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Copies of the sequence space ω in F-lattices with applications

to Musielak–Orlicz spaces

Marek Wójtowicz and Halina Wiśniewska

Summary. Let E be a fixed real function F-space, i.e., E is an order ideal

in L0(S , Σ, µ) endowed with a monotone F-norm ∥∥ under which E is

topologically complete. We prove that E contains an isomorphic (topo-

logical) copy of ω, the space of all sequences, if and only if E contains

a lattice-topological copyW of ω. If E is additionally discrete, we obtain

a much stronger result:W can be a projection band; in particular, E con-

tains a complemented copy of ω. Fis solves partially the open problem

set recently by W. Wnuk.

Fe property of containing a copy of ω by a Musielak–Orlicz space

is characterized as follows. (1) A sequence space ℓΦ , where Φ = (φn), con-
tains a copy of ω i× inf n∈N φn(∞) = 0, where φn(∞) = limt→∞ φn(t).
(2) If the measure µ is atomless, then ω embeds isomorphically into

LM(µ) i× the functionM∞ is positive and bounded on some set A ∈ Σ

of positive and finite measure, whereM∞(s) = limn→∞M(n, s), s ∈ S.

In particular, (1)’ ℓφ does not contain any copy of ω, and (2)’ Lφ(µ), with
µ atomless, contains a copyW of ω i× φ is bounded, and every such copy

W is uncomplemented in Lφ(µ).
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1. Introduction

In this paper we deal mainly with real vector lattices (i.e., Riesz spaces), but it is easy to

check that our results remain true in the complex case as well. For basic facts undefined
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here, we refer the reader to themonographs [1,2,8, 10, 12]; some notions are also presented

in the following section.Froughout this paper, (S , Σ, µ) denotes a fixed σ-finite measure

space and L0(µ) denotes the Dedekind complete lattice of all (classes of) µ-measurable

real functions on S endowed with its natural µ-a.e. algebraic operations and ordering.

Fe classical result of Lozanovskii asserts that a σ-Dedekind complete Banach latti-

ce E contains a copy of the space ℓ∞ if and only if E contains a lattice copy of ℓ∞, and
a similar equivalence, due to Lozanovskii and Meyer–Nieberg, holds for the class of all

Banach lattices where ℓ∞ is replaced by c0 (see [2]; Feorems 14.9 and 14.12, and Remarks

on pp. 124 and 127). (Here and in what follows the term “copy” means “linear-isomorphic

(i.e., homeomorphic) copy”, and “lattice copy” means “both linear-lattice and isomorpic

copy” (cf. [1, Feorem 16.6]).)

Fe purpose of this paper is to prove an analogue of the above-cited Lozanovskii

/ Meyer–Nieberg theorems for a large class of F-lattices, including the class of all (non-

-Banach) Musielak–Orlicz spaces, for the Frèchet lattice ω of all real sequences instead

of c0 and ℓ∞ (Main Feorem below). In 2013, this result was suggested by W. Wnuk [16,

Remark 1.2], who put the following question:

(W) If an F-lattice contains a copy of ω, does it also contain a lattice copy of ω?

A complete metrizable locally solid Riesz space E is said to be an F-lattice. Its topology

is determined by a monotone F-norm (for details, see [1, p. 111] and [8]). Fe space ω

endowed with the pointwise ordering and the lattice F-norm

∥(tn)∥ =
∞
∑
n=1

1

2
n

∣tn ∣
1 + ∣tn ∣

is an example of a Frèchet lattice.

If E is an order ideal in L0(µ) endowed with a monotone F-norm ∥ ⋅ ∥ under which

E is topologically complete, then E is said to be a function F-space.

Now we are in a position to present our main result. Its atomless and purely atomic

versions are given in Section 5, Feorems 3.1 and 3.2, respectively.

1.1. Main theorem. Let E be a function F-space.Fe following two conditions are equivalent.

(a) E contains a copy of ω.

(b) E contains a lattice copy of ω.

Hence, in the class of function F-spaces the property of containing a lattice copy of ω is

invariant under linear homeomorphisms.

Fe paper is organized as follows. In Section 2 we list some notions and facts con-

cerning F-spaces and Riesz spaces. Fe main technique used in proofs of Feorems 3.1

and 3.2 are the Bessaga–Pełczyński–Rolewicz theorem on arbitrarily short straight lines
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in an F-space, presented in Proposition 2.1, and the result on the construction of a disjoint

refinement of a sequence (An) of elements of Σwith positivemeasure, given in Lemma2.4.

