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Abstract

Research background:The probabilistic setup and focus on evaluationrafertainties and
risks has become more widespread in modern emibpime&roeconomics, including the
analysis of business cycle fluctuations. Thereffwegcast-based indicators of future eco-
nomic conditions should be constructed using dgrisiecasts rather than point forecasts,
as the former provide description of forecast utadety.

Purpose of the article:We discuss model-based probabilistic inference usiness cycle
fluctuations in Poland. In particular, we consideydel comparison for probabilistic predic-
tion of growth rates of the Polish industrial protion. We also develop a class of indicators
of future economic conditions constructed usingophilistic information on the rates (that
make use of joint predictive distribution over sevdorecast horizons).

Methods: We use Bayesian methods (in order to capture ttima®n uncertainty) and
consider two groups of models. The first group &iesof Dynamic Conditional Score
models with the generalized t conditional distribnt(with conditional heteroskedasticity
and heavy tails, being important for modelling &freme observations). Another group of
models relies on deterministic cycle modelling gsiexible Fourier Form. Ex-post density
forecasting performance of the models is compasgdguthe criteria for probabilistic pre-
diction: Log-Predictive Score (LPS) and ContinuBanked Probability Score (CRPS).
Findings & Value added: The pre-2013 data support the deterministic cycted-els
whereas more recent observations can be explaiped dimple mean-reverting Gaussian
AR(4) process. The results indicate a structurahge affecting Polish business cycle fluc-
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tuations after 2013. Hence, forecast pooling sfiateare recommended as a tool for further
research. We find rather limited support in favbthe first group of models. The probabil-
istic indicator of future economic conditions calesied here leads actual phases of the
growth cycle quite well, though the effect is lekwious after 2013.

Introduction

The purpose of the paper is to set up a methoddluagyallows for practi-

cal predictive business cycle analysis based oustnicl production data.
We assume that inference about future evolutiobusiness cycle condi-
tions should be model-based and take into acctnenestimation and the
prediction uncertainty. In other words, a modelttisaused to generate
forecasts underlying any analysis of future busiremditions should dis-
play satisfactory performance not only in termgoint forecasts, but also
density forecasts. The density forecast is cont&duas a joint (potentially
multivariate over horizons) distribution which pides a formal descrip-
tion of uncertainty as to future values of the gpedl variable.

In the paper we make an effort to develop such delm@dequate for
Polish data on industrial production. In order tostb we consider a menu
of alternative specifications and discuss theipprtes as well as out-of-
sample predictive performance. We make use of ahecésts to construct
a probabilistic indicator describing future proggeas to the growth rates
of the industrial production index. The indicateflects forecast uncertain-
ty as well as cross-horizon dependence. The cormfepidicator is not
necessarily the most widely used one, given, fanmg){e, an alternative
formulation by Barhoumgt al. (2016).

The approach pursued here requires a number ofepnsbto be ad-
dressed. Firstly, a univariate dynamic model fa itdustrial production
series has to be constructed. The focus here misiness cycle properties
and forecasting of the headline growth rate of stdal production (i.e. the
year-on-year growth rate). However, it is not olngavhether it should be
modelled directly (using year-on-year growth rates)indirectly (using
month-on-month growth rates). Within the indiregpeoach, one could
model and forecast the month-on-month growth rated, the forecast of
year-on-year rate would be induced afterwards. difference is of vital
importance from the modelling point of view — thveot processes display
very different empirical properties. In particulaysiness-cycle-like fluctu-
ations contribute a lot to the variance of the y@atyear rates, whereas for
the month-on-month rates seasonal effects aredimendnt ones.

Moreover, as the density forecasting perspectivaksn here, the trans-
formation from month-on-month growth rates to yearyear growth rates
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relies on the whole multivariate distribution (tbdemension is that of the
forecast horizon). In other words, it is not poksito move between the
two approaches considering the marginal (horizaesic and univariate)
density forecasts only. The cross-horizon stocbapendence, which is
not vital for point forecasts, turns out to be ¢aldor density forecasts.
The dependence between forecasts for differenzdwasiin the month-on-
month setup has direct influence on dispersioneairyn-year forecasts in
longer horizons. As a consequence, the availabdityall the horizon-
specific marginal information in one approach is safficient to recover
the horizon-specific marginal information withiretbther approach. There-
fore, a fan-chart of month-on-month rates is naiugi to recover a fan-
chart of year-on-year rates (and vice-versa).

