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Criticality is considered as a fundamental category of production planning, maintenance 
process planning and management. The criticality assessment of machines and devices can 
be a structured set of activities allowing to identify failures which have the greatest potential 
impact on the company’s business goals. It can be also used to define maintenance strategies, 
investment strategies and development plans, assisting the company in prioritizing their al-
locations of financial resources to those machines and devices that are critical in accordance 
with the predefined business criteria. In a criticality assessment process many different and 
interacting criteria have to be taken into consideration,  despite the fact that there is a high 
level of uncertainty related to various parameters. In addition, not all assessment criteria are 
equally important. Therefore, it is necessary to determine the weight of each criterion tak-
ing into account different requirements of machine criticality process stakeholders. That is 
why a novel model of a machine criticality assessment is proposed in this paper. The model 
extends the existing methods of assessing machines criticality, taking into account not only 
the importance of machine criticality assessment criteria, but also possible interactions be-
tween them.
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1. Introduction
The recent  rapid development of production systems related to 

automatization and digitalization has required a new approach to de-
fining the function and role of a technical object in a production proc-
esses. Due to the client’s requirements for a product, the technologies 
used for their realization and the impact of failures on people and 
natural environment, the companies not only must plan maintenance 
activities, but also have to define the priorities for implementations of 
these activities taking into account the role they play in business goals 
[13, 41, 75]. Therefore, an important issue for any company is a ma-
chine criticality assessment. Referring to [1, 4, 70] criticality is a fun-
damental category of the production and maintenance process plan-
ning and management. A machine and device criticality assessment 
is a structured set of activities that allows to identify machines and 
devices which failures have the greatest potential impact on the com-
pany’s business goals. It can be used to define maintenance strategies, 

investment strategies and development plans, assisting the company 
in prioritizing the allocation of financial resources to those machines 
and devices that are critical in accordance with the predefined busi-
ness criteria [27, 37, 47, 60, 89]. Moreover, according to Roy [70], 
prioritizing of maintenance activities eliminates their instability and 
variability in activities, thereby increasing resource efficiency and re-
ducing maintenance costs.

Although the literature review describes many methods for assess-
ing the machine criticality and decision making systems in this area, 
itis still not a simple task [6, 13, 40, 48]. First of all, in a machine criti-
cality assessment process many different and interacting criteria have 
to be taken into consideration [21]. Secondly, due to the quality and 
method of data acquisition there is a high level of uncertainty related 
to various parameters such as: time between failures, time to repair 
and the quantity of spare parts needed for a repair [46]. Thirdly, not 
all assessment criteria are equally important. Therefore, it is neces-

machine criticality assessment, assessment criteria, assessment methods, interactions.
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sary to determine the weight of each criterion taking into account dif-
ferent requirements of machine criticality process stakeholders [75]. 
Considering the above issues, a novel model of a machine criticality 
assessment is proposed in this paper. The proposed model extends the 
methods of assessing the machine criticality described in the literature 
and used in practice taking into account not only the importance of 
machine criticality assessment criteria, but also the interactions be-
tween them. 

This paper is organized as follows: in Section 2 the literature re-
view according the criteria and methods used for a machine criticality 
assessment is presented. Then, in Section 3 a novel framework of a 
machine criticality assessment is developed. Moreover, in this section 
the study results of the importance for the criticality assessment in 
different industries are presented. In Section 4 a machine criticality 
assessment model for the aviation industry is presented. Finally, the 
conclusions and direction of the future research are presented. 

2. Problem statement of a machine criticality assess-
ment

2.1.	 Criticality criteria
As mentioned in work [80], criticality is a measure of importance 

defined on the basis of the analyzed factors. Moreover, criticality is 
used as a comparative measure to assess the consequences of actions 
taken and it can be used as a measure to highlight the differences 
between individual machines and action scenarios (action strategies). 
The criteria adopted for the evaluation may affect the final criticality 
often differ from one organization to another. They are often depend-
ent on the type of assets (resources) as well as adopted rules in the 

organization. In the literature many criteria for assessing the criticality 
of machines are defined. Because the classification of the criteria for 
assessing the criticality of machines proposed in the literature is not 
unambiguous and may cause problems related to their interpretation 
two – level- hierarchical classification for the machine criticality as-
sessment criteria was proposed in Table 1. 

Moreover, in the literature in different areas, other criteria of ma-
chine criticality assessment are proposed. In the area of manufactur-
ing systems, the following factors are indicated: redundancy, work 
load [4], production integrity [18, 50, 63, 86], machine importance for 
a process [5], breakdown time and stability of the machine [75], sen-
sitivity of operation [36], bottleneck and impact on throughput [44], 
applicability of CBM [63] and reliability [54, 63]. 

Furthermore, in the medical assessment, the following criteria are 
used: risk,  user competence and standards [71], performance assur-
ance [14, 71], support availability, clinical acceptability [14], function 
[14, 80], recalls and hazard alerts and maintenance requirements [80]. 

In the oil refinery assets the following criteria are proposed: failure 
detection and failure severity [33]. What’s more, the customer’s in-
convenience criterion [74] and effect of power generation in thermal 
power plants equipment assessment [34] as well as the impact of busi-
ness (shutdown duration) in chemical plants equipment assessment 
[65] are proposed. 

2.2.	 Criticality method assessment used and criticality 
levels

There are many different methods presented in the literature for 
assessing the criticality of machines. These methods use a variety 
of evaluation criteria and are used in different industries. The most 

Table 1.	 Criteria for assessing the criticality of machines – literature survey

No Main criteria Sub - criteria References

1. Safety Degree of influence on working conditions.
Machine failure costs due to health, safety and environment.

[5, 18, 24, 26, 34, 38, 50, 
53, 54, 63, 64, 65, 66, 67, 

75, 86]

2. Environment
In case of failure, the degree of risk for the environment.
Working environment.

[26, 28, 34, 53, 54, 64, 65, 
74, 86]

3. Maintainability 

MTTR (Mean Time To Repair).
OEE (Overall Equipment Effectiveness).
Failure detection.
Failure frequency.
Failure severity.
Downtime length.

[2, 5, 16, 19, 20, 31, 33, 
41, 43, 53, 63, 6, 73, 75, 

79, 92]

4. Quality

The degree of influence of a machine on the implementation of other operations in case 
of a failure.
Number of nonconformities due to the machine failure during the year.
The degree of influence of a technical object on the quality of the final product.
Costs of non-conforming products as a result of a failure.

[4, 18, 19, 20, 26, 31, 50, 
54, 66, 67, 68, 90]

5. Age Age of machine. [4, 14, 68, 80]

6. Cost

Costs incurred by production for machine downtime (breakdown).
Costs of non-conforming products as a result of failure.
Failure elimination costs (excluding OHS and environmental costs).
Machine failure costs due to health, safety and environment.

[4, 5, 6, 14, 19, 20, 26, 31, 
33, 53, 65, 68, 72, 74]

7. Risk
Mission criticality.
Operating conditions and equipment accidents.

[19, 20, 28, 31, 80]

8 Availability

Average downtime of a technical facility due to failures and repairs.
Availability of the required personnel.
MTBF (Mean Time Between Failures).
Machine replacement in case of failure (Machine changeability).
Work load.

