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Abstract. We identify the class of Calderón-Lozanovskii spaces that do not contain
an asymptotically isometric copy of `1, and consequently we obtain the correspon-
ding characterizations in the classes of Orlicz-Lorentz and Orlicz spaces equipped
with the Luxemburg norm. We also give a complete description of order continuous
Orlicz-Lorentz spaces which contain (order) isometric copies of `(n)

1 for each integer
n ≥ 2. As an application we provide necessary and sufficient conditions for order con-
tinuous Orlicz-Lorentz spaces to contain an (order) isometric copy of `1. In particular
we give criteria in Orlicz and Lorentz spaces for (order) isometric containment of `(n)

1
and `1. The results are applied to obtain the description of universal Orlicz-Lorentz
spaces for all two-dimensional normed spaces.
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A Banach space X contains an asymptotically isometric copy of `1 if for every
null sequence (εn)∞n=1 in (0, 1), there exists a sequence (xn)∞n=1 of norm one elements
in X such that ∑

n

(1− εn) |tn| ≤
∥∥∥
∑

n

tnxn

∥∥∥
X
≤
∑

n

|tn|

for all finite sequences (tn) of scalars.
Dowling and Lennard [7] used the notion of an asymptotically isometric copy of

`1 to show that every reflexive subspace of L1(0, 1) fails the fixed point property for
nonexpansive self-maps on closed bounded convex sets. Further Dowling, Lennard
and Turrett [6] showed that if a Banach space contains asymptotically isometric
∗The second author was supported by the Foundation for Polish Science (FNP)
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copies of `1, then its dual space fails the fixed point property. In [5], Dilworth,
Girardi and Hagler proved that a Banach space X contains asymptotically isometric
copies of `1 if and only if L1(0, 1) is linearly isometric to a subspace of the dual
space X∗ of X. This result shows a direct link between the papers [7] and [6].

Motivated by these results we consider the question when some important Ba-
nach lattices on measure spaces contain asymptotically isometric copies of `1. Our
main aim is to identify a class of Calderón-Lozanovskii spaces that do not contain
an asymptotically isometric copy of `1 and show applications to Orlicz-Lorentz and
Orlicz spaces. We give an answer to the question posed in [6] showing that a separa-
ble Orlicz space Lϕ equipped with the Luxemburg norm on a non-atomic measure
space generated by an Orlicz N -function ϕ (at zero) does not contain asymptoti-
cally isometric copies of `1. It has been shown in [6] that in the case of Orlicz norm,
the separable Orlicz space Lϕ may contain an asymptotically isometric copy of `1.
This occurs when ϕ satisfies the appropriate condition ∆2 and its conjugate does
not.

In the second part of the paper we give a complete description of order continuous
Orlicz-Lorentz spaces which contain (order) isometric copies of `(n)

1 for each integer
n ≥ 2. On the basis of this result we provide a necessary and sufficient condition
for the order continuous Orlicz-Lorentz spaces to contain (order) isometric copies of
`1. We complete this characterization by an equivalent condition for those spaces
containing isometrically the space L1(A) for some measurable set A.

In the third part we obtain the corresponding results for Orlicz and Lorentz
spaces. They recover and expand the characterizations received earlier in Lorentz
and Orlicz spaces by Briskin and Semenov [2], and Wójtowicz [19], respectively.
We conclude with the description of universal Orlicz-Lorentz spaces for all two-
dimensional normed spaces.

Let R, R+ and N denote the set of real, non-negative real and natural numbers,
respectively. Let (Ω,S, µ) be a σ-finite measure space, and L0 be the set of all real
valued µ-measurable functions. We say that (X, ‖ · ‖X) is a Banach function lattice
(in short Banach lattice) on (Ω,S, µ) if X is an ideal in L0 and whenever x, y ∈ X
and |x| ≤ |y| a.e., then ‖x‖X ≤ ‖y‖X . Given a measurable set A ⊂ Ω, X(A) denotes
the space of all elements in X restricted to A, i.e., X(A) = {xχA : x ∈ X}. By
L1 = L1(Ω) and L∞ = L∞(Ω) we denote the spaces of integrable and µ-essentially
bounded, real valued functions on Ω, respectively. They are equipped with the
standard norms ‖ · ‖1 and ‖ · ‖∞. An element x ∈ X is called order continuous if
for every 0 ≤ xn ≤ |x| such that xn ↓ 0 a.e. it follows that ‖xn‖X → 0. By Xa

denote the set of all order continuous elements of X. We say that X satisfies the
Fatou property whenever for any 0 ≤ xn ∈ X and x ∈ L0 such that xn ↑ x a.e. and
supn ‖xn‖X <∞ we have that x ∈ X and ‖x‖X = limn ‖xn‖X . By X+ we denote
the cone of non-negative elements in X.

Given two Banach lattices X,Y we will write X = Y whenever the sets coincide
and the norms are equivalent. Two expressions U, V are equivalent if for some
constants a, b > 0 we have aU ≤ V ≤ bU . In this case we write U ≈ V . The symbol
X ' Y means that X and Y are isometrically isomorphic. Banach lattices X and
Y over (Ω,S, µ) are locally equivalent whenever X(A) = Y (A) for any A ∈ S with
µ(A) <∞.
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The Köthe dual space X ′ of X is a collection of all elements y ∈ L0 such that

‖y‖X′ = sup
{∫

Ω

|xy| dµ : ‖x‖X ≤ 1
}
<∞.

