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On existence of solutions of a quadratic Urysohn
integral equation on an unbounded interval

Abstract. We show that ω0(X) = lim
T→∞

lim
ε→0

ωT (X, ε) is a measure of noncompact-

ness defined on some subsets of the space C(R+) = {x : R+ → R, x continuous}
furnished with the distance defined by the family of seminorms |x|n. Moreover, using

a technique associated with the measures of noncompactness, we prove the existence
of solutions of a quadratic Urysohn integral equation on an unbounded interval. This

measure allows to obtain theorems on the existence of solutions of a integral equa-

tions on an unbounded interval under a weaker assumptions then the assumptions
of theorems obtained by applying two-component measures of noncompactness.

2000 Mathematics Subject Classification: Primary 45G10, Secondary 47H30.

Key words and phrases: Quadratic Urysohn integral, measure of noncompactness,

Tichonov fixed point theorem.

1. Introduction. Integral equations of various types play an important role
in many branches of functional analysis and their applications in the theory of elas-
ticity, mathematical physic and engineering (see [1, 2, 9, 10, 11, 12, 13, 15]). Many
autors have investigated the existence of solutions of integral equations on an un-
bounded interval with the help of some two-component measures of noncompactness
in the Banach space BC(R+) [4, 5, 6, 7, 8, 14, 16, 17]. This approach seems to be
too restrictive. In this paper, at firstly, we show that well-known mapping ω0(X)
is the measure of noncompactness on some subsets of the space C(R+) consisting
of all real functions defined and continuous on R+, equipped with the family of
seminorms |x|n.

Next, we investigate the problem of the existence of solutions of the quadratic
Urysohn integral equation on unbounded interval having the form

(1) x(t) = a(t) + f(t, x(t))

∞∫

0

u(t, s, x(s))ds , t ∈ R+ = [0,∞) .
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The method used in our considerations depends on the Tichonov fixed point
principle and suitable conjunction of the previously mentioned the measure ω0(X)
and the space C(R+).

2. Notation. For further purposes, we collect in this section a few auxiliary
results which will be needed in the sequel.

Consider
C(R+) = {x : R+ → R, x continuous},

equipped with the family of seminorms |x|n = sup{|x(t)| : t ∈ [0, n]}, n ≥ 1.
C(R+) becomes a Fréchet space furnished with the distance

d(x, y) = sup{2−n |x− y|n
1 + |x− y|n

: n ∈ N}.

It is known that C(R+) is a locally convex space.

Let us recall two facts:

(A) a sequence (xn) is convergent to x in C(R+) if and only if (xn) is uniformly
convergent to x on compact subsets of R+,

(B) a family A ⊂ C(R+) is relatively compact if and only if for each T > 0,
the restrictions to [0, T ] of all functions from A form an equicontinuous and
uniformly bounded set.

If X is a subset of C(R+), then X, convX,ConvX denote the closure, convex
hull and convex closure of X, respectively. We use the symbols λX and X + Y to
denote the algebraic operations on sets.

The family of all nonempty subsets of C(R+) consisting of functions uniformly
bounded on R+ will be denoted by MC , i.e.

MC = {X ⊂ C(R+) : X 6= ∅ and sup{|x(t)| : x ∈ X, t ≥ 0} <∞},

while subfamily of MC consisting of all relatively compact sets is denoted by NC .
Now, we recall the definition of quantities which will be used in our further

investigations. These ones was introduced and studied in [3]. Let X ∈ MC . Fix
T > 0, ε > 0. Let us denote.

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε} .

Further, let us put:

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X} ,

ωT0 (X) = lim
ε→0

ωT (X, ε) ,

ω0(X) = lim
T→∞

ωT0 (X) .

Let us observe that mapping ω0 : MC → R+ can be called a measure of non-
compactness (see [3]) because it satisfies the following conditions:
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1o the family kerω0 = {X ∈MC : ω0(X) = 0} = NC ,

2o X ⊂ Y ⇒ ω0(X) ≤ ω0(Y ),

3o ω0(X) = ω0(ConvX) = ω0(X),

4o ω0(λX + (1− λ)Y ) ≤ λω0(X) + (1− λ)ω0(Y ) for λ ∈ [0, 1],

5o If (Xn) is a sequence of closed sets from MC such that Xn+1 ⊂ Xn (n =

1, 2, ...) and if lim
n→∞

ω0(Xn) = 0 then the set X∞ =
∞⋂
n=1

Xn is nonempty.