[2, 31, 43, 53, 63, 66, 67, 
76]

9. Spare parts Spare parts availability. [36, 63] 



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 23, No. 2, 2021 209

commonly used method is the AHP (Analytical Hierarchy Process) 
method. This method is used to select the best alternative and analyze 
possible alternatives [17, 76, 84]. In the work [5] the authors indicate 
that thanks to the great alternatives it can be used to arrange a large 
number of machines. In order to create the ranking, it is possible to 
integrate both qualitative and quantitative criteria, as well as their in-
tegration [14, 46, 69]. The AHP method has been successfully applied 
to the classification of equipment in the thermal power plant [34, 74], 
for the prioritization in the medical industry [80] and machinery clas-
sification in the plastics processing industry [1]. Moreover, the au-
thors in [76] noted that it can be integrated with other methodologies, 
such as the Delphi method. This method relies heavily on experts. 
Such integration into the classification of equipment in an oil refinery 
is presented in [33]. In [85] it was noted that the calculation of the 
coefficients of coherence makes this method more reliable compared 
to the additive weighting method presented in [31, 75].

Additionally, in order to evaluate the criticality of machines, the 
rules of interconnection with the fuzzy logic and fuzzy grouping are 
used. The result of this assessment is the identification of different 
categories of machines. Rules are an appropriate method to evaluate a 
large number of machines for which common strategies and operating 
procedures are defined [41, 54]. The combination of rules with the 
fuzzy logic is presented in [36]. Furthermore, [28] presents a fuzzy 
cluster analysis structure divided into four sub-hierarchy models. 
Fuzzy grouping is also presented in the literature as a possible method 
for assessing the importance or criticality of equipment. Guo et al. 
[26] found that fuzzy assessments can deal with imprecise informa-
tion better, which can be beneficial for companies. However, its effec-
tive application depends on the function of membership and a set of 
weighting factors. The fuzzy logic application has some advantages. 
However, it is a complex methodology and difficult to advance as it 
requires some simulations before use [85].

Moreover, in the literature, the FMEA method (Failure Mode 
And Effects Analysis) is used to assess the criticality of machines. 
It allows the identification of the factors that were taken into ac-
count for the criticality assessment. Most often this method is used 
to assess the types of failures, with particular emphasis on the like-
lihood of failures and their consequences, taking into account such 
factors as: redundancy, use, quality, age of machine and costs [4, 
68]. Another variant of the FMEA – FMCEA (Failure Mode, Ef-
fects, And Criticality Analysis) method takes into account addition-
al factors such as environmental aspects when assessing criticality 
[12]. Based on the value of RPN (Risk Priority Number) index and 
risk matrix the machine criticality and the maintenance strategy are 
determined.

The applied criticality method allows to determine the machine 
criticality level (machine category). The authors in the works [8, 29, 
57, 82] classified machines into three groups on the basis of the ABC 
(Activity Based Classification) analysis method. The main goal of 
this method is based on Pareto’s principle, which classifies the top 
15–20% goods occupied 65–80% value of the whole system into A 
group, the following 30–40% goods occupied 15–20% value of the 
whole system into B group, and the other 40–55% goods occupied 
5–15% value of the whole system into C group [29]. Additionally, a 
scoring system is used to assess the criticality [68, 75]. The authors 
of the mentioned works used ABC or ABCD classification levels. 
ABC – type classifies machines into three groups: category A – ma-
chines which need special control, category B – machines which 
need less control and category C – machines which do not need any 
special control. The ABCD - type classification defines four cat-
egories of machines as: category A – particularly important (bot-
tleneck), category B – important, category C – relatively important, 
category D – not used. 

In addition to the ABC classification, there is another method of as-
sessing the criticality of machines, that is the GUT (Gravity, Urgency 
and Tendency) matrix [15].

2.3.	 Research challenges 
The analysis of the literature showed that many criteria are proposed 

for assessing the criticality of machines. The same criteria are often 
defined differently, e.g. breakdown /failure. Moreover, sometimes it is 
difficult to understand the meaning of the criterion unequivocally on 
the basis of the description provided by the author. The criteria analy-
sis presented in Table 1 allowed to systematize them. Nevertheless, 
there are no unequivocal studies indicating the real usefulness and 
importance of the specific criteria for different industries. 

In addition, various methods are available for assessing the criti-
cality. These methods take into account various criteria proposed (as 
discussed above). However, these criteria are often analyzed indepen-
dently, or their dependence is analyzed to a little extent. In the litera-
ture, the method that takes into account the interactions between the 
individual evaluation criteria used to assess the criticality of machines 
is not described. From the point of view of the machine criticality 
assessment, most of the proposed criteria aggregation methods have 
some drawbacks. Namely, they do not reflect the interaction between 
the criteria. In the real manufacturing environment machine critical-
ity criteria are usually not independent (there are some interactions 
among the criteria, positive or negative effects between them) Thus, 
an appropriate function must be used to aggregate multiple informa-
tion sources and to handle an interactive relationship. An example of 
such an environment is a noisy environment where complex criterion 
relationships between worker and machine can be identified [61].
Since ignoring the interaction between the assessment criteria may 
lead to distortions of its outcome and, consequently, ineffective and 
inefficient decisions, commonly used aggregation and ranking meth-
ods such as AHP, SAW and WSAW do not apply in this problem. 

That is why, in this paper, a new method of machine criticality as-
sessment is proposed. 

As part of the work, the following research questions were taken 
into consideration:

Is there a difference in the perception of the criteria importance 1.	
of the machine criticality assessment in various industries?
Which method is able to model the importance of machine crit-2.	
icality assessment criteria and the interaction between them?
How important are the particular machine criticality assess-3.	
ment criteria and the interactions between them in the case 
study industry?

3. The framework of machine criticality assessment

3.1.	 Development of the methodology
Machine criticality is a complex concept and depends on many fac-

tors. “Intuition” is usually not sufficient to make an objective decision 
about which machine is important and which is not. It is necessary 
to build a structured method to support decision makers in the ma-
chine criticality assessment process. A general scheme of the machine 
criticality assessment method used in this paper includes three main 
stages: (1) Selection of criteria, (2) Criteria assessment, and (3) Selec-
tion of the appropriate aggregation function (Figure 1).

Based on the final Machine Criticality Index (MCI), it is possible 
to define the prioritization of maintenance actions in order to ensure 
that the production system works as close to its nominal capacity as 
possible.