The shift in attention from point forecasts towathle probabilistic (or
density) forecasts is quite widespread in the reeennometric literature
(see: e.g. Clark & Ravazzolo, 2015). The densitgpective has been con-
sidered within the Bayesian approach for many yesnge predictive dis-
tribution is a natural element of Bayesian infeendowever, the applica-
tion-oriented non-Bayesian econometric literatuas given full apprecia-
tion to the probabilistic perspective in past feecades, in particular after
the Global Financial Crisis.

The inspiration for the use of the probabilistiqppagach in empirical
macroeconomics comes from the developments ofsstali inference
methods, sometimes related to some other appleabar.g. weather fore-
casting (compare the discussion and the referetited by Lerchet al.,
2017) or other branches of economics (see the sinaly energy markets
by Nowotarski & Weron, 2017). Gneiting and Raft€2p07) have provid-
ed an influential discussion of state-of-the-artcafrmal, statistical evalu-
ation of density forecasts. The paper containgeaftes to so-called proper
scoring rules and strictly proper scoring rulest #$fzould be used foex-
post evaluation of density forecasts. Such criterialagepredictive score
(LPS) and continuous ranked probability score (CRRISEich are used in
the empirical part below.

However, although the criteria mentioned above didecredit to the
probabilistic perspective, a specific purpose @f plaper might require ad-
ditional considerations. This is because the forstatistical comparison
measures goodness of fit that includes both skam-tand long term be-
havior. However, for the purpose considered herethe predictive analy-
sis of business cycle fluctuations, the long-ruacahcy is crucial. It might
turn out that a model that has good propertiegtim$ of capturing long-
term properties of the data, but fails to captunertsterm fluctuations,
might rank rather low according to the formal ardaedespite its usefulness
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for the purpose considered here. Hence the formaparison might be
augmented by less-formal and subjectexepost evaluation of the fore-
casts.

Another related issue is that of structural chargé not impossible
that the underlying economic process driving thsifess cycle fluctua-
tions is not time-homogenous (see: e.g. Bjgrnitral., 2017). Hence it is
necessary to consider the problem of possible @mingadequacy of the
competing models. In the case of Polish economgumber of reasons
support the view that some sort of structural cleamight have affected the
dynamics of economic growth. For example it is olotious that the pat-
tern of business cycle fluctuations that has beemntified for the Polish
economy before, say, 2013 can be still consideded#ate afterwards. The
issue has serious consequences for the problemodéinchoice. Conse-
quently, the predictive accuracy of competing dpetions has to be eval-
uated in a dynamic way in order to identify possibhifts in forecasting
performance caused by potential, underlying strattthanges.

In the paper we focus on predictive adequacy, aadlevnot make an
attempt to forecast industrial production in a rwaltiate setup. Instead, we
focus on fine-tuning of a univariate specificationterms of more subtle
properties like the form of the conditional distrilon and dynamic evolu-
tion of conditional mean and variance — this iséhese long-term predic-
tive properties are of interest here.

The rest of the paper is organized as follows.tligirsve outline the
classes of models used in the paper to forecastnags of Polish industri-
al production. The models include ones that empbkasusiness-cycle-like
fluctuations (a deterministic cycle models, seendreet al., 2016, as well
as Lenart & Mazur, 2017), though other aspectsyofithic behavior are
not modelled in a very sophisticated manner. Aliguely, we consider
specifications that contain weaker assumption® dké cyclical behavior,
but are equipped with more complicated stochastitures, like heavy-
tailed conditional distribution or time-varying atitional variance. The
models are applied to the industrial productioradand theiex-post fore-
casting performance is thoroughly examined in gmeaging-window ex-
periment with full recursive estimation. The questof interest is that of
tracing changes in forecasting performance in ¢oemt years. Finally, the
best-performing models under consideration are tsgénerate an indica-
tor that reflects the probabilistic information abofuture changes of
growth rates of the industrial production index.
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Research method