The condition 1o is immediately consequence of (B), 2o is obvious. We will prove
3o.
Let us fix X ∈MC and take x ∈ convX. Then x =

∑n
i=1 αixi where x1, ..., xn ∈

X,
∑n
i=1 αi = 1, α1, ..., αn ≥ 0. Hence we get

ωT (x, ε) ≤
n∑

i=1

αiω
T (xi, ε) ≤ ωT (X, ε),

ωT (convX, ε) = ωT (X, ε) and ω0(convX) = ω0(X).

Further, taking x ∈ X we obtain that there are xn ∈ X such that xn → x in C(R+).
Fix δ > 0, there exists n0, such that

|xn(t)− x(t)| ≤ δ for n ≥ n0, t ∈ [0, T ].

Let us notice that

|x(t)− x(s)| ≤ 2δ + |xn(t)− xn(s)| for n ≥ n0,

Hence we get
ωT (x, ε) ≤ 2δ + ωT (xn, ε) ≤ 2δ + ωT (X, ε),

ωT (X, ε) ≤ 2δ + ωT (X, ε), ωT (X, ε) = ωT (X, ε) and ω0(X) = ω0(X).

Linking the above equalities we obtain

ω0(ConvX) = ω0(convX) = ω0(convX) = ω0(X).

The proof of condition 4o is similar and will be omitted.
Now we will prove 5o. Let us take arbitrary element xn ∈ Xn. Applying the

diagonal method we can choose a subsequence (x1,n) of the sequence (xn) such that
(x1,n) is convergence on [0, 1] ∩ Q. For proving of uniformly convergence of (x1,n)
on [0, 1] it is enough to show that (x1,n) satisfies Cauchy’s condition. Let ε > 0. In
virtue of lim

n→∞
ω0({x1,n, x1,n+1, ...}) = 0 we derive that there exist δ > 0 and n0 ∈ N

such that if |t− s| ≤ δ, t, s ∈ [0, 1] then

|x1,n(t)− x1,n(s)| ≤ ε

3
for n ≥ n0.

Now we put qi = i
p , i = 0, ..., p where p is so large that |qi−qi−1| ≤ δ, i = 1, ..., p.
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The convergence of (x1,n) on the set {q0, ..., qp} implies that there exists
n1 ∈ N (n1 ≥ n0) that

|x1,n(qi)− x1,m(qi)| ≤
ε

3
for i = 0, ..., p and n,m ≥ n1.

Let us observe that for arbitrary t ∈ [0, 1] exists i ≤ p, such that |t−qi| ≤ δ. Linking
this facts, we derive the estimate:

|x1,n(t)−x1,m(t)| ≤ |x1,n(t)−x1,n(qi)|+ |x1,n(qi)−x1,m(qi)|+ |x1,m(qi)−x1,m(t)| ≤

≤ ε

3
+
ε

3
+
ε

3
= ε for n,m ≥ n1.

This shows that (x1,n) is uniformly convergent on [0, 1]. Repeating this reasoning
for [0, k] we obtain that there is a subsequence (xk,n) of the sequence (xk−1,n) such
that (xk,n) is uniformly convergent on [0, k]. Finally, putting xn = xn,n we infer
that (xn) is uniformly convergent to some x ∈ C(R+) on a compact subsets of R+,
and in virtue of closedness of Xn and (A) we obtain x ∈ ⋂∞i=1Xn 6= ∅.

3. Main result. Now we will study the existence of solutions of the quadratic
Urysohn integral equation (1). Our considerations are situated in the Fréchet space
C(R+) described in the previous part.