3.2.	 Identification of criticality assessment criteria
The main standard for evaluating the machine criticality is the cri-

teria. Based on the analysis of the literature (chapter 2.1), 24 criteria 
most frequently matched and used to assess the criticality of machines 
were selected: C1 - Operators’ competences; C2 - Machine replace-
ment in case of failure; C3 - Degree of influence on other tasks in case 
of a failure; C4 - Costs incurred by production for machine downtime 
(breakdown); C5 - Number of nonconformities due to a machine fail-
ure during the year; C6 – Degree of machine influence on the final 
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product quality; C7 - Costs of non-conforming products as the result 
of a failure; C8 - Frequency of failures per year; C9 - Average down-
time of a technical facility due to failures and repairs; C10 – Spare 
parts availability; C11 - Failure elimination costs (excluding OHS and 
environmental costs); C12 - In case of a failure, the degree of influ-
ence on working environment; C13 - In case of a failure, the degree 
of risk to environment; C14 - Machine failure costs due to health, 
safety and environment; C15 - Age of the machine; C16 - OEE; C17 
- MTBF; C18 - MTTR; C19 - Failure severity; C20 - Failure detec-
tion; C21 - Customer’s inconvenience; C22 - Mission criticality; C23 
- Operating condition; C24 - Work load.

In the next step, these criteria were assessed by company experts 
in order to identify the most important criteria from the industry point 
of view. The research on the perception of the importance of the ma-
chine criteria criticality assessment was carried out at the turn of 2019 
in 2020 in small, medium-sized and large production companies of 
various industries selected for the research purposely. A group of 66 
production companies participated in the study, of which 22.39% 
were enterprises from the automotive industry, 29.85% from the food 
industry, 31.34% from the aviation industry and 16.42% from other 
industries, e.g. medical, furniture, railway, printing house, etc. The 
biggest group of them was the large enterprises 57.58%, and smallest 
group was small sized companies (6.06%) (Figure 2).

Fig. 2. Structure of the enterprises participating in the survey

The survey was conducted with experts from these enterprises. The 
experts were asked to determine the degree of importance of the 24 
criteria on a scale from 1 to 5, where 1 meant – not important, while 
5 very important. The data set obtained from the enterprises was sub-
jected to a statistical assessment (an average assessment value - X , a 
standard deviation – S, ∑ - total importance obtained by the criterion 
in a given industry) (Table 2). 

Analyzing the results presented in Table 1 there are visible differ-
ences not only in the assessment of the importance of the criteria in 
individual industries, but also in each individual criterion in a given 
industry. In case of the automotive industry, the highest compliance in 
the assessment of the criterion by enterprises was identified for the C5 
criterion - the value of a standard deviation is s = 0.408. The lowest 

compliance was noted for the C16 criterion (s = 1.188). In the food 
and aviation industries, the highest compliance in the assessment of 
the importance was achieved by the C6 criterion, with the following 
values ​​of a standard deviation - food s = 0.413, aviation s = 0.359. 
On the other hand, the lowest compliance was achieved by the C17 
criterion in the food industry (s = 1.223), and the C24 criterion in the 
aviation industry (s = 0.949). Additionally, it should be noted that in 
case of the aviation industry, the values ​​of the standard deviation for 
the assessed criteria were the lowest, what proves high consistency in 
assessing the importance of criteria in individual companies in this 
industry. In case of enterprises identified as “other”, the highest com-
pliance in the assessment of the criterion by the enterprises was identi-
fied for the C8 criterion - the standard deviation value is s = 0.601, and 
the lowest, the same as in the automotive industry, for C16 (s = 1.481). 
An average value of the importance obtained by the analyzed criteria 
for individual industries is presented in Figure 3.

The analysis of the above results (Figure 3) made it possible to 
identify common assessment criteria for individual industries. When 
identifying the common criterion, similar or insignificant differences 
(± 0.5) in the obtained average assessment value ( X ) for a particular 
criterion were taken into account. The criteria common for all indus-
tries are: C3, C4 and C5. However, the C1 and C7 criterion is common 
for the automotive, aviation and food industries. Criteria C2, C20, 
C22 and C23 are common for the aviation, automotive industries and 
the enterprises defined as “other”. The C6 and C10 criterion obtained 
the highest value (4.93 and 4.47) for the food industry, but this crite-
rion is common for aviation, automotive industries and the enterprises 
defined as “other”. On the other hand, the C8, C15 and C16 criterion 
is common for the aviation industry and the enterprises defined as 
“other”. Moreover, the C9 criterion obtained similar X  values for 

Fig. 3.	 An average assessment value of importance ( X ) obtained by the ana-
lyzed criteria for individual industries

Fig. 1. A generic process for the machine criticality assessment



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 23, No. 2, 2021 211

the automotive industry and the enterprises defined as “other”, with 
the values of 3.78 and 4.06, respectively. Moreover, it should be noted 
that this criterion obtained also similar values for the food and aviation 
industries, 4.73 and 4.57, respectively. Additionally, the criteria C11, 
C12 and C14 obtained the highest values for the food and aviation in-
dustries. The C21 and C24 criteria for the aviation industry achieved 
the highest values, respectively 4.86 and 4.67. On the other hand, the 
C13 criterion with the obtained average value of 4.20 and C19 with 
the average value 4.80 dominated in the food industry. This criterion 
obtained similar values for the aviation (3.00) and automotive (3.23) 
industries. The C17 criterion dominated in the automotive industry 
(with the average value of 4.31), but this criterion is common for the 
aviation, food industries and the enterprises defined as “other”.

In Figure 4, the total importance obtained by the analyzed crite-
ria for individual industries is presented. The presented results show 
which of the individual criteria obtained the highest total value for 
individual industries. In the aviation and automotive industries, the 
lowest value was obtained by the C1 criterion (value 33, 22). How-
ever, in the aviation industry, the highest value was obtained by the 

C6 criterion, which was also dominant in the food industry. The most 
important criterion in the automotive industry was the C2 criterion. A 
completely different situation can be noticed in the enterprises defined 
as “other”. In this case, the C23 criterion had the lowest value and the 
C18 criterion the highest. What is more, it should be noted that the 
criteria from C2 to C14 in the aviation industry obtained the highest 
values among the surveyed criteria. On one hand, it is justified by the 
fact that most companies in this industry participated in the research. 
On the other hand, it turned out that these criteria are the most impor-
tant from the point of view of machine criticality in this industry. 

The criteria from C2 to C14 in the aviation industry were select-
ed for a further analysis (model building). Additionally, the factors 
determining the choice of these criteria were: the largest number of 
companies in the aviation industry in the conducted research as well 
as the fact that in case of this industry, the values of the standard de-
viation (s) for the assessed criteria were the lowest, what proves a 
high consistency in assessing the importance of criteria in individual 
companies (conformity of the assessment).