The space X ′ equipped with the norm ‖ · ‖X′ is a Banach function lattice with the
Fatou property. It is well known that (Xa)∗ ' X ′ (see [2, 12, 14]).

A Banach lattice X is said to be strictly monotone if for any x, y ∈ X, we have
‖x‖ < ‖y‖ whenever 0 ≤ x ≤ y and x 6= y.

Given x ∈ L0, its distribution function is defined by dx(λ) = µ{t ∈ Ω: |x|(t) >
λ}, λ ≥ 0, and its decreasing rearrangement by x∗(t) = inf{s > 0: dx(s) ≤ t}, for
all t ≥ 0. A Banach lattice X is called a rearrangement invariant Banach space
(in short r.i. Banach space) if ‖x‖ = ‖y‖ whenever dx = dy and x ∈ X. The
fundamental function of r.i. space X is defined by φX(t) = ‖χA‖X , where µ(A) = t
and 0 ≤ t < µ(Ω).

1. Calderón-Lozanovskii Spaces. The class U consists of all functions
Ψ: R+ × R+ → R+ that are positively homogeneous (i.e., Ψ(λs, λt) = λΨ(s, t) for
every s, t, λ ≥ 0) and concave. Recall that Ψ is concave whenever Ψ(αs1+βs2, αt1+
βt2) ≥ αΨ(s1, t1) + βΨ(s2, t2) for all α, β ∈ [0, 1] with α+ β = 1 and si, ti ≥ 0, for
i = 1, 2. Note that any function Ψ ∈ U is continuous on (0,∞)× (0,∞).

Given Ψ ∈ U and a couple of Banach lattices (X0, X1) on (Ω,S, µ), the Calderón-
Lozanovskii space is defined as follows

Ψ(X0, X1) =
{
x ∈ L0 : |x| = Ψ(x0, x1) for some xi ∈ X+

i , i = 0, 1
}
.

For any 1 ≤ p <∞, define a norm on the space Ψ(X0, X1), as

‖x‖Ψp(X0,X1) = inf
{

(‖x0‖pX0
+ ‖x1‖pX1

)1/p : |x| = Ψ(x0, x1)
}
,

and for p =∞ as

‖x‖Ψ∞(X0,X1) = inf{max(‖x0‖X0
, ‖x1‖X1

) : |x| = Ψ(x0, x1)}.

Under each norm ‖·‖Ψp(X0,X1), the space Ψ(X0, X1) is a Banach lattice [18]. Notice
that all norms ‖ · ‖Ψp(X0,X1), 1 ≤ p ≤ ∞, are equivalent on Ψ(X0, X1). Denote by
Ψp(X0, X1) the space Ψ(X0, X1) equipped with the norm ‖ · ‖Ψp(X0,X1).

We say that Ψ satisfies the left (resp., right) ∆2 condition whenever there exists
C > 0 such that Ψ(2s, 2t) ≤ Ψ(Cs, t) (resp., Ψ(2s, 2t) ≤ Ψ(s, Ct)) for all s, t ≥ 0.

Given Ψ ∈ U , let
Ψ̂(s, t) = inf

u,v>0

us+ vt

Ψ(u, v)
.

It is well known that ̂̂Ψ = Ψ. Moreover, for any 1 ≤ p ≤ ∞,

(Ψ(X0, X1), ‖ · ‖Ψp(X0,X1))
′ = (Ψ̂(X ′0, X

′
1), ‖ · ‖Ψp′ (X′0,X′1)),

where 1/p+ 1/p′ = 1. In other words, Ψp(X0, X1)′ = Ψ̂p′(X
′
0, X

′
1) (see [18]).
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We need a lemma which is already implicit in [18]. It is however showed only
for a subclass of functions in U with an advanced proof which uses a deep Köthe
duality theorem of Lozanovskii. Here we include a simple proof based on a well-
known theorem of Kolmos [13].

Lemma 1.1 Assume Ψ ∈ U , 1 ≤ p ≤ ∞ and (X0, X1) is a couple of Banach
lattices over (Ω,S, µ) satisfying the Fatou property. Then Ψp(X0, X1) is a Banach
lattice with the Fatou property and for every x ∈ Ψ(X0, X1) there exists an optimal
factorization, i.e., there are x0 ∈ X+

0 and x1 ∈ X+
1 with

|x| = Ψ(x0, x1) and ‖x‖Ψp(X0,X1) = ‖(x0, x1)‖X0⊕pX1
,

where ‖(x0, x1)‖X0⊕pX1
= (‖x0‖pX0

+ ‖x1‖pX1
)1/p for 1 ≤ p ≤ ∞ (with the usual

interpretation for p =∞.)