The models used here can be divided into two grdhgsones that explic-
itly account for the cyclical properties of the a@atising the deterministic
cycle idea (hence generating strong out-of-sangdalts) and the ones that
rely on more sophisticated stochastic propertieso(der to avoid failures
in probabilistic predictive ability caused by taovial stochastic formula-
tion). The models of the first group make use otalled Flexible Fourier
Form in order to capture out-of-sample businessecfjgctuations, relying
on a simple autoregressive formula with conditign&@aussian observa-
tions. Models of the other group follow the ideafnamic Conditional
Score (DCS) approach of Harvey (2013) and makeofisaore flexible
conditional distribution, (namely the generalizedistribution). The basic
structure of the models is recalled below, witterehces providing a more
detailed description. The generalizedistribution used here is also briefly
characterized. Some details regarding Bayesian hgpkification and
estimation are provided as well. The model comparis the empirical of
the paper relies on evaluation criteria for denéisecasts that are also
summarized here.

Business cycle fluctuations are often modelled gisitarkov Switching
models (see: e.g. Billiet al., 2016 or Eo & Kim, 2016), Dynamic Factor
Models (e.g. Barhoumet al., 2016) or non-linear models (Ferraataal.,
2016). However, the results obtained so far forRbksh economy indicate
the relevance of deterministic cycle models, heheemodel choice in the
paper is application-specific.

The Bayesian model for analysis of deterministicleyised here is dis-
cussed by Lenart & Mazur (2016, 2017), its appilicafor in-sample busi-
ness cycle analysis is considered by Leetdl. (2016). The underlying
idea is close to that of cyclostationarity: the mefthe process under con-
sideration is time-varying, and the time-variatipsittern is approximated
using the Flexible Fourier Form (see: Gallant, 98t is assumed that
short-term deviations from the time-varying meanare represented by
a Gaussian autoregressive process denotegl: by

Ve = Pe + Vg, UV = PV + o+ YUy, + &, £~iiN(0,07)

wherey, represents the observed series of year-on-yeatigrates. The
(Flexible Fourier) time-varying mean is given by:

F
e = zf=1(a1,f sin(tq,')f) +ayr cos(tq,')f))_
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The parameters denoted by € (¢, ¢y) < (0,7) represent frequen-
cies of the fluctuations and the fixed lower angrerpbounds (denoted by
¢, andgy) can be used in order to restrict attention tdicgtfluctuations
of specific period length (i.e. to exclude flucioas with period that is
either too long or too short). The flexibility dfe cyclical part of the model
depends on the number of Fourier components (démyté). An interest-
ing feature of the model is that it allows fer> 1, which implies that the
business cycle fluctuations are driven by companarith more than one
empirically important frequency (which is rare tochastic cycle models).
In practical application§ is often restricted not to exceed 3, as higher val
ues might lead to overfitting issues. Statistiagd#klience in such model
within the Bayesian setup is described in detail Ugnart and Mazur
(2016). It is possible to generalize the approath higher dimensions for
e.g. cross-country analysis of business cycle symiration (in order to
obtain results similar in spirit to those of Len&rPipien, 2017), however
this is left for further research.

The generalized distribution used here was described by Theodossio
(1998), see also Theodossiou & Savva (2016). tbadrility density func-
tion has the following form:

_(a+v)
1 1, y—u Y
=_K 1+ -(2—=
JOESs (w)[ (= )]
with:
__r 1
K(VJV)_ZVI/},B(K l).
Y'y

The distribution given above has location paramgfescale parameter
o and two shape parametevsandy. An interesting feature of this sym-
metric probability distribution is that it allowsif heavy tails and encom-
passes a number of known distributions as nestdiniing cases. For
example, ay = 2, it becomes Studentwith v degrees of freedom. On the
other hand, withv—w, the limiting case is GER}, the generalized error
distribution; see Harvey and Lange (2017) for aendetailed discussion.
The distribution is quite flexible and thereforepahle of capturing many
empirically relevant situations, especially relatedh the occurrence of
rare events. The feature might be important forstgrpredictive perfor-
mance.
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The Dynamic Conditional Score (DCS) models areudised in detail
by Harvey (2013). The model class is closely relateGeneralized Auto-
regressive Score models of Creghl. (2013), for a predictive application
see e.g. Bernardi & Catania (2016). In the papefoew the formulation
by Harvey. However, our contribution is in develapimethods of Bayesi-
an inference for the models. Harvey makes usesoftaximum Likelihood
estimation. The Bayesian model specification arfidrémce is particularly
important here, since the emphasis is on propeofi¢ise density forecasts
obtained from the models. Within the maximum likelbd approach it is
very difficult to derive density forecasts that ¢akito account the estima-
tion uncertainty. However, the uncertainty mightdvacial especially for
parameters that control more sophisticated pragemif the distribution
(like v andy that influence tail thickness in the case undersieration).
On the other hand, within the Bayesian approaclestienation uncertainty
is handled in a very natural way, as the prediatiigtribution is a mixture
with mixing distribution being the full posterionifthe model parameters.