In Section 5 we present more detailed versions of the Main Feorem, and in Section 6 we

showhowour theoryworks for the class ofMusielak–Orlicz spaces (Feorems 4.1 and 4.4);

in particular, ℓφ does not contain any copy of ω (Corollary 4.2), and if the Orlicz function

φ is bounded and the measure µ is atomless, then Lφ(µ) contains a (lattice) copyW of ω,

although any such copy is uncomplemented in Lφ(µ) (Corollary 4.5). Fe proofs of the

theorems and lemmas are given in the last section.

2. Preliminaries

Fe vector lattice (i.e., Riesz spaces) terminology and notation used in this paper are stan-

dard (see [1, 2]). In what follows, E is an Archimedean vector lattice.

Basic properties of vector lattices, F-lattices, and the space ω. Let E be a vector lattice.

Fe set of all 0 ⩽ x ∈ E is denoted by E+. Let x ∈ E. Fe symbol Ax denotes the ideal in

E generated by x, i.e., Ax = {y ∈ E , ∃λ>0 ∶ ∣y∣ ⩽ λ∣x∣}. If B is a nonempty subset E, then

the symbol Bd stands for the orthogonal complement of B, i.e., Bd = {x ∈ E ∶ ∣x∣ ∧ ∣y∣ =
0 for every y ∈ B}. A linear projectionQ on the lattice E (i.e., an endomorphism of E such

that Q2 = Q) is said to be an order projection if 0 ⩽ Qx ⩽ x for all x ∈ E+.
An order ideal B in E of the form B = Bdd is said to be a band. Fe band B is said to

be projection band if E = B + Bd .
If B is a projection band in E, then there exists an order projection PB ∶ E → B such

that B = PB(E) and Bd = P′B(E), where P′B = I − PB and I is the identity on E. It is well

known (and can be checked directly) that if E is an order ideal in L0(µ) then every order

projection Q in E is of the form

Qx = 1A ⋅ x , x ∈ E ,

where A is an element of Σ and 1A denotes the characteristic function of A.

Fe lattice E is called [σ-]Dedekind complete if every [countable] nonempty subset

A of E bounded from above has the least upper bound in E. Every order ideal J of L0(µ)
is Dedekind complete. If E is Dedekind complete, then every band in E is a projection

band [1, Feorem 2.12].

An element e ∈ E+ ∖ {0} is said to be discrete (or, an atom) if the ideal generated

by e coincides with the subspace generated by e, i.e., Ae = lin{e}. Fe lattice E are said

to be discrete if every element x ∈ E+ ∖ {0} majorizes a discrete element, i.e., for every

x ∈ E+ ∖ {0} there exists a discrete element yx ∈ E+ such that x ⩾ yx .
An order ideal J in E is said to be order dense if for every x ∈ E+ ∖ {0} there is

y ∈ J+ ∖ {0} such that y ⩽ x; equivalently [1, Feorem 1.11], Jdd = E.
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A subadditive function x ↦ ∥x∥ defined on a linear space X such that ∥x∥ = 0 if and

only if x = 0, and for every x ∈ X the function R+ ∋ t ↦ ∥tx∥ is continuous at zero, is

called an F-norm. If X is ∥ ⋅ ∥-complete, then (X , ∥ ⋅ ∥) is said to be an F-space [8, pp. 2–3].

If, additionally, X is a Riesz space and the F-norm ∥⋅∥ is monotone, it is called an F-lattice

(cf. Section 1). For (E , ∥ ⋅ ∥) an F-lattice, the symbol Ea denotes the order continuous part

of E:

Ea ∶= {x ∈ E ∶ ∣x∣ ⩾ ∣uα ∣ ↓ 0 implies ∥uα∥ → 0}.

We say that the F-space X contains arbitrarily short straight lines if for every ε > 0 there

exists an element 0 ≠ x ∈ X such that r(x) < ε, where

r(x) = sup

t∈R
∥tx∥. (1)

Set

δ(X) = inf
0≠x∈X

r(x).

Fen, according to the above definition, X contains arbitrarily short straight lines if and

only if δ(X) = 0.

For example, it is easy to check that for the space ω endowed with its natural F-norm

(see Section 1), δ(ω) = 0; thus ω contains arbitrarily short straight lines. In 1957, C. Bes-

saga, A. Pełczyński and S. Rolewicz [4, Feorem 9], cf. [12, Proposition 4.2.7], proved the

following theorem, showing the role of ω in the latter notion.

2.1. Proposition (B–P–R).An F-space X contains arbitrarily short straight lines (i.e., δ(X) =
0) if and only if X contains a closed subspace X0 isomorphic to ω.

Since the direct calculation of the number δ(E) is diÚcult, in the lemma below we

give a method of determining δ(E) in a few typical cases.