Proof Since for any Banach lattice X ↪→ X ′′, there exists a positive measurable
function w such that X ↪→ L1(ν) with dν = wdµ. The inclusion X ↪→ X ′′ follows
immediately from the definition of the Köthe dual space. Now for any 0 < w ∈ X ′
with ‖w‖X′ ≤ 1 we have that for any x ∈ X,

∫
Ω
xw dµ ≤ ‖x‖X and so X ↪→ L1(ν).

Assume that 0 ≤ xn ↑ |x| a.e. and supn≥1 ‖xn‖Ψp(X0,X1) < ∞. Then for all n
there exist un ∈ X0, vn ∈ X1 such that

xn = Ψ(un, vn), ‖(un, vn)‖X0⊕pX1
< ‖xn‖Ψp(X0,X1) + 2−n.

Hence (un) and (vn) are bounded sequences in X0 and X1 respectively, and so in
L1(ν). It follows by the theorem of Kolmos [13] that by passing to a subsequence
we may assume that

1

n

n∑

k=1

uk → u and
1

n

n∑

k=1

vk → v a.e..

By concavity of Ψ we have

n∑

k=1

1

n
Ψ(uk, vk) ≤ Ψ

( 1

n

n∑

k=1

uk,
1

n

n∑

k=1

vk

)
a.e.,

and so for any n ∈ N,

1

n

n∑

k=1

xk ≤ Ψ
( 1

n

n∑

k=1

uk,
1

n

n∑

k=1

vk

)
a.e..

Then taking limits on both sides we obtain |x| ≤ Ψ(u, v) a.e.. Clearly this im-
plies that for some 0 ≤ x0 ≤ u and 0 ≤ x1 ≤ v we have |x| = Ψ(x0, x1) a.e.,
and thus x ∈ Ψ(X0, X1). Now combining the Fatou property of X0 and X1 with
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‖(un, vn)‖X0⊕pX1 < ‖xn‖Ψp(X0,X1) + 1/n, we obtain (for 1 ≤ p <∞)

‖x‖Ψp(X0,X1) ≤ ‖(x0, x1)‖X0⊕pX1
≤ ‖(u, v)‖X0⊕pX1

≤
(

lim inf
n→∞

∥∥∥ 1

n

n∑

k=1

uk

∥∥∥
p

X0

+ lim inf
n→∞

∥∥∥ 1

n

n∑

k=1

vk

∥∥∥
p

X1

)1/p

≤ lim inf
n→∞

1

n

n∑

k=1

‖(uk, vk)‖X0⊕pX1
≤ lim
n→∞

‖xn‖Ψp(X0,X1)

≤ ‖x‖Ψp(X0,X1).

Hence ‖x‖Ψp(X0,X1) = ‖(x0, x1)‖X0⊕pX1
and thus (x0, x1) is an optimal factorization

of x. Moreover ‖xn‖Ψp(X0,X1) → ‖x‖Ψp(X0,X1). The proof is similar for p =∞. �

We apply the above factorization lemma to study the strict monotonicity of the
Calderón-Lozanovskii spaces.

Theorem 1.2 Let Xi, i = 0, 1, be Banach lattices over (Ω,S, µ) satisfying the
Fatou property. If Ψ ∈ U is such that Ψ(0, 1) = 0 (resp., Ψ(1, 0) = 0) and X0

(resp., X1) is strictly monotone, then the space Ψp(X0, X1) is strictly monotone for
every 1 ≤ p <∞.

Proof Assume that X0 is strictly monotone and Ψ(0, 1) = 0. Let 0 ≤ x, y ∈
Ψp(X0, X1), x ≤ y and x 6= y on a set A with µ(A) > 0. By Lemma 1.1, there exist
yj ∈ X+

j , j = 0, 1, such that y = Ψ(y0, y1) and

‖y‖Ψp(X0,X1) = (‖y0‖pX0
+ ‖y1‖pX1

)1/p.

Letting v = x/Ψ(y0, y1) on supp y, and 0 outside, we have that 0 ≤ v ≤ 1 and
v < 1 on A. Defining xj = vyj for j = 0, 1 we get 0 ≤ xj ≤ yj . In addition
by the assumption Ψ(0, 1) = 0, if y(t) > 0 then y0(t) > 0. Hence if t ∈ A then
0 ≤ x(t)/y(t) < 1, y0(t) > 0 and so x0(t) = (x(t)/y(t))y0(t) < y0(t). We also have
x = Ψ(x0, x1). Consequently, in view of strict monotonicity of X0,

‖x‖Ψp(X0,X1) ≤ (‖x0‖pX0
+ ‖x1‖pX1

)1/p < (‖y0‖X0
+ ‖y1‖pX1

)1/p = ‖y‖Ψp(X0,X1),

which shows strict monotonicity of Ψp(X0, X1). �

Remark 1.3 In Theorem 1.2, the assumption Ψ(0, 1) = 0 or Ψ(1, 0) = 0 is neces-
sary in general. To see this consider Ψ(s, t) = s+ t, and X0 = L1 and X1 = L∞ on
R+ where ‖x‖L1+L∞ = inf{‖x0‖1 + ‖x1‖∞ : x = x0 + x1, x0 ∈ L1, x1 ∈ L∞}. Then
Ψ(0, 1) = Ψ(1, 0) = 1 and Ψ1(L1, L∞) = L1 + L∞ with equality of norms. By the
well known formula ‖x‖L1+L∞ =

∫ 1

0
x∗ [2, 12], we conclude that L1 + L∞ is not

strictly monotone although L1 is strictly monotone.