Table 2. Perception of machine criticality factors importance

Criteria
Automotive Food Aviation Other

∑ X s ∑ X s ∑ X s ∑ X s

C1 22 1.692 0.480 30 2.000 0.655 33 1.571 0.676 33 3.667 1.414

C2 61 4.692 0.480 26 1.733 0.884 99 4.714 0.561 37 4.111 1.364

C3 55 4.231 0.725 71 4.733 0.458 94 4.476 0.814 38 4.222 0.972

C4 59 4.538 0.519 68 4.533 0.743 93 4.429 0.507 37 4.111 0.782

C5 52 4.000 0.408 65 4.333 0.900 83 3.952 0.669 34 3.778 0.833

C6 51 3.923 0.494 74 4.933 0.413 102 3.333 0.359 33 3.667 1.225

C7 56 4.308 0.630 72 4.800 0.414 93 4.429 0.598 34 3.778 1.394

C8 49 3.769 0.439 43 2.867 1.060 98 4.667 0.483 37 4.111 0.601

C9 53 4.077 0.760 71 4.733 0.458 96 4.571 0.507 34 3.778 0.667

C10 48 3.692 0.751 67 4.467 0.834 82 3.905 0.436 36 4.000 1.323

C11 49 3.769 0.439 72 4.800 0.414 96 4.571 0.507 34 3.778 0.833

C12 48 3.692 1.032 65 4.333 0.976 90 4.286 0.644 32 3.556 1.130

C13 42 3.231 1.013 63 4.200 0.941 98 3.000 0.483 33 3.667 1.118

C14 39 3.000 0.816 63 4.200 0.941 86 4.095 0.539 32 3.556 1.333

C15 29 2.231 0.599 25 1.667 0.488 64 3.048 0.590 28 3.111 0.782

C16 40 3.077 1.188 21 1.400 0.507 56 2.667 0.913 34 3.778 1.481

C17 56 4.308 1.109 49 3.267 1.223 68 3.238 0.539 32 3.556 1.130

C18 55 4.231 1.092 67 4.467 0.915 68 3.238 0.436 39 4.333 1.000

C19 53 4.077 0.641 72 4.800 0.414 72 3.429 0.598 36 4.000 1.000

C20 44 3.385 0.768 43 2.867 0.990 71 3.381 0.865 32 3.556 1.236

C21 57 4.385 0.650 36 2.400 0.507 70 4.857 0.577 32 3.556 0.882

C22 50 3.846 0.376 38 2.533 0.834 65 3.095 0.700 35 3.889 1.054

C23 43 3.308 0.630 35 2.333 0.617 69 3.286 0.463 29 3.222 0.833

C24 52 4.000 0.577 46 3.067 0.594 63 4.667 0.949 35 3.889 1.054

Legend:
the lowest value of a standard deviation (s) for every industry

the highest value of a standard deviation (s) for every industry
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After identifying the criteria that will be further analyzed, we can 
proceed to the next step, i.e. building a function that aggregates indi-
vidual criteria values into one synthetic result.

3.3.	 Development of an aggregation function 

3.3.1.	Assumptions
The purpose of aggregation functions is to combine multiple nu-

merical inputs into a single numerical value, which in some sense 
represents all the inputs. According to [3] many aggregation functions 
present some drawbacks, mainly from their natural assumption that 
input criteria are independent of each other (arithmetic mean, weight-
ed mean, median, mode etc.) and none is capable to find an interaction 
between criteria [51]. However, this fact does not limit their usability 
in many complex areas of application [62, 87].

Because the criteria of the machine criticality assessment are usu-
ally not independent (there are some interactions among criteria, posi-
tive or negative effects among them), an appropriate function must 
be used to aggregate multiple information sources and to handle an 
interactive relationship.Based on the literature review [11, 22, 45], 
in order to solve the problem of aggregating the criteria that are in-
terdependent, a non-additive function that defines a weight, not only 
for each criterion but also for each subset of criteria, is needed. Thus, 
these non-additive functions can model both the importance of cri-
teria and the positive and negative synergies between them. Taking 
the above into account, we propose the use of the machine criticality 
index (MCI) λ-fuzzy measure and Choquet fuzzy integral, which can 
handle both the challenges. According to [52] the Choquet integral 
has good properties for aggregation. It is continuous, non-decreasing, 
comprised between min and max, stable under the same transforma-
tions of interval scales in the sense of the theory of measurement, and 
it coincides with a weighted arithmetic mean when the fuzzy meas-
ure is additive. In view of the characteristics of the Choquet integral, 
it has been widely applied to multiple attribute decision-making in 
many areas [7, 9, 22, 23, 35, 56, 78]. However, the interest in the 
fuzzy integral is mainly due to its ability to represent interactions be-
tween criteria . This is due to the fact that weights in a fuzzy measure 
are assigned to every subset of all criteria.

3.2.	 Definitions and notations
The fuzzy set theory has been applied to many problems in differ-

ent fields of science and engineering. In order to describe this theory, 
some definitions are presented as follows:

Let { }1, , nX x x= …  be the set of all criteria and ( )X  the power 
set of X.

Definition 1 (Fuzzy measure, [10]): A discrete fuzzy measure on 
X is a set function µ: ( )X → [0, 1] satisfying the following condi-
tions:

µ(1.	 ∅)=0, µ(X)=1 (boundary condition)
if A 2.	 ⊆  B ⊆  X then μ(A) ≤ μ(B) (monotonic condition).

In this context, μ(A) represents the degree of importance of a 
given criteria set A. This way, additionally to the weight of a sin-
gle criterion, the weight of an arbitrary criteria combination is 
also directly described. The fuzzy measure is additive when 
if ( ) ( ) ( ) then  A B A B A Bµ µ µ∩ =∅ ∪ = +  and superaddi-
tive (subsdditive) when ( ) ( ) ( ) A B A Bµ µ µ∪ > +  (respectively 
( ) ( ) ( ) ).A B A Bµ µ µ∪ < +

Definition 2 (Discrete Sugeno λ-measure): A discrete fuzzy 
measure is called Sugeno λ-measure if it satisfies:

If A B then A B A B A B∩ = ∪( ) = ( ) + ( ) + ( ) ( )∅ µ µ µ λµ µλ λ λ λ λ,3.	 .

Note that (1) and (2) are fundamental properties for any types of a 
fuzzy measure and (3) is an additional property of λ-measure. To dif-
ferentiate this measure from other fuzzy measures, λ-fuzzy measure is 
denoted by µλ. Sugeno [77] proved that given those 3 axioms, a fuzzy 
measure can be uniquely determined using only n = |X| coefficients 
µi that are often called fuzzy densities which represent the degree of 
importance of the criteria i-th and can be calculated with parametric 
or nonparametric methods. The λ-measure can be calculated using the 
following formula:
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i

n
i

i

n

i i

n
i i

n
1 2

1 1

1

1

1
1 2

1 2 1
1 2

, , ,{ }( ) = + +
= =

−

= +

−∑ ∑ ∑µ µ µ µ µ µ µn
i

n
i= +( ) −

=
∏

1 1 1
1λ

λ

Based on the boundary condition in Eq. (1), µλ(X)=1, λ can be 
uniquely determined via the following equation:

	 λ λ+ = +( )
=
∏1 1

1i

n
iµ , 	 (2)

where µi = µ({xi}), i =1, 2, …, n is known as the fuzzy density func-
tion of a single element (singleton), xi X∈ .