2.2. Lemma. Let E be an F-lattice, and let Y be a subset of E+∖{0} satisfying the condition:

for every x ∈ E+ ∖ {0} there exists a number λx > 0 and yx ∈ Y such that

x ⩾ λx yx . (2)

Fen

δ(E) = δ(Y) ∶= inf
x∈Y

r(x). (3)

where the function r is defined in (1). In particular,

(i) If E is a discrete F-lattice and D = {dγ ∶ γ ∈ Γ} denotes a maximal set of discrete and
pairwise disjoint elements of E, then

δ(E) = inf
dγ∈D

r(dγ). (4)
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(ii) If E is a function F-lattice in L0(µ), then

δ(E) = δ(E0) = inf{r(1A) ∶ 1A ∈ E0},

where E0 = {1A ∈ E ∶ A ∈ Σ and 0 < µ(A) < ∞}.
Additionaly, if the ideal Ea (of order continuous elements of E) is order dense in E, then

δ(E) = δ(Ea) = δ((Ea)0). (5)

Fe following property of ω allows us to shorten the proof of Feorem 3.1.

2.3. Lemma.
(a) Fe space ω is a minimal F-space, i.e., ω admits no strictly weaker linear Hausdor×

topology [6, Feorem 4.1].

(b) Every continuous injection acting from ω to a fixed F-lattice is an isomorphism (this

follows from the minimality of ω).

Fenext result concerns the existence of a disjoint refinement of a sequence of nontri-

vial elements of Σ andwill be used in the proof ofFeorem3.2. It appears in [3, Example 1.5,

p. 338]; however, the authors do not include a proof, referring the reader to [3, Proposi-

tion 1.4], which describes a more general situation. Our proof is constructive.

2.4. Lemma. Let (S , Σ, µ) be an atomless measure space. If (A l) ⊂ Σ is a sequence of sets

of positive and finite µ-measure, then there exists a sequence (G l) ⊂ Σ with µ(G l) > 0 for

all l and such that:

(i) G l ⊂ A l , l = 1, 2, ..., and

(ii) G l ∩Gk = ∅, for l ≠ k, l , k ∈ N.

Fe sequence (G l) satisfying the two conditions of the above lemma is said to be

a disjoint refinement of (A l).

Musielak–Orlicz spaces. Belowwe recall basic notions regardingMusielak–Orlicz spaces

(non-Banach, in general); more exhaustive information on this topic the reader will find

in the monograph by J. Musielak [11] and in the paper by W. Wnuk [13] (cf. [12]; for the

Banach space-case, see [9]).

A functionM∶[0,∞) × S → [0,∞) is said to be aMusielak–Orlicz function if:

(C1) for every s ∈ S, the functionM(⋅, s)∶ [0,∞) → [0,∞) is non-decreasing, leý-conti-
nuous, continuous at zero, and such thatM(t, s) = 0 if and only if t = 0; and

(C2) for every t ∈ [0,∞), the functionMt ∶= M(t, ⋅) ∶ S → [0,∞) is Σ-measurable.
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Notice that, in contrast to the classical case [9], in the above definition the functions

M(⋅, s) are not convex in general. To simplify the proofs we also assume that these func-

tions are continuous.

IfM(r, s1) = M(r, s2) for all s1 , s2 ∈ S, then the functionM is said to be an Orlicz

function and will be denoted by φ or ψ.

If S = N and themeasure µ is counting, it is more convenient to consider the function

M as a sequence of Orlicz functions φn , n = 1, 2, . . ., i.e.,M = (φn)∞n=1 . In this case, the

symbolM will be replaced by Φ or Ψ.

FeMusielak–Orlicz functionM determines a function ρM∶ L0(µ) → [0,∞], called
a modular, of the form:

ρM(x) = ∫
S
M(∣x(s)∣, s)dµ.

Fe order ideal LM(µ) of the space L0(µ) defined as

LM(µ) = {x ∈ L0(µ) ∶ ρM(λx) < ∞ for some number λ > 0}

is called a Musielak–Orlicz space. Fe formula

∥x∥M ∶= inf{λ > 0 ∶ ρM(x/λ) ⩽ λ} (6)

defines a monotone F-norm on LM(µ) under which LM(µ) is a function F-lattice [13,
p. 144]. Notice that ∥ ⋅ ∥M is not a norm (however, if every functionM(⋅, s) in condi-

tion (C1) is convex, then LM(µ), endowed with the equivalent norm ∥x∥ ∶= inf{λ > 0 ∶
ρM(x/λ) ⩽ 1}, becomes a Banach function space).