We will consider Eq. (1) under the following assumptions:

(i) a : R+ → R is a continuous and bounded function,

(ii) f : R+ × R→ R is a continuous function,

(iii) the function f satisfies the Lipschitz condition with respect to the second
variable i.e. there exists a continuous function k(t) > 0 such that

|f(t, x)− f(t, y)| ≤ k(t)|x− y|

for x, y ∈ R and t ∈ R+,

(iv) u : R+ × R+ × R → R is continuous and there exist a continuous function
g : R+×R+ → R+ and a continuous and nondecreasing function h : R+ → R+

such that
|u(t, s, x)| ≤ g(t, s)h(|x|)

for all t, s ∈ R+ and x ∈ R,

(v) for every t ≥ 0 the function s → g(t, s) is integrable on R+ and the function

t→
∞∫
0

g(t, s)ds is locally bounded on R+ i.e.

∀T>0 sup
t∈[0,T ]

∞∫

0

g(t, s)ds <∞,
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(vi) the improper integral
∫∞

0
g(t, s)ds is locally uniformly convergent with respect

to t i.e.
∀δ>0 ∀T>0 ∃S>0 sup

t∈[0,T ]

∫ ∞

S

g(t, s)ds < δ,

(vii) the inequality

sup
t≥0
|a(t)|+

(
r sup
t≥0

k(t)
∫ ∞

0

g(t, s)ds+ sup
t≥0
|f(t, 0)|

∫ ∞

0

g(t, s)ds
)
h(r) ≤ r

has a positive solution r0 such that

h(r0) sup
t≥0

k(t)
∫ ∞

0

g(t, s)ds < 1.

Remark 3.1 Notice that the condition h(r0) supt≥0 k(t)
∫∞

0
g(t, s)ds < 1 is satis-

fied provided r0 satisfies the inequality from (vii) and the function a(t) or t→ f(t, 0)
do not vanish on R.

Now we can formulate our result which generalizes and completes the results ob-
tained earlier in some papers [4, 14].

Theorem 3.2 Under assumptions (i)-(vii) equation (1) has at least one solution
x = x(t) in the space C(R+).

Proof Let r0 > 0 be a number satisfying the assumption (vii) and define a set

B = {x ∈ C(R+) : sup
t≥0
|x(t)| ≤ r0}.

Consider the operator U defined on B by the formula

(Ux)(t) = a(t) + f(t, x(t))

∞∫

0

u(t, s, x(s))ds, t ≥ 0 .

At first we show that the function Ux is continuous on R+.
To do this fix arbitrarily x ∈ B, T > 0 and ε > 0. Next, take arbitrary numbers

t, s ∈ [0, T ] such that |t− s| ≤ ε. Moreover, let δ > 0 and S > 0. Then, keeping in
mind our assumptions, we obtain:

|(Ux)(t)− (Ux)(s)| ≤ |a(t)− a(s)| +

+

∣∣∣∣∣∣
f(t, x(t))

∞∫

0

u(t, τ, x(τ))dτ − f(s, x(s))

∞∫

0

u(t, τ, x(τ))dτ

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣
f(s, x(s))

∞∫

0

u(t, τ, x(τ))dτ − f(s, x(s))

∞∫

0

u(s, τ, x(τ))dτ

∣∣∣∣∣∣
≤
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≤ ωT (a, ε) + |f(t, x(t))− f(s, x(s))|
∞∫

0

|u(t, τ, x(τ))|dτ +

+ |f(s, x(s))|
∞∫

0

|u(t, τ, x(τ))− u(s, τ, x(τ))|dτ ≤

≤ ωT (a, ε)+[|f(t, x(t))−f(t, x(s))|+ |f(t, x(s))−f(s, x(s))|]
∞∫

0

g(t, τ)h(|x(τ)|)dτ +

+ [|f(s, x(s))− f(s, 0)|+ |f(s, 0)|]
∞∫

0

|u(t, τ, x(τ))− u(s, τ, x(τ))|dτ ≤

≤ ωT (a, ε) +
[
k(t)|x(t)− x(s)|+ ωTr0(f, ε)

]
h(r0)

∞∫

0

g(t, τ)dτ +

+ [k(s)|x(s)|+ |f(s, 0)|]
S∫

0

|u(t, τ, x(τ))− u(s, τ, x(τ))|dτ+

(2) +[k(s)|x(s)|+ |f(s, 0)|]h(r0)
(∫ ∞

S

g(t, τ)dτ +
∫ ∞

S

g(s, τ)dτ
)
,

where we denoted

ωTd (f, ε) = sup{|f(t, y)− f(s, y)| : t, s ∈ [0, T ], y ∈ [−d, d], |t− s| ≤ ε} .