The following lemma of independent interest shows that under some geometrical
assumptions on Banach lattices, an optimal factorization presented in Lemma 1.1
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is unique. Before presenting the result we need further notation. For any Ψ ∈ U we
define Ψ on (0,∞)× (0,∞) by

Ψ(s, t) = sup
{Ψ(us, vt)

Ψ(u, v)
: u, v > 0

}
, s, t > 0.

Note that if Ψ ∈ U and (X0, X1) is a couple of Banach lattices and |x| =
Ψ(x0, x1) a.e. with 0 6= xj ∈ X+

j , then we have |x| = Ψ(‖x0‖X0
u0, ‖x‖X1

u1) with
uj = xj/‖xj‖Xj for j = 0, 1, which implies |x| ≤ Ψ

(
‖x0‖X0

, ‖x1‖X1

)
Ψ(u0, u1) a.e.

and so

‖x‖Ψ∞(X0,X1) ≤ Ψ
(
‖x0‖X0

, ‖x1‖X1

)
.(1)

In the proof of lemma below we use the following fact (which follows from [12,
Lemma 1.3, Chapter II, p. 55]): if Ψ ∈ U and Ψ(s0, 1) = 1 (resp., Ψ(1, s0) = 1) for
some 0 < s0 < 1, then Ψ(s, 1) = 1 (resp., Ψ(1, s) = 1) for every 0 < s < 1.

Lemma 1.4 Let (X0, X1) be a couple of Banach lattices over (Ω,S, µ) satisfying the
Fatou property. If Ψ ∈ U is such that Ψ(s, t) = 0 if and only if s = t = 0, then the
following holds.

(i) If Ψ is strictly concave and there exits 0 < s < 1 such that Ψ(s, 1) < 1 (resp.,
Ψ(1, s) < 1) and X0 is strictly monotone (resp., X1 is strictly monotone),
then for every x ∈ Ψ∞(X0, X1) there is an unique optimal factorization of x
shown in Lemma 1.1 with p =∞.

(ii) If Ψ is strictly concave and X0 or X1 is strictly monotone, then for each 1 ≤
p < ∞ and for each x ∈ Ψ(X0, X1) there is an unique optimal factorization
of x shown in Lemma 1.1.

Proof (i) Let first p = ∞. Assume that X0 is strictly monotone and Ψ(s, 1) < 1
for some 0 < s < 1. Fix x ∈ Ψ(X0, X1) with ‖x‖Ψp(X0,X1) = 1. Suppose that
|x| = Ψ(x0, x1) with x0 ∈ X+

0 , x1 ∈ X+
1 and |x| = Ψ(y0, y1) with y0 ∈ X+

0 ,
y1 ∈ X+

1 and

1 = ‖x‖Ψ∞(X0,X1) = ‖(y0, y1)‖X0⊕∞X1
= ‖(x0, x1)‖X0⊕∞X1

.

By concavity of Ψ we obtain

|x| ≤ y := Ψ
(
x0+y0

2 , x1+y1

2

)
.

Letting v = x/y on supp y and 0 outside, we have that 0 ≤ v ≤ 1. Defining
zj = v(xj + yj)/2 for j = 0, 1 we have |x| = Ψ(z0, z1) with z0 ∈ X+

0 , z1 ∈ X+
1 and

so it follows by (1),

1 = ‖x‖Ψ∞(X0,X1) ≤ Ψ(‖z0‖X0 , ‖z1‖X1).(2)
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We claim that v = 1 a.e. on supp y. If we have v < 1 on a measurable subset
A ⊂ supp y with µ(A) > 0, then the strict monotonicity of X0 implies that s0 :=
‖z0‖X0

< ‖(x0 + y0)/2‖X0
≤ 1. Thus by (2),

1 = ‖x‖Ψ∞(X0,X1) ≤ Ψ(‖z0‖X0
, ‖z1‖X1

) ≤ Ψ(s0, 1) ≤ 1,

and so Ψ(s0, 1) = 1. Hence by the fact mentioned before theorem (see Lemma 1.3
in [12]), Ψ(s, 1) = 1 for all 0 < s < 1, which contradicts our assumption.

In consequence we conclude that on supp y we have

Ψ(x0, x1) = Ψ
(
x0+y0

2 , x1+y1

2

)
.

Therefore and by our hypotheses that Ψ(s, t) = 0 implies s = t = 0, and strict
concavity of the function Ψ, we have that x0 = y0, x1 = y1.

(ii) In the case 1 ≤ p < ∞, we may assume without loss of generality that X0

is strictly monotone. Similarly as above let ‖x‖Ψp(X0,X1) = 1, and let x have two
optimal factorizations

1 = ‖x‖Ψp(X0,X1) = ‖(y0, y1)‖X0⊕pX1
= ‖(x0, x1)‖X0⊕pX1

.