Since, by hypothesis,M takes finite values only, we have the following description of

the order continuous part (LM(µ))a of LM(µ):

(LM(µ))
a
= EM(µ) ∶= {x ∈ L0(µ) ∶ ρM(λx) < ∞ for all λ > 0}, (7)

and (LM(µ))a is a topologically closed and an order dense ideal of LM(µ) (see [14, Fe-

orem 1.3], cf. [13, p. 145]).

In particular, if S = N, Σ = 2
N
, the measure µ is counting, and Φ = (φn), where φn is

an Orlicz function for every n ∈ N, then the modular ρΦ on the space ω = L0(µ) is of the
form

ρΦ((tn)) =
∞
∑
n=1

φn(∣tn ∣), (8)

and the space ℓΦ ∶= LΦ(µ) is said to be a Musielak–Orlicz sequence space. If φn = φ for all

n ∈ N, then we write ℓΦ = ℓφ and ℓφ is said to be an Orlicz sequence space. Fe symbol

hΦ denotes the order continuous part of ℓΦ , and hφ has a similar meaning.

For x ∈ EM(µ), we have a useful identity:

2.5. Lemma. For x ∈ LM(µ), set p(x) ∶= ρM(x). Fen, if p(x) < ∞ (in particular, if

x ∈ EM(µ)),
∥p(x) ⋅ x∥M = p(x).
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For aMusielak–Orlicz sequence space, formula (4) in Lemma 2.2 takes a simple form.

2.6. Lemma. Let Φ denote a sequence (φn) of increasing and continuous Orlicz functions.

Set φn(∞) ∶= limt→∞ φn(t). Fen

δ(ℓΦ) = inf
n∈N

φn(∞).

3. Copies of ω in function F-lattices

Let us notice first that the proof of the Main Feorem can be reduced to one of the follo-

wing cases: E is discrete (i.e., atomic), or E is continuous (i.e., atomless). Indeed, if E conta-

ins an infinite (maximal) set D of discrete and pairwise disjoint elements then the band

ED ∶= Ddd in E, generated by D, is a maximal discrete sublattice of E (cf. [1, p. 154]).

Assuming the continuous part Ec ∶= EdD is nontrivial (hence, of infinite dimension), we

have a decomposition E = ED + Ec with ED ∩ Ec = {0}. Since E is Dedekind complete,

there is an order projection P from E onto ED such that its complement P′ ∶= I−Pmaps E

onto Ec (see [2,Feorem 1.45 (1)]). Hence, if E contains a copy of ω, by Proposition 2.1 and

Lemma 2.2, there is a sequence (xn) in E+∖{0} such that r(xn) → 0. Setting un = Pxn and

vn = P′xn , n = 1, 2, . . ., we obtain that either (1) un /= 0 infinitely oýen, or (2) vn /= 0 infini-

tely oýen. Since for every t ∈ R, ∥tun∥ = ∥P(txn)∥ ⩽ ∥txn∥ and, similarly, ∥tvn∥ ⩽ ∥txn∥,
we obtain that r(un) ⩽ r(xn) and r(vn) ⩽ r(xn) for all n. Hence, in case (1), δ(ED) = 0,

and, in case (2), δ(Ec) = 0. By Proposition 2.1, either ED or Ec contains a copy of ω.

In the theorem below, we consider the atomless case. Notice that, by the assumption,

E is Dedekind complete.

3.1. Feorem. Let (S , Σ, µ) be an atomless σ-finite measure space, and let E ⊂ L0(S , Σ, µ)
be a function F-lattice. Fen the following conditions are equivalent.

(i) E contains a copy of ω.

(ii) E contains a lattice copy of ω.

If the ideal Ea is order dense in E, then conditions (i) and (ii) are equivalent to

(i’) Ea contains a copy of ω.

(ii’) Ea contains a lattice copy of ω.

One should note that in contrast to the discrete case (see below), there exist examples

of atomless F-lattices containing uncomplemented copies of ω only (Corollary 4.5).
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Fenext theorem deals with the discrete case. Formally, E is Dedekind complete (see

the form of the MainFeorem) but in the proof of this case we do not apply this property.

3.2.Feorem. Let E be a discrete F-lattice, and let D denote a fixed maximal set of discrete
and pairwise disjoint elements of E. Fen the following conditions are equivalent.

(i) E contains a copy of ω.

(ii) E contains a nontrivial projection band B that is order-topologically isomorphic to ω

and spanned by a sequence (dn) ⊂ D (i.e., B = lin{dn ∶ n ∈ N}).

(ii’) Ea contains a nontrivial projection band B that is order-topologically isomorphic to ω

and spanned by a sequence (dn) ⊂ D.
In particular, a discrete F-lattice contains a copy of ω if and only if it contains a complemen-

ted copy of ω.