The structure of Dynamic Conditional Score modgllieflects the idea
that for a given conditional distribution, someitsffeatures can be dynam-
ically updated. The models are not based on Iatechastic processes, and
well-known GARCH models represent similar reasonwich leads to
dynamically evolving conditional variance. However,the case of DCS
models the updating mechanism explicitly dependsamre of the condi-
tional distribution used (i.e. partial derivativetbe log-density w.r.t. to the
parameter under consideration). In other wordspemges of the updating
mechanism depend on the properties of the conditidistribution, which
is a very appealing concept. The general idea hegatith numerous ap-
plications is described by Harvey (2013). Here wsume that the follow-
ing formulation holds:

gt =MYGi-1+ -+ MpGe—p + P1Se—1 + -+ PgSi—q

whereg, represents the deviation of the feature underideraion from
its average (or seasonally changing) stgte= f; — §;, with §; being ei-
ther time invariantd; = &) or seasonald¢ = J5(;)) with the initial condi-
tions described by, ... g_,+1. Moreover s, is the value of the score at the
point corresponding to the realized observatiotirad t. This setup allows
for e.g. seasonal effects in conditional volatikiynilar in the spirit to the
approach of Lenart (2017).

We assume that the feature being updafgdcorresponds to the condi-
tional location or the conditional scale. Theser@epnt the respective pa-
rameters of the Generalizédlistribution introduced above. Consequently,
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the model is not formulated in terms of conditiomaments, though due to
symmetry of the distribution the relationship bedwescale and variance is
not that complicated. For the scale parameter iteisessary to add so-
called linking function that maps it values inte tfeal line. Consequently,
the linear autoregressive updating mechanism ibeapi log-scale instead
of scale. The additional linking function (logaritic transformation) is

taken into account when computing the score. Whererthan one feature
is being updated, it is possible to consider a imarsion of the dynamic

updating equation. However, the path is not purderd. We assume that
the updating mechanism is diagonal, i.e. works re¢ply for each feature
(however, there exists a relationship between Kpeession for score for

the scale and the location parameters, see Hardean§ie, 2017).

Within the above setup it is possible to considesisenal and auto-
regressive dynamic effects in the conditional lmrabr scale. For the pur-
pose of the paper, the seasonality might be impbitahe variable being
modelled represents month-on-month growth rates.

Bayesian specification and estimation of the abuudels is non-trivial.
In particular one has to specify prior assumptiasgo the model parame-
ters and construct a working sampler that allows eiploration of the
model posterior distribution. In all the models andonsideration informa-
tive priors are imposed, with independence amomyms of parameters.
Important prior information is that of cycle lenditr the models with de-
terministic cycle. Estimation of the deterministigcle models is undertak-
en using a hybrid Gibbs sampling scheme, which seenbe very effi-
cient. However, for the dynamic conditional scoredels the estimation
issue seems to be a serious one. The models anakest using a Metropo-
lis-Hastings algorithm (with independent propobaing convenient for the
sake of recursive prediction), though it is possitiiat some other method
could display somewhat better mixing propertieseréfore there might be
a room for improvement as to numerical performafarethe Bayesian
DCS models used here. A better posterior samplghtnriesult in better
approximation of the posterior and predictive dieesi