Then |x| = Ψ(z0, z1) with zj = (xj + yj)/2 ∈ X+
j for j = 0, 1 and so by strict

monotonicity of X0 we get

1 = ‖x‖Ψp(X0,X1) ≤ ‖(z0, z1)‖X0⊕pX1 <
1

2

(
‖(x0, x1)‖X0⊕pX1 + ‖(y0, y1)‖X0⊕pX1

)

=
1

2

(
‖x‖Ψp(X0,X1) + ‖x‖Ψp(X0,X1)

)
= 1,

which is a contradiction. Thus v = x/y = 1 a.e. on supp y, and we finish the proof
as in case (i). �

In what follows we will use the following fact that for any couple (X0, X1) of r.i.
spaces, we have φΨ(X0,X1) ≈ Ψ(φX0 , φX1) (see [16]).

Theorem 1.5 Let (Ω,S, µ) be a non-atomic separable measure space and (X0, X1)
be a couple of r.i. spaces on (Ω,S, µ). Assume that supp [Ψp(X0, X1)]a = Ω. If
X ′0 (resp., X ′1) is strictly monotone, Ψ̂(X ′0, X

′
1) is not locally equivalent to L1 and

limt→0
t

Ψ(1,t) = 0 (resp., limt→0
t

Ψ(t,1) = 0), then for every 1 < p ≤ ∞, the Caledrón-
Lozanovskii space [Ψp(X0, X1)]a does not contain an asymptotically isometric copy
of `1.

Proof If [Ψp(X0, X1)]a contains an asymptotically isometric copy of `1, then by
[5] its dual ([Ψp(X0, X1)]a)∗ contains an isometric copy of L1(0, 1). But

([Ψp(X0, X1)]a)∗ ' (Ψp(X0, X1))′ = Ψ̂p′(X
′
0, X

′
1).

The spaces X ′i, i = 0, 1, satisfy the Fatou property. Moreover by concavity of Ψ,

Ψ̂(0, 1) = inf
u,v>0

u vu
uΨ(1, vu )

= inf
t>0

t

Ψ(1, t)
= lim
t→0

t

Ψ(1, t)
,
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and similarly Ψ̂(1, 0) = limt→0
t

Ψ(t,1) . Now by Theorem 1.2 and our assump-

tions, Ψ̂p′(X
′
0, X

′
1) is strictly monotone. Notice that 1 ≤ p′ < ∞. Thus by [19],

Ψ̂p′(X
′
0, X

′
1) contains also an order isometric copy of L1(0, 1). Since µ is separable,

it follows by the Caratheodory theorem [9] that L1(0, 1) is order isometric to L1(A)
for every A ∈ S with µ(A) <∞. Thus L1(A) is order isometrically embedded into
Ψ̂p′(X

′
0, X

′
1). Now by Corollary 9 in [1] we get L1(A) ⊂ Ψ̂p′(X

′
0, X

′
1)(A) for every

A ∈ S with µ(A) < ∞. Recall now that for any r.i. space X and any A ∈ S with
µ(A) <∞, we have that X(A) ⊂ L1(A) [2, 12]. Thus

Ψ̂p′(X
′
0, X

′
1)(A) ⊂ L1(A)

by the fact that any Calderón-Lozanovskii space is r.i. whenever both X0 and X1

are r.i. spaces. Hence L1(A) = Ψ̂(X ′0, X
′
1)(A) up to equivalence of norms, which

contradicts the assumption that Ψ̂(X ′0, X
′
1) is not locally equivalent to L1, and

concludes the proof. �

The next result is a corollary of the previous one in view of the fact that if Ψ
satisfies the left (resp., right) ∆2 condition and X0 (resp., X1) is order continuous,
then Ψ(X0, X1) is also order continuous (see [18]). In this case Ψp(X0, X1) =
[Ψp(X0, X1)]a and then (Ψp(X0, X1))∗ ' (Ψp(X0, X1))′.

Corollary 1.6 Let (Ω,S, µ) be a non-atomic separable measure space and let
(X0, X1) be a couple of r.i. spaces such that X0 (resp., X1) is order continuous.
Let Ψ satisfy the left (resp., right) ∆2 condition and limt→0

t
Ψ(1,t) = 0 (resp.,

limt→0
t

Ψ(t,1) = 0). If X ′0 (resp., X ′1) is strictly monotone and Ψ̂(X ′0, X
′
1) is not

locally equivalent to L1, then for every 1 < p ≤ ∞, the Caledrón-Lozanovskii space
Ψp(X0, X1) does not contain an asymptotically isometric copy of `1.

2. Orlicz-Lorentz spaces. Let ϕ : R+ → R+ be an Orlicz function, that is
ϕ is convex, ϕ(0) = 0 and ϕ is positive on (0,∞). We say that the Orlicz function
ϕ is N -function at 0 whenever lims→0 ϕ(s)/s = 0 [17]. Let further γ = µ(Ω). We
assume that ψ ∈ P, that is ψ : [0, γ) → R+ is concave, ψ(0) = 0 and ψ is not
trivially equal to zero. Denote ψ(0+) = limt→0+ ψ(t) and ψ(∞) = limt→∞ ψ(t) if
γ =∞. Let ρ be the following modular on L0,

ρ(x) =

∫ γ

0

ϕ(x∗)dψ = ‖ϕ(x∗)‖∞ψ(0+) +

∫ γ

0

ϕ(x∗(s))ψ′(s) ds,

where ψ′ denotes the derivative of ψ. Since ψ is concave its derivative exists except
a countable set. In fact we have ψ(t) = ψ(0+)+

∫ t
0
ψ′, t ∈ R+, where ψ′ is decreasing.