4. Applications to Musielak–Orlicz spaces

In this section, we present an application of the results of Section 5 to Musielak–Orlicz

spaces. We show that the fact of LM(µ) containing of a copy of ω can be expressed by

a property ofM.

We shall first consider the sequence case.

4.1. Feorem. Let Φ denote a sequence (φn) of increasing and continuous Orlicz functions.

Fen the following three conditions are equivalent.

(i) ℓΦ contains a copy of ω.

(ii) ℓΦ contains a projection band order-topologically isomorphic to the lattice ω.

(iii) inf n∈N φn(∞) = 0.

Moreover, in conditions (i) and (ii), the space ℓΦ can be replaced by its order continuous

part hΦ.

If the sequence Φ = (φn) of Orlicz functions is constant, then from Feorem 4.1 (iii)

we obtain

4.2. Corollary. If φ is a continuous and increasing (non-convex) Orlicz function, then the

F-lattice ℓφ does not contain any copy of ω.

Fe next corollary concerns the problem studied earlier in the class of Musielak–

–Orlicz Banach spaces [15]:

Is a Musielak–Orlicz F-space ℓΦ isomorphic to an Orlicz space ℓφ?
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Since containing of a copy ofω is a linear-topological property, fromFeorem4.1 and

Corollary 4.2 we obtain a partial solution to the above problem in the class of Musielak–

–Orlicz sequence spaces.

4.3. Corollary. Let Φ = (φn) be a sequence of continuous Musielak–Orlicz functions. If

inf n∈N φn(∞) = 0, then the space ℓΦ is non-isomorphic to any Orlicz space ℓφ .

Fe result below is a particular version ofFeorem 3.1 for the case when E = LM(µ)
and µ is atomless. Let us note that here δ(E) can take two values only: 0 or∞.

4.4. Feorem. Let (S , Σ, µ) be a σ-finite and atomless measure space, and let LM(µ) be
a Musielak–Orlicz space. SetM∞(s) = limn→∞M(n, s), s ∈ S. Fen the following five

conditions are equivalent.

(i) LM(µ) contains a copy of ω.

(ii) LM(µ) contains a lattice copy of ω.

(iii) δ(LM(µ)) = 0.

(iv) δ(LM(µ)) < ∞.

(v) Fere exists A ∈ Σ such that 1A ∈ EM(µ), 0 < µ(A) < ∞, and

0 <M∞∣A < ∞ µ − a.e .

Additionally, in the above four conditions (i)–(iv) the F-lattice LM(µ) can be replaced by
its order continuous part EM(µ).

Rolewicz’s result [12,Feorem 4.2.2] states that if the measure space (S , Σ, µ) is atom-

less and the Orlicz function φ is bounded, then Lφ(µ) has a trivial dual. In this case, for

M= φ, we haveM∞∣S = φ(∞) < ∞, whence, by part (iv) ofFeorem4.4, Lφ(µ) contains
a copy ofω. But since every (continuous) projection P froman F-space X onto a copyW of

ω has the form Px = ∑∞
n=1w

∗
n(x)wn , for some (wn) ⊂W , with (w∗n) ⊂ X∗ (the topological

dual of X), from the above two remarks we immediately obtain:

4.5. Corollary. Let (S , Σ, µ) be a σ-finite and atomless measure space, and let φ be a boun-

ded Orlicz function. Fen

(a) Lφ(µ) contains a copy of ω;

(b) every such copy of ω is uncomplemented in Lφ(µ).



112 Marek Wójtowicz and Halina Wiśniewska

5. Fe proofs

In the proofs, we shall apply a few times the following obvious property of an atomless

measure µ:

(M) Let µ be a finitemeasure on a σ-algebra Σ of subsets of a nonempty set S. If µ is atomless

then for every ε > 0 and every A ∈ Σ with 0 < µ(A), there is B ∈ Σ with B ⊂ A
and 0 < µ(B) < ε.

Proofs of theFeorems

Proof of Feorem 3.1. We shall prove the nontrivial implication (i) ⇒ (ii) only. For the

second part of the theorem, notice that if Ea is order dense in E then, by Proposition 2.1,

condition (ii) implies (ii’).

To shorten the notation, if g∶ S → R is a Σ-measurable function, then the symbol g

will denote the equivalence class in L0(S , Σ, µ) determined by g.