According to Gürbüz et al. [30] and Hu and Chen [32]: 
If λ < 0 then it implies that the attributes share a redundancy ef-−	
fect. This means a significant increase in the performance of the 
target can be achieved by only enhancing some attributes in X 
which have higher individual importance. 
If λ > 0 then it interprets that the attributes share a synergy support −	
effect. This means a significant increase in the performance of the 
target only can be achieved by simultaneously enhancing all the 
attributes in X, regardless of their individual importance. 
If λ = 0, then it indicates that the attributes are non-interactive.−	

Definition 3 (Discrete Choquet integral): Let µ be a discrete 
fuzzy measure on X. The discrete Choquet integral of function 

[ ]: 0,1f X →  with respect to the fuzzy measure µ is defined by:

	 C f f f f f An
i

n

i i iµ µ1 2
1

1, , , ( ) ,…( ) = − ( )
=

( ) −( ) ( )∑ 	 (3)

Fig. 4.	 The total importance obtained by the analyzed criteria for individual 
industries
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and cognitive differences, linguistic variables are used and then they 
are  aggregated by fuzzy arithmetic.

The Fuzzy Number Ordered Weighted Average (FN-OWA) operator 
was used in the model for averaging expert evaluations. According to 
Sadiq and Tesfamariam [71]) the FN-OWA operator:

provides a flexible aggregation ranging between the minimum ––
and the maximum operators for fuzzy (or qualitative) data;
has ability to aggregate not only the quantitative data but can ––
also handle linguistic as well as crisp data;
can handle the missing information efficiently, i.e., a case of ––
complete ignorance about the value of a given input param-
eter;
provides flexibility in handling –– exaggeration and eclipsing in 
the aggregation process;
the aggregated value obtained through FN-OWA operator re-––
tains the same linguistic state as if all input criteria have equal 
values, i.e., idempotency property of the FN-OWA operator.

Aggregated fuzzy weights are then defuzzied in order to be ap-
plied in constructing a fuzzy measure. Mathematically, defuzzifying a 
fuzzy set is the process of rounding it off from its location to the near-
est vertex, what reduces the set into the most typical or representative 
value. Compared with a fuzzy value, a crisp value is more intuitive 
and easier for the final comparison because fuzzy sets have partial or-
dering. These crisp values (fuzzy density) can be treated as an average 
assessment of the importance of individual criteria/sub-criteria.

The next step is to build a fuzzy measure λ. The fuzzy measure is an 
extension of a probability measure. Probability measures are usually 
resistant in representing human subjectivity because of their additiv-
ity. In contrast, fuzzy measures do not require this property and, thus, 
can be interpreted as the subjective measures of a person evaluating an 
object [81]. This kind of measure is more flexible than a probability. 
According to Beliakov et al. [3]: Fuzzy measures map each subset of a 
given set to a weight or importance, what allows for the modelling of 
complementary or redundant relationships between variables.

There are three kinds of interactions between the assessment cri-
teria: synergy, inhibitory and non-interaction. The fuzzy measure can 
be applied to all three situations. In order to lower the number of coef-
ficients (which increases exponentially with a number of criteria) and 
satisfy the monotonicity and continuity, the criticality machine assess-
ment model uses λ-measure (see chapter …, Definition 2).

Let any subset Ai={x1, x2, …, xi} of X and given λ value (as cal-
culated in  Eq. (2)), the fuzzy measure µλ(An), for 1 ≤ i ≤ n can be 
determined recursively as:

	 µ µ µ» »A x1 1 1( ) = { }( ) = 	 (8)

	 µ µ µ µ µ» i i » »»A A Ai i i( ) = + ( ) + ( )− −1 1 	 (9)

In this application, the values of the fuzzy densities of the λ-measure 
are provided by experts according to their opinion on the worth of 
information sources. If experts choose to provide values that add to 
1, the unique real value of the parameter λ will be zero, and, hence, 
the λ-measure will actually be a probability-measure even though this 
might not be the best measure for modeling the system.

where: ( )if  indicates that the indices have been permutated so that 

( ) ( )10 1, nf f≤ ≤…≤ ≤  A x x f f xi i n i i( ) ( ) ( )= …{ } = ( ), , .and

Definition 4 (Shapley value - iν , [59]: Let µ be a fuzzy measure 
on X. The Shapley value (or the importance index) for every element 
xi X∈  is defined by the following formula:

	 ν γ µ µi
A X x

n
X i

i

A x A= ∪{ }( ) − ( ) 
⊂ { }
∑

\
, 	 (4)

where:

	 γ X A
X A A

X
( ) =

− −( )1 ! !
! 	 (5)

The Shapley value with respect to the measure µ is a vector 
[ ]1 2, , , nν ν ν ν= … . It describes the global importance of every ele-

ment by considering the effects of all subsets with and without the 
given element. According to the definition, the Shapley value has the 
property that the sum of all its components is 1, which can be formu-

lated as 
1

1
n

i
i

ν
=

=∑ . Scaled by the factor n, the Shapley values greater 

than 1 indicate that the given element (criterion) is more important 
than the average.

The Shapley value ranges between 0 and 1. In essence, it measures 
how much a criterion contributes,  on average, to all the coalitions of 
criteria.

Definition 5 (Interaction Index - ,i jI , [58]). Let µ be a fuzzy meas-
ure on X. The interaction index of the criteria xi and xj is defined by:
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(6)

The interaction index takes values from [-1, 1] interval, where 
negative (positive) values indicate a negative (positive, synergic) in-
teraction.

Definition 6 (Ordered Weighted Mean - OWA, [88]). An OWA 
aggregation operator is a mapping OWA: [0.1]n →[0. 1] such as:

	 OWA x x w xn
i

n
i i1

1
, , ,…( ) =

=
( )∑ 	 (7)

where the weights w i n w xi
i

n
i i∈[ ] = … =

=
( )∑0 1 1 1

1
, , , ,for and  indicates 

that the indices have been permuted so that ( ) ( )10   1.nx x≤ ≤…≤ ≤

3.3.3.	Integrated assessment process for machine criticality identifi-
cation

The operation process of the Choquet integral for the machine criti-
cality criteria aggregation is described as follows (Figure 5 ).

The first step in developing a machine criticality index focuses on 
weighting the individual elements (criteria and sub-criteria). The as-
sessment of the importance of criteria is usually a subjective assess-
ment and is carried out by experts. The subjective approach requires 
evaluator(s) to evaluate the criteria in terms of a relative importance 
or influence of the criteria towards the final score [49]. Since this step 
is carried out by a team of experts and because of their subjectivity 

Fig. 5. λ-fuzzy measure and fuzzy integral
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One of the problems which can appear in case of expert assess-
ments is the situation in which individual criteria will be rated so 
high (close to 1) that pairs, triples etc. of the criteria, due to the 
monotonicity of the fuzzy measure, will have very similar values 
(effectively equal to 1). While in case of aggregation using a weight-
ed average such a situation is not a problem, in case of a fuzzy 
measure and the Choquet integral it can lead to undesirable results 
(shallowing / equalization of the criteria weights and total omission 
of interactions among criteria).