If there is no confusion we often write
∫ γ

0
ϕ(x∗)ψ′ instead of

∫ γ
0
ϕ(x∗(s))ψ′(s) ds.

The Orlicz-Lorentz space Λϕ,ψ consists of all x ∈ L0 such that there exists λ > 0
with ρ(x/λ) <∞. The space Λϕ,ψ equipped with the norm

‖x‖ϕ,ψ = inf{λ > 0: ρ(x/λ) ≤ 1}
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is a r.i. space satisfying the Fatou property.
In the context of Orlicz-Lorentz spaces we will always say that ϕ satisfies the

appropriate ∆2-condition whenever (i) ϕ satisfies condition ∆2 for all arguments,
that is there exists K > 0 such that ϕ(2t) ≤ Kϕ(t) for all t ∈ R+, in the case when
µ is non-atomic, µ(Ω) =∞ and ψ(∞) =∞; (ii) ϕ satisfies condition ∆∞2 for large
arguments, that is there are K > 0 and t0 ≥ 0 such that ϕ(2t) ≤ Kϕ(t) for all
t ≥ t0, in the case when µ is non-atomic, µ(Ω) <∞, or µ(Ω) =∞ and ψ(∞) <∞.

We easily observe that (Λϕ,ψ)a 6= {0} if and only if ψ(0+) = 0. It is also well
known that if ψ(0+) = 0 then (Λϕ,ψ)a coincides with the collection of x ∈ L0

such that ρ(kx) < ∞ for every k ∈ R. Moreover (Λϕ,ψ)a = Λϕ,ψ if and only if ϕ
satisfies the appropriate ∆2-condition and ψ(0+) = 0, and ψ(∞) = ∞ in the case
of µ(Ω) =∞ (see [11]). In the sequel we will use the fact that for any x ∈ (Λϕ,ψ)a
we have that ‖x‖ϕ,ψ = 1 if and only if ρ(x) = 1 (see [4]). It is also clear that if
ψ(∞) =∞ in the case of µ(Ω) =∞, then for any x ∈ Λϕ,ψ it holds limt→∞ x∗(t) = 0
which is equivalent to dx(λ) <∞ for every λ > 0.

Recall that if ϕ(t) = t, t ∈ R+, then Λϕ,ψ is a Lorentz space denoted by Λψ.
Given ψ ∈ P, the Marcinkiewicz space Mψ is the set of all x ∈ L0 such that

‖x‖Mψ
= sup

0<t<γ

∫ t
0
x∗

ψ(t)
<∞.

The Marcinkiewicz space is an r.i. space with its fundamental function φMψ
(t) =

t/ψ(t), t ∈ (0, γ), and such that (Λψ)′ = Mψ (see [12, Theorem 5.2, Chapter II,
p. 112]).

Now letting Ψ(s, t) = tϕ−1(s/t) for s, t > 0, and Ψ(s, t) = 0 for t = 0 and
any s ≥ 0, we have Λϕ,ψ = Ψ∞(Λψ, L∞) with equality of norms (see [16]). This
implies that (Λϕ,ψ)′ = Ψ̂1((Λψ)′, (L∞)′) = Ψ̂1(Mψ, L1) with equality of norms.
We also recall that in this case Ψ̂(s, t) = tϕ−1

∗ (s/t) for s, t > 0, where ϕ∗(s) =
supt≥0{st− ϕ(t)} (see [15]).

Corollary 2.1 For any Orlicz function ϕ which is N -function at 0, and ψ ∈ P,
the Köthe dual (Λϕ,ψ)′ of Orlicz-Lorentz space is strictly monotone.

Proof By the assumption that ϕ is N -function at 0, we have

Ψ̂(1, 0) = inf
s>0

s

Ψ(s, 1)
= lim
s→0

s

Ψ(s, 1)
= lim
s→0

s

ϕ−1(s)
= lim
t→0

ϕ(t)

t
= 0.

Since L1 is strictly monotone, by Theorem 1.2 the space (Λϕ,ψ)′ = Ψ̂1(Mψ, L1) is
strictly monotone. �

Corollary 2.2 Let (Ω,S, µ) be a non-atomic separable measure space. Let ϕ be
N -function at 0 and let ψ ∈ P be such that ψ(0+) = 0. Then the order continuous
part (Λϕ,ψ)a of Orlicz-Lorentz space does not contain an asymptotically isometric
copy of `1.
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Proof We shall apply Theorem 1.5 to Λϕ,ψ = Ψ∞(Λψ, L∞) with Ψ(s, t) =
tϕ−1(s/t) for s, t > 0 and Ψ(s, t) = 0 for t = 0 and any s ≥ 0. We have
that (Λψ)′ = Mψ, (L∞)′ = L1 and clearly L1 is strictly monotone. Moreover
Ψ̂(1, 0) = limt→0

ϕ(t)
t = 0, by the assumption that ϕ is N -function at 0.