By Proposition 2.1, E contains arbitrarily short straight lines. From the condition

δ(E) = 0 it follows that there exists a sequence ( fn) of Σ-measurable functions on S

such that, for every n ∈ N, we have fn ∈ E and
∞
∑
n=1

r( fn) < ∞, (9)

and the sequence ( fn) spans a closed subspace H in E, with Schauder basis ( fn), isomor-

phic to ω: i.e., the series∑∞
n=1 tn fn is convergent in E if and only if (tn) ∈ ω (see the proof

of [12, Proposition 4.2.7]).

Now let An ∶= supp( fn), n = 1, 2, . . .; then obviously An ∈ Σ and µ(An) > 0 for all n.

Since the measure space is σ-finite, for every n ∈ N there is a subset A0
n ⊂ An such

that 0 < µ(A0
n) < ∞. By Lemma 2.4, there exists a sequence (Gn) ⊂ Σ such that Gn ⊂ A0

n ,

µ(Gn) > 0, for n = 1, 2, . . ., and Gk ∩G l = ∅ for k ≠ l .

Set gn ∶= fn ⋅ 1Gn , n = 1, 2, . . . . Fen supp(gn) = Gn (because Gn ⊂ A0
n ⊂ An ,

n = 1, 2, . . . ) and ∣gk ∣ ∧ ∣g l ∣ = 0 for k ≠ l and n, k, l ∈ N.
For every n ∈ N, we have ∣gn ∣ ⩽ ∣ fn ∣ µ-a.e., whence ∣gn ∣ ⩽ ∣ fn ∣, and thus ∥gn∥ = ∥∣gn ∣∥ ⩽

∥∣ fn ∣∥ = ∥ fn∥. It follows that r(gn) ⩽ r( fn), n = 1, 2, . . .. From this and condition (9) we

obtain ∞
∑
n=1

r(gn) < ∞. (10)

For every sequence (tn) ∈ ω, we have ∑∞
n=1 ∥tn gn∥E ⩽ ∑∞

n=1 r(gn); thus condition (10)

implies that the series∑∞
n=1 tn gn is absolutely convergent in E.

Now from the fact that the elements gn are pairwise disjoint it follows that the map

h∶ω → E of the form h((tn)) = ∑∞
n=1 tn gn is a lattice isomorphism, and hence continuous

[1, Feorem 16.6]. Applying Lemma 2.3 (b) we obtain that h is a linear homeomorphism.
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We have thus proved that h is a homomorphism, and this means that h is a latti-

ce-topological isomorphism from ω into E. Fe proof of the implication (i) ⇒ (ii) is

complete.

Proof of Feorem 3.2. Suppose that a discrete F-lattice E contains a copy of ω, and let f

be a linear topological isomorphism from ω into E. Set xn ∶= f (en), n = 1, 2, . . ., where

en denotes the nth unit vector in ω.

We shall only prove that (i) ⇒ (ii), because the implications (ii) ⇒ (ii’) ⇒ (i) are

trivial: discrete elements always belong to Ea , and so the band B described in part (ii) is

included in Ea .

Since f is an isomorphism, we easily obtain that

r(xn) → 0 as n →∞. (11)

Now we apply the discreteness of E. Let D = {dγ ∶ γ ∈ Γ} be a maximal set of discrete
and pairwise disjoint elements of E. For every n ∈ N there exists a number λn > 0 and an

element dγn ∈ D such that

∣xn ∣ ⩾ λndγn . (12)

From inequality (12) it follows that r(∣xn ∣) = r(xn) ⩾ r(dγn), whence, by (11), r(dγn) → 0

as n → ∞. Without loss of generality we may assume that the sequence r(dγn) is strictly

decreasing to zero:

r(dγn+1) < r(dγn), n = 1, 2, . . . (13)

Hence dγn ≠ dγm , for n ≠ m, and thus dγn ∧ dγm = 0 for n ≠ m. For simplicity, we set

dγn = dn , n ∈ N.
By condition (13), we may assume that∑∞

n=1 supt∈R ∥tdn∥ < ∞. Hence for every sequ-

ence (tn) ∈ ω,
∞
∑
n=1

∥tndn∥ ⩽
∞
∑
n=1

r(dn) < ∞. (14)

Since the F-lattice E is topologically complete, inequality (14) implies that the series

∞
∑
n=1

tndn

is absolutely convergent to an element x ∈ E. Because the elements dn are pairwise disjoint

we also obtain that the element x is uniquely represented by the sequence (tn). From the

uniqueness of the assignment ω ∋ ξ = (tn) ↦ ∑∞
n=1 tndn it follows that map h∶ω → E of

the form

h(ξ) =
∞
∑
n=1

tndn , ξ = (tn),
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is well defined, and h is a lattice isomorphism since the elements of the sequence (dn) are
positive and pairwise disjoint. In particular, h is continuous [1,Feorem 16.6]. By part (b)

of Lemma 2.3, the sublattice B ∶= h(ω) is a closed subspace of the F-lattice E. Hence h is

a lattice-topological isomorphism from ω onto B.