The standard criteria foex-post evaluation of the forecasts include
RMSFE and MAE. However, the criteria are relevamtpbint forecasts
only, hence convey some information about adeqoédlye location of the
density forecast, but completely ignore its disjpergor other features of
the distribution). However, from the decision-makipoint of view it is
quite obvious that such a strong information reiducimight be innocuous
under very special conditions only. Here we asstimgit is necessary to
include other criteria for forecast evaluation aslw
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Log-predictive score (LPS) used fer-post evaluation requires compu-
tation of log-density value of predictive distrimant at the actual outturn. It
can be shown that LPS computed recursively forstap-ahead forecasts
is linked closely to some basic Bayesian measurgeadness of fit, which
provides additional theoretical justification. Inaptice computation of the
LPS for the tail outcomes might be numerically vading. Moreover, it
might turn out that a model that is well specifiedterms of conditional
location but mis-specified in terms of, say, coiodidl variance or tall
thickness, might achieve very poor scores basddPéh

Another measure under consideration is Continuaursk&d Probability
Score (CRPS). It can be perceived as a generalizafithe absolute error
(AE), since if one assumes that the forecast Higion is point mass,
CRPS is equal to AE. The measure is less sensitital outcomes (com-
pared to LPS) and poses no serious numerical cigglée Theoretical foun-
dations underlying LPS and CRPS are discussed itiGm & Raftery
(2007).

Finally, we propose an indicator of future businessditions (a Future
Business Conditions Indicator, FBCI) that reliesfalh predictive distribu-
tion of year-on-year growth rates. It is intendedbe evaluated using
monthly data (in order to keep the inflow of neviormation). However,
the y-on-y growth rates at monthly frequency oftksplay considerable
short-term variation (even in the case of caleradusted data). We there-
fore assume that the indicator (denoted byFTdr Future Tendency Indi-
cator) represents the probability that the avegrgevth rate for the period
covering e.gi+4, t+5, t+6 is greater than the average growth ratet-far
t+2 andt+3 (taking into consideration a three-month basisga, soM =
3). In other words, it measures the probabilitytref general positive ten-
dency during the next\2 periods (here: six months), on average. Alterna-
tively, it could be computed with e.lyl =6 orM = 12 (instead oM = 3).
However, it must be emphasized that the indicat@sdnot convey infor-
mation as to the magnitude of the growth, dealusg yith the direction of
change in the growth rate dynamics. However, ithiige interpreted as
reflecting future prospects as to the growth cytd&ing into account both
the prediction uncertainty and the stochastic dépece between forecasts
for various horizons, which is not usual for suctiicators.

Empirical analysis of Polish industrial production data

The dataset under consideration i.e. year-to-yeawth rates of Polish
industrial production (in per-cents, monthly dagaljusted for calendar
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effects, not seasonally adjusted, 1997M01-2016M12,240) is depicted
in Figure 1. We treat the first 120 observation8 ykars) as a training
sample, and verify the out-of-sample predictivefgrenance of alternative
models on the remaining 120 data points (full teregtion is conducted
with each observation added). The forecasts arergtsd within the ex-
panding-window setup. No effort is made to mimial#me data flow,
instead the most recent readouts available are. isedhat follows, we
consider only the direct forecasts of y-o-y growdes. This is because
a preliminary analysis using various DCS modelsiwitthe indirect ap-
proach indicates that such specifications deliaénar trivial (i.e. practical-
ly constant) forecasts of y-o0-y rates for horizgnsater than 12 months.

Consequently, in what follows we consider the medeitimated on y-
0-y data only and use the direct approach for tie ©f prediction. We
make use of two Gaussian autoregressive modelswithel lags and one
with 22 lags (labeled AR(4) and AR(22)). The modais chosen to repre-
sent different degree of potential complexity oé thutocorrelation func-
tion. Moreover, we consider a deterministic cycledel, withF = 3, fre-
guency parameters restricted to the (0.052, Ori2jval and 22 lags in the
autoregressive part (labeled AR(22)-F(3)). The Igsecification under
consideration is a DCS model with= q = 6 for the location parameter and
p = q = 2 for the log-scale parameter. The model alléevsasymmetric
response to the score (following Harvey & Langel 20and its conditional
distribution is of the generalizadorm (Gt-DCS(6,6;2,2), labeled DCS for
short).

Table 1 contains characteristics summarizrgost properties of point
and density forecasts obtained from the modelsiomed above.