Recall that for a r.i. space X we have that limt→0 φX(t) = 0 if and only if
Xa is not trivial which is equivalent to supp Xa = Ω. Therefore we have that
supp (Λϕ,w)a = Ω if and only if limt→0+ φΛϕ,ψ (t) = limt→0+ 1/ϕ−1(1/ψ(t)) = 0.
The latter is true by the assumption ψ(0+) = 0.

Observe also that Ψ̂(Mψ, L1) is not locally equivalent to L1. Indeed, we will show
that φΨ̂(Mψ,L1) is not equivalent to φL1 in a neighborhood of zero, which yields that

Ψ̂(Mψ, L1)(A) 6= L1(A) for some A ∈ S with µ(A) <∞. For any 0 < t < µ(Ω),

φΨ̂(Mψ,L1)(t) ≈ Ψ̂(φMψ
(t), φL1

(t)) = Ψ̂
( t

ψ(t)
, t
)

= tΨ̂
( 1

ψ(t)
, 1
)
.

In our case Ψ̂(s, t) = tϕ−1
∗ (s/t), and thus

φΨ̂(Mψ,L1)(t) ≈ tΨ̂
(

1

ψ(t)
, 1

)
= tϕ−1

∗

(
1

ψ(t)

)
.

Supposing now that the latter fundamental function is equivalent to the fundamental
function φL1

(t) = t, we get that 1/ψ(t) is equivalent to a constant, which contradicts
the assumption that ψ(0+) = 0. Thus Ψ̂(Mψ, L1) is not locally equivalent to L1,
and application of Theorem 1.5 completes the proof. �

The next result is a direct corollary of the previous one, since Λϕ,ψ = (Λϕ,ψ)a
whenever ϕ satisfies the appropriate ∆2-condition and ψ(0+) = 0 and ψ(∞) = ∞
in the case of µ(Ω) =∞ (for details we refer to [11]).

Corollary 2.3 Let (Ω,S, µ) be a non-atomic separable measure space. We assume
that ϕ is an Orlicz function satisfying the appropriate ∆2-condition, and ϕ is N -
function at 0. Moreover let ψ ∈ P be such that ψ(0+) = 0 and ψ(∞) = ∞ in
the case of µ(Ω) = ∞. Then the Orlicz-Lorentz space Λϕ,ψ does not contain an
asymptotically isometric copy of `1.

Letting ψ(t) = t, the Orlicz-Lorentz space Λϕ,ψ is the Orlicz space Lϕ equipped
with the Luxembourg norm. In [6] the authors showed that if ϕ∗ does not satisfy
the appropriate ∆2-condition and ϕ does, then the Orlicz space equipped with the
Orlicz norm contains an asymptotically isometric copy of `1. The corollary below
states that whenever ϕ satisfies ∆2 independently of the behavior of ϕ∗, Lϕ equipped
with the Luxemburg norm never contains an asymptotically isometric copy of `1.
This answers the question posed in [6].

Corollary 2.4 Let (Ω,S, µ) be a non-atomic separable measure space. If ϕ satis-
fies the appropriate ∆2-condition and ϕ is N -function at 0, then the Orlicz spaces
(Lϕ, ‖ · ‖ϕ) over (Ω,S, µ) does not contain an asymptotically isometric copy of `1.



A. Kamińska, M. Mastyło 293

In what follows we will study subspaces of Orlicz-Lorentz spaces isometrically
isomorphic to `(n)

1 for n ∈ N and n ≥ 2, where as usual by `(n)
1 we denote the n

dimensional real vector space equipped with `1-norm. It is well known that `(n)
1 is

isometrically embedded (resp., embedded order isometrically) into a Banach space
(resp., Banach lattice) X if and only if there exist xi ∈ X, i = 1, . . . , n such that
each ‖xi‖X = 1 and ‖∑n

i=1 θixi‖X = n for each combination of signs θi = ±1 (resp.,
‖xi‖X = 1 with |xi| ∧ |xj | = 0 for i 6= j, and ‖∑n

i=1 xi‖X = n).
We will need further the following technical lemma which is a consequence of

a more general result due to Wójtowicz [19]: If a strictly monotone Banach lattice
X contains an isometric copy of L1(ν), then X contains a lattice-isometric copy of
L1(ν). Below we include a simple, direct proof of the local variant of the mentioned
result.

Lemma 2.5 Let E be a strictly monotone Banach lattice on a measure space (Ω,S, µ)

and let n ≥ 2. Then E contains `(n)
1 order isometrically whenever E contains `(n)

1

isometrically.

Proof Assume that `(2)
1 is isometrically embedded in E. Thus there exist x, y in

the unit sphere of E such that span{x, y} is isometric to `(2)
1 , that is ‖x + y‖E =

‖x − y‖E = 2. We can always assume that x(t) > 0 for a.e. t ∈ supp x. In fact
2 = ‖x− y‖E = ‖|x| − (signx)y‖E = ‖x+ y‖E .