In the final part of the proof we shall show that B is a projection band in E. It is quite

obvious that

Bd = {x ∈ E ∶ ∣x∣ ∧ dn = 0 for all n},

and thus Bdd = B, i.e, B is a band indeed. Moreover, the operator P∶ E → B defined by the

formula

Px = (o)
∞
∑
n=1

λγndn ,

where (o) denotes order convergence, is a band projection from E onto B.

Fe proof of the nontrivial implication (i)⇒ (ii) is complete.

Proof of Feorem 4.1. We obtain the equivalence (i)⇐⇒ (ii) immediately from Feorem

3.2, parts (i) and (ii).Moreover, by Proposition 2.1 and Lemma 2.6, the equivalence (i)⇐⇒
(iii) holds true. Since (ℓΦ)a = hΦ , the last part of the theorem follows from the equivalence

(i)⇐⇒ (ii’) in Feorem 3.2.

Proof of Feorem 4.4. We shall prove the following implications: (i) ⇐⇒ (ii) ⇐⇒
(iii)⇒ (iv)⇒ (v)⇒ (iii).

Fe equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) follow from Feorem 3.1 and Proposition

2.1, and the implication (iii)⇒ (iv) is obvious.

(iv) ⇒ (v). We shall prove the implication non-(v) ⇒ non-(iv) (i.e., δ(LM(µ)) = ∞).

We claim that the equality r(1A) = ∫AM∞(s)dµ(s) holds

for every A ∈ Σ with 1A ∈ EM and 0 < µ(A) < ∞. (15)

Indeed, let us fix such an A, and let t ∈ R, t /= 0. Since t1A ∈ EM, from Lemma 2.5 and by

the Levi theorem [5, p. 112], we obtain

r(1A) = lim
t→∞ ∥t ⋅ 1A∥M = lim

t→∞ ∥t ⋅ ρM(t ⋅ 1A) ⋅ 1A∥M

= lim
t→∞ ρM(t ⋅ 1A) = lim

n→∞ ρM(n ⋅ 1A)

= lim
n→∞∫A

M(n, s)dµ(s) = ∫
A
M∞(s)dµ(s).

Now assuming non-(v), by (15), for every 1A ∈ EM with 0 < µ(A) < ∞, we have r(1A) =
∞. But by (7) and equalities (5) in Lemma 2.2, we obtain

δ(LM(µ)) = δ(EM(µ)) = inf{r(1A) ∶ 1A ∈ EM(µ) and 0 < µ(A) < ∞},

thus δ(LM(µ)) = ∞, i.e., non-(iv) holds true.
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(v) ⇒ (iii). Let 1A ∈ EM(µ), with 0 < µ(A) < ∞, be such that 0 < M∞∣A < ∞ µ-a.e.

Without loss of generality we may assume that 0 < M∞(s) < ∞ for every s ∈ A. Set
A j = {s ∈ A ∶ 1/ j ⩽M∞(s) ⩽ j}, j = 1, 2, . . .. Hence A = ⋃∞j=1 A j , and thus there is j0 such

that µ(A j0) > 0. Setting B = A j0 , c1 = 1/ j0, c2 = j0, we obtain

0 < c1 ⩽M∞∣B ⩽ c2 , (16)

with 1B ∈ EM(µ) because EM(µ) is an order ideal in L0(µ) and 0 < 1B ⩽ 1A ∈ EM(µ).
By property (M) applied to the set B, there is a sequence (Bn) ∈ Σ such that B ⊃

Bn ⊃ Bn+1 for all n ∈ N and

0 < µ(Bn) <
1

2
n
µ(B) ↓ 0 as n →∞. (17)

Moreover, by an argument as above (for 1Bn ⩽ 1B), we have that 1Bn ∈ EM(µ) for all
n ∈ N. Now, by (15), (16), and (17), we obtain

0 < c1µ(Bn) ⩽ r(1Bn) ⩽ c2µ(Bn) ↓ 0.

Hence, by part (ii) of Lemma 2.2, identity (5), we obtain δ(LM(µ)) = δ(EM(µ)) = 0.

Fe proof of the implication (v)⇒ (iii) is complete; at the same time, the preceding

equalities show that the last part of the theorem is also true.

Proofs of the Lemmas

Proof of Lemma 2.2. Since for every x ∈ E we have ∥x∥ = ∥∣x∣∥, we obtain that δ(E) =
δ(E+), so the following part of the proof is reduced to the elements of E+.