The results are reported for horizons of 12, 182hdhonths ahead, and
also calculated using the last 36 realized forsoasty (the last observation
used for the purpose of evaluation is that reptasg2017MO01). Analysis
of Table 1 seems to lead to a very simple conatusibe overall predictive
performance is dominated by the Gaussian AR(22)emahd if one re-
stricts attention to the last 3 years, the resufgport a simple AR(4) mod-
el. In particular, neither the stochastically sepibated DCS specification
nor the business-cycle oriented AR(22)-F(3) leadsatisfactory results.
The conclusion is unanimously supported by poiilt @ensity criteria.

However, a more detailed analysis can be condumedd on a decom-
position of differences in cumulated LPS betweertaie models into the
contribution of individual (realized) observatiotitgoughout the verifica-
tion period. Such a decomposition for the two wingninodels (AR(22) and
AR(4)) against the AR(22)-F(3) specification is g@ated in Figure 2
(A and B). The figures reveal the fact that thromgihmost of the verifica-
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tion window the data provide strong and systemsigport in favor of the
deterministic cycle model AR(22)-F(3). However, 2913 the pattern
breaks down and the predictive performance of tlwleh deteriorates
quickly (especially in 2014). As a consequence,ldse three years of the
data bring strong and prevailing evidence againstdeterministic cycle
model, and the empirical support shifts towardsAR¢4) specification.

The abrupt change might suggest that that the éssioycle properties
of the Polish industrial production growth cyclevbahanged after 2013 in
such way that the previously observed pattern (niradcthe deterministic
cycle dynamics) was no longer valid. Importanthe tnodel with the best
forecasting performance in the recent period, nartied AR(4), generates
quite trivial forecasts: quick mean reversion resih rather flat forecast
paths stabilizing at the sample mean. Leetdl. (2016) analyze the fol-
lowing problem: has the pattern of Polish businegsle fluctuations
changed after the Global Financial Crisis? Theirobasion, obtained using
different methodological approaches, though basedamewhat shorter
series and a sequence of recursive in-sample asaligsnegative — mean-
ing that there is no evidence in favor of such ange. The results present-
ed here contribute to the discussion indicating tha change might have
occurred five years later, i.e. around 2013. Sucbreclusion is, however,
conditional upon specific assumptions used heoh,diing the model set in
particular. It is possible that the use of moreaambed time-varying param-
eter models or dynamic prediction pooling strategieuld shed more light
on the problem. However, it seems clear that therdenistic cycle model
of the Polish industrial production dynamics wasauhte until 2013 only.
It is though unclear what kind of model would bee@ulate for long-term
prediction after 2013 — the issue could be considlers more data would
be available.

The DCS-type models considered here are usefulpfediction of
month-on-month growth rates, though the impliedliiect) or direct year-
on-year forecasts are not satisfactory, espedialiynger horizons.

Finally, in Figure 3 we present the values of thebpbilistic indicator
of future economic conditions. Based on the abaveparison, we pick the
results for AR(4) and AR(22)-F(3). Moreover, thersien presented here
refers to one-year-ahead forecadis5{ 6). At each point in time the value
of the indicator represents the probability that #verage growth rate for
t+7,... 1+12 will exceed its counterpart comparedtfet, ... t+6. Hence, the
indicator provides information on the general diet of change (or the
prevailing tendency) over the forecast horizon urabmsideration. Values
greater than 0.5 indicate the prevalence of aigeditend during the next
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2M periods. Conversely, values lower than 0.5 indidhe prevalence of
a negative trend in the timespan ranging froml 2l periods ahead

One might notice that for most of the time the ptubstic indicator of
future economic conditions obtained from AR(22))HBovides clear-cut
signals, being close to either 0 or 1, while tigmals from the AR(4) model
are somewhat less evident, though maintaining ahgesdirection. Moreo-
ver, the indicator seems to provide adequate irdtion (i.e. it leads the
actual changes), at least in the first part ofsdwmple. Closer to the sample
end the fluctuations of industrial production grbwates dampen, so the
adequacy of the indicator is more difficult to ¥eriThis is also reflected
by the values of the indicator, being close to i@.5he final part of the
sample in the case of AR(4) model. In the case Rf2R)-F(3) model, the
values close to the sample end still indicate rapositive prospects.