In order to reduce significantly the impact of these problems on the 
aggregation result, the q-measure proposed by Mohamed and Xiao 
[55] was applied. It is an extension of the Sugeno λ-measure that al-
lows to automatically rescale the input density values μi. In practice, 
using a raw expert input is not a plausible strategy, because the values 
provided by experts, or obtained by using some computations, are at 
best on an interval scale with an arbitrary position of one. Therefore, 
scaling of these numbers is arbitrary, and computing from these num-
bers is then meaningless. The proposed definition for the q-measure, 
which is merely a normalization of λ -measure, solves this critical 
problem efficiently. The q-measure formulation decorrelates λ and 
the density. Moreover, such a formulation ensures that the q-measure 
complies with the principle that the fuzzy measure of any set, includ-
ing the singleton sets, should not be determined by simply considering 
only that one set, regardless of the whole universe. This is a critical 
issue especially when we intend to find an appropriate fuzzy measure 
in order to model a complex system that manifests a high degree of 
interdependencies among its information sources. 

Let X x x xn= …{ }1 2, , ,  be a finite set. For all sets A, B ⊂ X with 

A B∩ =∅ , we define µ : ,2 0 1X →[ ]  by:

	 µ X( ) =1

	 µ µ µA B A B∪( ) = ( ) + ( ) + ( ) ( )λµ µA B 	 (10)

for any choice of λ ≥ ─1. The only two constraints on the choice of a 
density generator value are:

	 0 1 1 2≤ ≤ = …µi i n, , , , 	 (11)

	
i

n
i

=
∑ >

1
0µ 	 (12)

enforcing the density generators to have values in the unit interval 
with at least one of the values being strictly positive in order to in-
sure a proper definition of the proposed fuzzy measure. Given a set of 
the density generator values µ µ µ1 2, , ,…{ }n  that satisfy the require-
ments (11) and (12) Mohamed and Xiao [55] defined the q-measure  
µq: 2X → [0, 1]:

	 µ
µ
µq A

A
X

A( ) = ( )
( )

∀ 	 (13)

It is called the q-measure because it is defined with the afore-
mentioned quotient. Using Eq. (13), for any choice of the variable
λ∈ − ∞[ )1, , Mohamed and Xiao [55] construct a fuzzy measure. This 
provides a definition for a class of various fuzzy measures specified 
by the choice of the variable. The Sugeno λ-measure is a special case 
in this class, when λ is selected such that µ(X) = 1. All fuzzy mea-
sures in this research are obtained by the application of this pro-
cedure to expert data.

It is important to note that in a fuzzy measure the importance of a 
single criterion or a pair of criteria is not solely determined by µ xi{ }( )  

or µ x xi j,{ }( ) . One needs to consider all µ A( )  such as x Ai ∈  or 

x x Ai j,{ } ⊆ . Murofushi [59] and Murofushi and Soneda [58] pro-
posed a solution to this problem based on the game theory for a single 
criterion and utility theory for pairs of criteria. Based on a fuzzy mea-
sure, the importance index (Shapley value) and interaction indices of 
different perspectives and criteria were defined.

When a fuzzy measure is constructed, the next step is to apply it in 
the Choquet integral to obtain the value of MCI. The Choquet integral 
(Definition 3) with respect to a fuzzy measure, compute an average 
of their inputs while also accounting for input interactions. This way, 
redundant inputs are not double counted while complementary inputs 
reinforce each other. Thanks to the stability of Choquet integral under 
positive linear transformations, the exact numerical scale in relation 
to which the calculations are made is not relevant. As such, the col-
lection of the data from experts is a simplified  way and allows for the 
assessment with the use of a linguistic scale.

4. Machine criticality assessment model for aviation 
industry – results of empirical studies 

4.1.	 Development of the machine criticality assessment 
model

The research on the validity of the criteria for assessing the criti-
cality of machines was carried out in the aviation industry. Based 
on the analysis of the research results (chapter 3.2), thirteen criteria 
were selected. They were considered important in this industry (the 
highest total value for the criteria and the greatest consistency of 
respondents’ answers - standard deviation). These criteria are: “Ma-
chine replacement in case of a failure”; “Degree of influence on other 
tasks in case of a machine failure”; “Costs incurred by production for 
machine downtime (breakdown)”; “Number of nonconformities due 
to a machine failure during the year”; “Degree of machine influence 
on the final product quality”; “Costs of non-conforming products as 
the result of a failure”; “Frequency of failures per year”; “Average 
downtime of a technical facility due to failures and repairs”; “Spare 
parts availability”; “Failure elimination costs (excluding OHS and 
environmental costs)”; “In case of a failure, the degree of influence 
on the working environment”; “In case of a failure, the degree of 
risk to the environment”; “Machine failure costs due to health, safe-
ty and the environment”.

A large number of criteria indicated by experts shows that the 
problem of a machine criticality assessment on a manufacturing sys-
tem level is a complex multi-dimensional decision problem [79]In or-
der to solve this problem, an enterprise has to consider different view-
points from various stakeholders and, thus, include many (not always 
compatible) goals in a decision-making process. A possible strategy 
to deal with this problem is to combine multiple goals simultaneously 
into a hierarchical structure mapping the main stakeholder groups 
and the issues relevant to each of them. Considering the above, the 
problem of assessing machine criticality was structured as a hierarchy 
that shows the criteria and sub-criteria. This type of presentation is 
enterprise-friendly and enables more effective analysis.

The thirteen criteria are grouped into four categories: 1) Produc-
tion - P, 2) Quality - Q, 3) Maintenance - M, and 4) Safety, Health and 
the Environment - SHE. The adopted categories of grouping (herein-
after referred to as criteria) reflect the main groups of stakeholders, 
i.e. those who are affected by the criticality of machines and which 
influence this criticality. The model was discussed with experts from 
the aviation industry and its final structure is shown in Figure 6.

Because of the formulated goal, the research was of qualitative na-
ture. Qualitative research does not aim to draw a statistical inference 
or produce a statistically representative sample. Therefore, purposive 
sampling (also called judgment sampling) was used to select quality 
informants for this study by Tongco [83]. He asserted that there is 
no cap on how many informants should be considered in purposive 
sampling, but five is the minimum number for data to be reliable. Ac-
cording to Gray [24] and Guest et al. [25] a sample size of between six 
and twelve interviews is often sufficient to achieve data saturation for 
every theme. Experts from 8 aviation manufacturing companies were 
invited to participate in the research.
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4.2.	 Determining the degree of importance of the machine 
criticality criteria and sub-criteria

The determination of the importance of criteria was carried out by 
experts according to the scheme (Figure 6):

assessment of the importance of the criteria and sub-criteria (1)	
by experts; 
calculating the an average value for the criteria and sub-cri-(2)	
teria; 
developing a λ measure; (3)	
determining the importance and interactions between the cri-(4)	
teria and sub-criteria. 

First, the experts evaluated the importance of the criteria/sub-crite-
ria in a questionnaire. To increase the accuracy of the machine criti-
cality assessment, all aerospace experts in our sample checked that 
the machine criticality frame used was working in their maintenance 
systems before conducting the assessment. The experts were asked 

to answer the following questions: How important is the X criterion / 
sub-criterion if it were to be used alone to assess the machine critical-
ity? (following the hierarchical model - Figure 6, with the five-level 
linguistic scale (Table 3)). The experts had no imposed numerical in-
terpretation of the linguistic variables used [91].