From the inclusion Y ⊂ E and from the definition of δ we immediately obtain

δ(Y) ⩾ δ(E). (18)

On the other hand, by condition (2), for every x ∈ E+ there exists ex ∈ Y and a number
λx > 0 such that x ⩾ λx ⋅ ex , and thus r(x) ⩾ r(ex) ⩾ δ(Y). Hence δ(E) ⩾ δ(Y), and by
(18) we obtain (4).

Now condition (i) follows immediately from the definition of a discrete lattice: for

every x ∈ E+ ∖ {0} there exists a number λ > 0 and a discrete element d ∈ D such that

x ⩾ λd; thus D fulfils condition (2).

We shall prove condition (ii) in a more general case. Let J be an order ideal of L0(µ)
(in particular, J = LM(µ) or J = EM(µ)), and let S = ⋃n=1 Sn with µ(Sn) < ∞ for all

n ∈ N. Fen, for every positive x ∈ J, there is m ∈ N such that 0 < y ∶= x ∧ 1Sm (and,

obviously, y ⩽ 1Sm ). Since y is a pointwise limit of a nondecreasing sequence of positive

simple functions, there is B ∈ Σ with B ⊂ Sm , µ(B) > 0, and λ > 0 such that

x ⩾ y ⩾ λ1B , (19)
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which implies that 1B ∈ J (because J is an order ideal of L0(µ)). We also have µ(B) ⩽
µ(Sm) < ∞, thus, by (19), the set

J0 ∶= {1B ∈ J ∶ B ∈ Σ, 0 < µ(B) < ∞}

fulfils condition (2); now (3) applies.

If, additionally, Ea is order dense in E, then Ea fulfils condition (2), and we apply

(3).

Proof of Lemma 2.4. Fe following proof has been suggested to the authors by the referee;

it is shorter than our previous proof.

Let (Ak) ⊂ Σ be a sequence of sets of positive and finite measure. Starting with B1 =
A1 and using property (M), for every k = 1, 2, . . . we can find Bk ⊂ Ak satisfying 0 <
µ(Bk) < 1

3 µ(Bk), and so

µ(Bk+l) <
1

3
l
µ(Bk), l = 1, 2, . . . (20)

Put

G l = B l ∖
∞
⋃

k=l+1
Bk , l = 1, 2, . . . (21)

Clearly, G l ⊂ A l (since B l ⊂ A l ) and

G l ⊂ S ∖ B l+ j for all j = 1, 2, . . . (22)

Fe sets G l are pairwise disjoint because, by (21) and (22),

G l+m ∩G l ⊂ B l+m ∩ (S ∖ B l+m) = ∅, for all l ,m = 1, 2, . . .

Moreover, the sets G l are of positive measure. Indeed, by (20) and (21),

µ(G l) = µ(B l) − µ(B l ∩
∞
⋃

k=l+1
Bk) ⩾ µ(B l) −

∞
∑

k=l+1
µ(Bk)

= µ(B l) −
∞
∑
m=1

µ(B l+m) ⩾ µ(B l) −
∞
∑
m=1

1

3
m
µ(B l) =

1

2

µ(B l) > 0.

Hence, the sequence (G l) satisfies the required conditions (i) and (ii) of our lemma.

Proof of Lemma 2.5. Fe identity is true for x = 0. For x ∈ LM(µ) ∖ {0} with p(x) < ∞,

set y = p(x) ⋅ x and notice that ρM(y/p(x)) = p(x). Hence, by (6), ∥y∥M ⩽ p(x). On
the other hand, using the assumption thatM(⋅, s) is nondecreasing, for every positive

λ < p(x) we obtain ρM(y/λ) ⩾ p(x) > λ, whence, by (6) again, ∥y∥M = p(x), as
claimed.
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Proof of Lemma 2.6. Let D = {en ∶ n ∈ N}, where en denotes the nth unit vector. Obvio-

usly,D is a maximal subset of discrete and pairwise disjoint elements of ℓΦ . By Lemma 2.2,

δ(ℓΦ) = inf
n∈N

r(en). (23)

We have r(en) = φn(∞), n = 1, 2, . . . Indeed, by (8) and Lemma 2.5, for every t ∈ R we

have ∥tenρΦ(ten)∥ = ρΦ(ten) = φn(t), and thus ∥tφn(t)en∥ = φn(t). Consequently,

r(en) = lim
t→∞ ∥ten∥Φ = lim

t→∞ ∥tφn(t)en∥Φ = φn(∞).

Now, by (23), we obtain δ(ℓΦ) = inf n∈N φn(∞).
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