Keeping in mind the assumption (vi) we deduce that there exists S so large that
the last term of inequality (2) is less then δ i.e.

|(Ux)(t)− (Ux)(s)| ≤ ωT (a, ε) +
[
k(t)|x(t)− x(s)|+ ωTr0(f, ε)

]
h(r0)

∞∫

0

g(t, τ)dτ +

(3) +[k(s)|x(s)|+ |f(s, 0)|]
S∫

0

|u(t, τ, x(τ))− u(s, τ, x(τ))|dτ + δ .

Now, from the above estimate we get:

|(Ux)(t)− (Ux)(s)| ≤ ωT (a, ε) + k(t)ωT (x, ε)h(r0)

∞∫

0

g(t, τ)dτ +
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(4) + ωTr0(f, ε)h(r0)

∞∫

0

g(t, τ)dτ + sup
s≤T

(k(s)r0 + |f(s, 0)|)SωT,Sr0 (u, ε) + δ,

where, similarly as above, we denoted

ωT,Sd (u, ε) = sup{|u(t, τ, y)−u(s, τ, y)| : t, s ∈ [0, T ], τ ∈ [0, S], |t−s| ≤ ε, y ∈ [−d, d]} .

Let us notice that ωTr0(f, ε) → 0 and ωT,Sr0 (u, ε) → 0 as ε → 0, which is a
consequence of the uniform continuity of the function f on the set [0, T ]× [−r0, r0]
and the function u on the set [0, T ]× [0, S]× [−r0, r0], respectively.

Further observe that in virtue of assumption (v) sup
t∈[0,T ]

∞∫
0

g(t, τ)dτ <∞. Hence,

taking into account the facts established above and free choice of δ > 0 we infer
that the function Ux is continuous on the interval [0, T ] for any T > 0. This implies
that Ux is continuous on the whole interval R+.

Now we show that the mapping U transforms B into itself. In fact, using our
assumptions for arbitrarily fixed t ∈ R+ we have:

|(Ux)(x)| ≤ |a(t)|+ |f(t, x(t))|
∞∫

0

|u(t, s, x(s))|ds ≤

≤ |a(t)|+ [|f(t, x(t))− f(t, 0)|+ |f(t, 0)|]
∞∫

0

g(t, s)h(|x(s)|)ds ≤

≤ |a(t)|+ h(r0)r0k(t)

∞∫

0

g(t, τ)dτ + h(r0)|f(t, 0)|
∞∫

0

g(t, τ)dτ .

Hence, keeping in mind (vii), we get

|(Ux)(t)| ≤ sup
t≥0
|a(t)|+h(r0)r0 sup

t≥0
k(t)

∞∫

0

g(t, τ)dτ+h(r0) sup
t≥0
|f(t, 0)|

∞∫

0

g(t, τ)dτ ≤ r0,

which means that the mapping U transforms B into itself.
In what follows let us take a nonempty subset X of the set B. Fix ε > 0 and

T > 0 and take an arbitrary function x ∈ X. Then, using the estimate (4) we
obtain:

ωT (Ux, ε) ≤ ωT (a, ε) + k(t)ωT (x, ε)h(r0)

∞∫

0

g(t, τ)dτ +

+ ωTr0(f, ε)h(r0)

∞∫

0

g(t, τ)dτ + sup
s≤T

(k(s)r0 + |f(s, 0)|)SωT,Sr0 (u, ε) + δ.
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Hence we get

ωT (UX, ε) ≤ ωT (a, ε) + k(t)ωT (X, ε)h(r0)

∞∫

0

g(t, τ)dτ +

+ ωTr0(f, ε)h(r0)

∞∫

0

g(t, τ)dτ + sup
s≤T

(k(s)r0 + |f(s, 0)|)SωT,Sr0 (u, ε) + δ,

Now, taking into account the properties of the components involved in the above
inequality, we have:

ωT0 (UX) ≤ h(r0) sup
t≤T

k(t)

∞∫

0

g(t, τ)dτ · ωT0 (X),

(5) ω0(UX) ≤ h(r0) sup
t≥0

k(t)

∞∫

0

g(t, τ)dτ · ω0(X).