Conclusions

In the paper we compare density predictive perfoceaof alternative
model specifications with application to y-on-y gth rates of Polish in-
dustrial production. The objective of the resedscto capture the out-of-
sample business cycle fluctuations (in the fornthaf growth cycle). We
consider two model classes. Specifications of its¢ §roup capture busi-
ness cycle dynamics using the deterministic cypfg@ach based on Flexi-
ble Fourier Form (see Lenart & Mazur, 2016). Thokthe second kind are
more general in terms of the stochastic specificafil he Dynamic Condi-
tional Score models used here allow for heavy-dadenditional distribu-
tion (of the generalizeticlass) and time-varying conditional scale.

We generate density forecasts for horizons up tomdhths ahead.
Evaluation of the forecasts (based on CRPS and d&R&ia) seems to
indicate that the DCS-type models do not generdtétianal predictive
power despite their relative complexity. Closerrai@ation reveals the fact
that up to 2013 the best-performing model was thateterministic cycle,
while in more recent period thex-post evidence shifts toward a simple
Gaussian AR(4) specification with quick mean reiersThe results indi-
cate a structural change in the process underliolgsh business cycle
fluctuations. It is interesting that the changentifeed here does not seem
to be related with the Global Financial Crisis 602/8 (as one could ex-
pect, see e.g. the analysis oftbowskiet al., 2015). As there seems to be
clear evidence for model instability in the recgears, a practical sugges-
tion to address this issue (and a direction fourtutresearch) is the use of
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dynamic pools of density forecasts for the sakprobabilistic forecasting
of Polish industrial production series.

Moreover, we demonstrate a forward-looking (i.dyfbased on predic-
tive results) probabilistic indicator of future @monic conditions (labeled
FTly). Its use is illustrated with an analysis of growates of the Polish
industrial production. The values of the indicatorrespond to the overall
tendency prevailing in the whole forecast periote Tindicator has two
important features. Firstly, it is constructed gsiiensity forecasts, hence it
takes the forecast uncertainty into account (hexanake use of Bayesian
methods, so the estimation uncertainty is alsowated for). Secondly, the
indicator is based on joint predictive distributiomer a sequence of hori-
zons. It therefore goes beyond the horizon-spedificrmation, utilizing
the cross-horizon stochastic dependence as wedl.|dtter feature is less
tangible, as it is not reflected in usual fan-chaHowever, the indicator
does not provide information as to the magnitudehefpredicted growth or
decline. This might suggest a bivariate extengwayiding two signals at
the same time, reflecting probability of a chanfigieen magnitude over a
range of magnitudes.
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Annex

Table 1. Ex-post evaluation of point and density forecasts (12ah8 24 months
ahead). LPS is computed using natural logs (cumd)athe higher the better),
CRPS is in positive orientation (averaged, the Iothe better)

h=12 h=18 h=24
RMSE LPS CRPS RMSE LPS CRPS RMSE LPS CRPS
full verification window: (120 -h) observations
AR(4) 6.46 -359.47 3.52 6.50 -340.84 3.58 5.58 -314.52 3.30
AR(22) 5.83 -351.57 3.30 5.87 -332.48 3.32 5.12 -308.72 3.10
AR(22)-F(3) 6.72 -363.96 3.96 6.80 -347.25  3.97 6.36 -325.44 3.79
DCS 6.77 -370.00 3.82 6.83 -350.14  3.85 6.13  -323.79 3.61
last 36 observations

AR(4) 2.67 -103.44 1.94 2.48 -104.77  1.95 2.73  -106.05 2.06
AR(22) 4.79 -109.62 2.82 4.53 -109.01  2.69 3.81 -107.66 2.39
AR(22)-F(3) 8.14 -131.54 5.02 7.81 -130.48 4.73 7.08 -128.48 4.21
DCS 6.08 -114.43 3.57 5.93 -113.68  3.35 493 -110.70 2.85

Figure 1. Growth rates of Polish industrial production indgo-y, in [%])
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Figure 2. Differences in cumulated LPS between AR(22)-F(3) ather models,
recursive expanding-window estimation, positiveueal support AR(22)-F(3)
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Figure 3. Values of the FTd indicator obtained recursively in an expanding-
sample setup based on sequences of forecasts Wrormodels, AR(22)-F(3) and
AR(4) (left axis) and the actual data (right axis)
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