accuracy of the relationship established 
using the MNLR technique is greater than GBELLMF, 
TRIMF, and TRAPMF based ANFIS models, but inferior 
when compared to the ANN-based model and GAUSSMF 
based ANFIS model. Hence the relationship can be used in 
determining the values of Cd with reasonable accuracy with 
this data range. Further, sensitivity analysis suggested that 
Ha plays the most important role in the prediction of Cd in 
comparison to other input parameters. 
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