Next, let us consider the sequence of sets (Bn), where B1 = ConvU(B), B2 =
ConvU(B1) and so on. Observe that all sets of this sequence are nonempty, closed
and convex. Moreover, Bn+1 ⊂ Bn for n = 1, 2, .... Further, keeping in mind (5)
we get

(6) µ(Bn) ≤ qnµ(B) ,

where we put q = h(r0) supt≥0 k(t)
∞∫
0

g(t, τ)dτ . Obviously, in view of (vii) we have

that q < 1. Apart from this we can calculate that ω0(B) = 2r0. In virtue of (6) this
implies that lim

n→∞
ω0(Bn) = 0. Thus, from the condition 5o we infer that the set

Y =
∞⋂
n=1

Bn is nonempty, closed and convex. Moreover, we deduce that Y ∈ kerω0.

It should be also noted that the operator U maps the set Y into itself.
Now we show that U is continuous on the set B.
To do this fix x ∈ B and take functions xn ∈ B such that xn → x in C(R+).

We will show Uxn → Ux in C(R+). Firstly, let us observe

|(Ux)(t)− (Uxn)(t)| ≤ |f(t, x(t))− f(t, xn(t))|
∞∫

0

|u(t, s, x(s))|ds +

+ |f(t, xn(t))|
∞∫

0

|u(t, s, x(s))−u(t, s, xn(s))|ds ≤ k(t)|x(t)−xn(t)|h(r0)

∞∫

0

g(t, s)ds+

(7) +|f(t, xn(t))|
∞∫

0

|u(t, s, x(s))− u(t, s, xn(s))|ds.
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Fix T > 0. In virtue of (A) it is enough to show that |(Ux)(t)− (Uxn)(t)| → 0 uni-

formly on [0, T ] for n→∞. Using the assumption (v) we have sup
t≤T

k(t)
∞∫
0

g(t, s)ds <

∞.
This implies that the first term of the inequality (7) tends to 0 uniformly on [0, T ]
for n→∞. Next, lest us observe that

sup
t≤T
|f(t, xn(t))| ≤ sup

t≤T
[k(t)r0 + |f(t, 0)|] <∞.

It is enough to show that
∞∫
0

|u(t, s, x(s))− u(t, s, xn(s))|ds→ 0 uniformly on [0, T ].

Let S > 0 and δ > 0.
∞∫

0

|u(t, s, x(s))− u(t, s, xn(s))|ds ≤

(8) ≤
S∫

0

|u(t, s, x(s))− u(t, s, xn(s))|ds+ 2h(r0)

∞∫

S

g(t, s)ds.

Hence, in view of the assumption (vi) we can find S so big that the last term of (8)
is less then δ

2 for t ≤ T . Moreover

(9)

S∫

0

|u(t, s, x(s))− u(t, s, xn(s))|ds ≤ SωT,Sr0 (u, sup
s≤S
|x(s)− xn(s)|),

where

ωT,Sd (u, ε) = sup{|u(t, s, x)−u(t, s, y)| : t ∈ [0, T ], s ∈ [0, S], |x−y| ≤ ε, x, y ∈ [−d, d]} .
The convergence of (xn) to x in C(R+) implies lim

n→∞
sup
s≤S
|x(s) − xn(s)| = 0. Com-

bining this fact, (9) and the uniform continuity of the function u on the set [0, T ]×
[0, S]× [−r0, r0] we infer that

sup
t≤T

S∫

0

|u(t, s, x(s))− u(t, s, xn(s))|ds ≤ δ

2
for n sufficiently big.

Using above inequalities we obtain

sup
t≤T

∞∫

0

|u(t, s, x(s))− u(t, s, xn(s))|ds ≤ δ for n sufficiently big.

This ends the proof of continuity the mapping U : B → B.
Finally, linking all above established properties of the set Y and the operator

U : Y → Y and using the Tichonov fixed point principle we infer that the operator
U has at least one fixed point x in the set Y . Obviously the function x = x(t) is a
solution of the integral equation (1). This completes the proof. �
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