The average importance for each sub-criterion was calculated using 
FN-OWA. As a result of this aggregation method, the most extreme 
evaluations were rejected. The same method was used to aggregate 
expert assessments for the criteria (second level). Averaged impor-
tance values for the first level criteria are given in Figure 7. 

The last step was to calculate single numerical values for each of 
the fuzzy numbers. These values (fuzzy densities µi) can be treated as 

an average assessment of the importance of individual crite-
rion/sub-criterion. Using Center of Gravity defuzzyfication 
method led to the results presented in Table 4 and 5.

The calculated values of µi were used to develop a fuzzy 
measure. An algorithm presented in Mohamed and Xiao [55] 
was implemented in the R 3.4.4 Statistical Computing Plat-
form and applied without fixing λ to the averaged importance 
values in order to construct the Sugeno λ-measure (Definition 
2). Once the fuzzy measures for the sub-criteria and crite-
ria are identified, the next step is to compute the Shapley 
value using Eq 4 and Eq 5. The obtained fuzzy densities µi , 
λ-values for the sub-criteria and criteria as well as the scaled 
Shapley value are presented in Table 3 and Table 4. 

In Table 5, the λ value equals -0.4788212, what indicates a high 
degree of an interaction between various criteria for assessing the ma-
chine criticality. Based on the fuzzy measure (Table 4 and Table 5), 
the importance index (Shapley value) of different criteria and sub-
criteria was defined.

Table 3.	 Linguistic values of the criteria/sub-criteria importance grade

Linguistic terms Description Linguistic values

Very important the criterion/sub-criterion can be 
used alone to assess the entire level (0.75, 1.0, 1.0)

Important (0.5, 0.75, 1.0)

Moderately important (0.25, 0.5, 0.75)

Equal important (0, 0.25, 0.5)

Irrelevant
the criterion/sub-criterion is 

almost irrelevant to the level as-
sessment

(0, 0, 0.25)

Table 4.	 Fuzzy densities µi , fuzzy measure and Shapley value ( iν ) for sub-
criteria 

Criteria Sub-criteria µi(●) λ
	

iν

Production

p1 0.3750

-0.0458

1.1085

p2 0.3281 0.9690

p3 0.3125 0.9225

Quality

q1 0.3125

0.1526

0.9840

q2 0.3438 1.0800

q3 0.2969 0.9360

Maintenance

m1 0.2250

0.1068

0.9360

m2 0.2875 1.1920

m3 0.2500 1.0388

m4 0.2000 0.8332

SHE

s1 0.3594

0.0484

1.0944

s2 0.3438 1.0473

s3 0.2813 0.8583

Table 5.	 Fuzzy densities µi , fuzzy measure and Shapley value ( ) iν for 
criteria

Criteria µi(●) λ iν

Production 0.2656

-0.4788

0.8368

Quality 0.3906 1.2688

Maintenance 0.2188 0.6816

SHE 0.3750 1.2132

Fig. 7. Averaged importance values for the first level criteria

Fig. 6. Machine criticality assessment criteria and related sub-criteria
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The Shapley value measures a relative importance of each sub-
criterion/criterion in terms of its contribution to the score of each 
coalition [7]. It can measure the importance of each feature in the 
contribution to the machine criticality assessing problem better. The 
results presented in Table 5 indicate that the most important criteria 
are ‘Quality’ ( iν =1.2688) and “Safety, Health and the Environment” 
( iν =1.2132), whereas the ‘Maintenance’ criterion is the least impor-
tant ( iν =0.6816). The results presented in Table 3 apply to the value 
of the Shapley index for the sub-criteria describing a particular cri-
terion. Analyzing the criterion ‘Production” (P), the experts indicate 
that “Machine replacement in case of a failure - p1” is more important 
than “Degree of influence on other tasks in case of a machine failure - 
p2” and “Costs incurred by production for machine downtime (break-
down) - p3”. Assessing the criterion “Quality” (Q) (Table 3), the ex-
perts indicate that the sub-criteria “Degree of machine’s influence on 
a final product quality - q2” is the most important. Another criterion 
analyzed is “Maintenance” (M). The distribution of the importance 
of the assessment sub-criteria indicates that the most important are 
“Average downtime of a technical facility due to failures and repairs 
- m2” and “Spare parts availability - m3”. The fourth criterion is ‘In-
novation and development’ (ID). According to the experts’ assessment 
the most important criteria are “In case of a failure, the degree of 
influence on the working environment - s1” and “In case of a failure, 
the degree of risk to the environment - s2”

Another interesting aspect is that of the interaction among the crite-
ria. When the fuzzy measure is not additive, then some criteria inter-
act. The weight of sets of the sub-criteria taken together is determined 
by the Interaction Index, measuring the synergies or redundancies ex-
isting between the sets of variables. The obtained interaction index for 
the sub-criteria is presented in Table 6.

According to the assessment of the experts from the aviation indus-
try, the sub-criteria describing the criterion “Production” are redun-
dant, which means that some criteria should be rejected. Nevertheless, 
since the values of the interaction ratios are close to zero, it is diffi-
cult to draw binding conclusions. The interaction indexes between the 
sub-criteria describing the remaining criteria for assessing the critical-
ity of machines are positive. Therefore, it can be assumed that they are 
synergistic (see chapter 3.3.2). The most complementary criteria are 
q1 and q2, and q2 and q3. 

4.3.	 Numerical example 
The above multicriteria criticality assessment model was applied 

to assess Machine Criticality Index (MCI) in a medium size aviation 
factory. The calculation procedure of MCI requires the fuzzy measure 
(µ) and actual values of the sub-criteria obtained from the company 

assessment team (fi) (see an outline of this procedure in Fig. 5). Based 
on the available data collected in various departments of the company, 
the supervisor of the maintenance department assessed each of the 13 
sub-criteria specified in the model for the selected machine A (Figure 
6). To assess the value of the individual sub-criteria a point method 
was selected. The literature review [66, 75] indicates that this is the 
most common method of assessing criteria used in the aviation indus-
try. Table 7 presents an assessment matrix for the example criteria.

Table 8 presents the value of the sub-criteria fi. The aggregated 
values ( )1 2, , , nC f f fµ …  was obtained by Eq.(3) using the impor-
tance weighting of µi(●) for the sub-criteria and for criteria (table 
3) in R 3.4.4 Statistical Computing Platform. The aggregated value 

( )1 2, , , nC f f fµ …  in Table 8 represents the overall criticality of the 
machine A of the four criteria: Production (P); Quality (Q), Mainte-
nance (M) and (SHE). Based on Table 7, the Choquet integral values 

( )1 2, , , nC f f fµ …  of each sub-criterion can further be employed to 
determine the next fi and obtain the MCI for machine A (Table 9). 

The output result is easy to interpret and understand, and can thus 
be used directly by all maintenance stakeholders. The value of µλ (●) 
enables the assessment of the impact of each of the analyzed criteria 
on the final value of the MCI index for machine A. Among the ana-
lyzed criteria, „Quality” has the greatest impact (µλ (M, SHE, Q) ̶ µλ 
(M, SHE) = 0.287). Therefore, in order to improve the maintenance 
strategies planned and implemented for machine A, first of all, actions 
should be defined in relation to the sub-criteria q1, q2 and q3. In this 
group of sub-criteria, q1 has the greatest impact (the highest value of 

iν =1.1085), therefore, potential solutions should be targeted at this 
area of impact.

5. Conclusions
Manufacturing equipment (machines, devices) are essential to pro-

duction environments. However, due to the importance in the product 
realization process and the consequences of failure (e.g. environmen-
tal impact, human health and safety), not all machines are equally 
important. Given that each enterprise has limited resources (e.g. fi-
nancial, human, material), it is necessary to prioritize (machine criti-
cality assessment) and have a strategy to manage machines according 
to how critical they are to operation and maintenance. 

In this paper the problem of machine criticality was analyzed. The 
criteria and methods proposed for assessing the criticality of machines 
were identified. Then, the research was conducted to identify the most 
important criteria used to assess the criticality of machines in various 
types of industries. On the basis of the obtained results, the criteria 
and industry, for which the machine criticality assessment model was 
developed, were selected. 

The proposed model of the machine criticality assessment has a 
two – levelled hierarchical structure. On the first level of the hierar-
chical structure there are the criticality assessment process stakehold-
ers. The criticality assessment process stakeholders are: maintenance 
managers who plan and realize maintenance activities and production, 
as well as quality and SHE managers, on whom the decisions and 
activities have impact. The second level of the hierarchical structure 
are sub-criteria – the aspects which are significant for all criticality 
assessment process stakeholders. 

In order to assess the machine criticality the Machine Criticality In-
dex was developed. The aim of the MCI index is to measure outputs of 
different criticality criteria and sub- criteria, and integrate them in one 
single index. Weighting and aggregation is an important step in this 
procedure. There are various weighting and aggregation methods re-
lated to specific purposes. Because the criteria and sub- criteria of the 
machine criticality assessment are independent, in order to aggregate 
them a non-additive fuzzy integral was selected. The fuzzy integral 
method applies fuzzy measures to deal with the problems of human 
subjective perception and uncertainty as well as to address the level of 
interdependency effects among the criteria [77]. In this research, we 
are motivated to implement the theory of fuzzy measures to model the 

Table 6.	 Interaction Index ,i jI  for sub-criteria

Cr
ite

ri
a

P
Sub-criteria (p1, p2) (p1, p3) (p2, p3)

,i jI -0.0056 -0.0053 -0.0047

Q
Sub-criteria (q1, q2) (q1, q3) (q2, q3)

,i jI 0.0168 0.0145 0.0159

M

Sub-criteria (m1, m2) (m1, m3) (m2, m3)

,i jI 0.0071 0.0062 0.0079

Sub-criteria (m1, m4) (m2, m4) (m3, m4)

,i jI 0.0049 0.0063 0.0055

SHE
Sub-criteria (s1, s2) (s1, s3) (s2, s3)

,i jI 0.0060 0.0049 0.0047
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importance and interaction between the features in the Choquet inte-
gral. According to the best knowledge of the authors, there is a lack of 
such framework of the criticality machine assessment in the previous 
research. Based on the fuzzy measure, the importance index (Shap-
ley value) and interaction index of different criteria and sub-criteria 
were defined. The analysis of Shapley values and interaction indexes 
demonstrate that the presented fuzzy machine criticality assessment 
is able to provide maintenance managers with a better understanding 
of the importance of individual criteria and sub-criteria in the assess-
ment of the machine criticality and their impact on the final value of 
the MCI index. Taking into account the final value of the MCI index 
they are able to develop better planning of machine maintenance pro-
grammes and resources allocation. 

The created model has some limitations. First of all, the model was 
developed only based on the research conducted in enterprises from 
the aviation industry. Secondly, in these enterprises only discrete man-
ufacturing processes were realized. Therefore, some of the analzyed 
criteria cannot be significant for continuous manufacturing processes, 
e.g. the sub–criterion p1 (Machine replacement in case of a failure). 
Thirdly, the calculation of the MCI index from a mathematical point 
of view is complicated. Therefore, it could be a potential limitation 
of the application of this model in practice. Finally, the development 
of an intelligent manufacturing system and digital twin technology 
with rich sensor data and AI technique for diagnostics and prognostics 
would have a great influence on the calculation of the MCI index. 
Thus, carrying out relevant research is suggested to be continued.

Table 7.	 The ranking of sub-criteria assessment – example 

Ranking scale

Sub-criteria

p3 q2 s1 s2

The failure

1 has no effect on production 
losses at all

has no effect on product qual-
ity at all has no effect on safety at all has no effect on environment 

at all

2
can cause minor losses of pro-

duction 
(p3 < a)

can create defects that will 
cause rejection or rework of 

parts of production lots

can cause only small injuries 
with no absence of the worker

can cause only a small impact 
only in the delimited area of oc-
currence inside the department 

3
can cause significant losses of 

production
a ≤ p3 < b

can create defects that will 
block online lots of production, 
causing high volumes of rejec-

tion or rework

can cause injuries with tempo-
rary absence of the worker

can cause an environmental 
impact internally in the plant

4
can cause extensive losses of 

production 
p3 ≥ b

can create defects that will be 
perceived by a customer (can-

not be blocked inside the plant)

can cause death or injuries 
with permanent absence of the 

worker

can cause an environmental 
impact outside the limits of the 

plant 

Table 8.	 The fuzzy measure and aggregated values of P, Q, M and SHE for the machine A

Criteria Sub-criteria fi µi(●)
( )1 2, , , nC f f fµ …

(λ – value)
µλ(●)

Production

p1 1 0.3750
P = 1.636 

λ = -0.0458

µλ(p2)=0.328

p2 2 0.3281 µλ(p2, p3)=0.636

p3 2 0.3125 µλ(p2,p3,p1)=1.000

Quality

q1 2 0.3125
Q = 2.000
λ = 0.1526

uλ(q1)=0.313

q2 2 0.3438 µλ(q1,q2)=0.673

q3 2 0.2969 µλ(q1,q2,q3)=1.000

Maintenance

m1 3 0.2250

M = 2.519 
λ = 0.1068

µλ(m1)=0.225

m2 3 0.2875 µλ(m1,m2)=0.519

m3 2 0.2500 µλ(m1,m2,m3)=0.783

m4 2 0.2000 µλ(m1,m2,m3,m4)=1.000

SHE

s1 3 0.3594
SHE = 2.068 
λ = 0.0484

µλ(s1)=0.359

s2 2 0.3438 µλ(s1,s2)=0.709

s3 1 0.2813 µλ(s1,s2,s3)=1.000

Table 9.	 Fuzzy measure and value of MCI for machine A 

Criteria fi µi(●)
( )1 2, , , nC f f fµ …

λ - value
µλ(●)

Production 1.636 0.2656

MCI = 2.079
λ = -0.4788

µλ(M)=0.219

Quality 2.000 0.3906 µλ(M,SHE)=0.554

Maintenance 2.519 0.2188 µλ(M,SHE,Q)=0.841 

SHE 2.068 0.3750 µλ(M,SHE,Q,P)=1.000
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