Now we shall prove that |x| ∧ |y| = 0. Then span{|x|, |y|} is isometric to `(2)
1

and so `(2)
1 is an order isometric copy in E. Assume for a contrary without loss of

generality that
µ{t ∈ supp x : y(t) > 0} > 0.

There exist ε > 0 and A ∈ S with µ(A) > 0 such that for all t ∈ A, we have that
x(t) > ε and y(t) > ε. Define

x1(t) =

{
x(t), t /∈ A;
x(t)− ε, t ∈ A, y1(t) =

{
y(t), t /∈ A;
y(t)− ε, t ∈ A.

Then x1(t)− y1(t) = x(t)− y(t) a.e. and x1(t) = x(t)− ε < x(t) for t ∈ A. Since E
is strictly monotone, ‖x1‖E < ‖x‖E = 1. Thus

2 = ‖x− y‖E = ‖x1 − y1‖E ≤ ‖x1‖E + ‖y1‖E < 2,

which is a contradiction and so |x| ∧ |y| = 0. The above proof gives that if a linear
span{x1, ..., xn} is isometrically isomorphic to `

(n)
1 , then |xi| ∧ |xj | = 0 for each

1 ≤ i, j ≤ n with i 6= j and this completes the proof. �

In what follows for an Orlicz function ϕ and a function ψ ∈ P we define,

tϕ = sup{t > 0: ϕ(t) = kt for some k > 0},
tψ = sup{t ∈ (0, γ) : ψ(t) = lt for some l > 0}.
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Theorem 2.6 Let (Ω,S, µ) be a non-atomic measure space. Assume ψ′ > 0 on
(0, γ) and ψ(0+) = 0. Let n ∈ N and n ≥ 2.

(a) If 0 < tψ <∞ and tϕtψ ≥ n
kl , or tψ =∞ and tϕ > 0, then the space (Λϕ,ψ)a

contains an order isometric copy of `(n)
1 .

(b) If the space (Λϕ,ψ)a contains an order isometric copy of `(n)
1 then both tϕ > 0

and tψ > 0, and tϕtψ ≥ n
kl .

Consequently, if 0 < tϕ ≤ ∞ and 0 < tψ < ∞ then the space (Λϕ,ψ)a contains
an order isometric copy of `(n)

1 if and only if tϕtψ ≥ n
kl . In particular if γ = tψ <∞

then (Λϕ,ψ)a contains an order isometric copy of `(n)
1 if and only if tϕ ≥ n

klγ .

Proof (a) Fix n ≥ 2 and assume that 0 < tψ < ∞. Choose for all 1 ≤ i ≤ n the
sets Ai ∈ S such that they are disjoint and µ(Ai) = tψ/n. Then we find c ∈ (0, tϕ]
such that ctψ = n

kl . Now for the functions cχAi ∈ (Λϕ,ψ)a, 1 ≤ i ≤ n we have

ρ(cχAi) = ϕ(c)

∫ tψ/n

0

ψ′ =
kcltψ
n

= 1.

Moreover

ρ

(
1

n

n∑

i=1

cχAi

)
=

∫ ∞

0

ϕ

(
1

n

n∑

i=1

cχ( i−1
n tψ,

i
n tψ)

)
ψ′

=
n∑

i=1

∫ i
n tψ

i−1
n tψ

ϕ

(
c

n

)
ψ′ =

kcltψ
n

= 1.

Hence ‖cχAi‖ϕ,ψ = 1 for each 1 ≤ i ≤ n and
∥∥ 1
n

∑n
i=1 cχAi

∥∥
ϕ,ψ

= 1, and so (Λϕ,ψ)a

contains an order isometric copy of `(n)
1 .

Let now tψ = ∞ and tϕ > 0. Hence for c ∈ (0, tϕ) we choose n disjoint
measurable sets Ai such that ρ(cχAi) = 1 for each 1 ≤ i ≤ n. The rest of the proof
is similar to the one above.

(b) Assume now that `(n)
1 is an order isometric copy of (Λϕ,ψ)a. There exist

xi ∈ (Λϕ,ψ)a, 1 ≤ i ≤ n such that |xi| ∧ |xj | = 0 for i 6= j, ‖xi‖ϕ,ψ = 1 for each
i, and ‖∑n

i=1 xi‖ϕ,ψ = n. Thus we get that ρ(xi) = ρ
(

1
n

∑n
i=1 xi

)
= 1 for each

1 ≤ i ≤ n. Hence

1 = ρ

(
1

n

n∑

i=1

xi

)
=

∫ γ

0

( n∑

i=1

ϕ

( |xi|
n

))∗
ψ′

≤
∫ γ

0

( n∑

i=1

ϕ

(
x∗i
n

))
ψ′ ≤ 1

n

n∑

i=1

∫ γ

0

ϕ(x∗i )ψ
′ = 1.

It follows that
∫ γ

0
ϕ(

x∗i
n )ψ′ =

∫ γ
0

1
nϕ(x∗i )ψ

′ for each 1 ≤ i ≤ n. Thus in view of
the inequalities ϕ(

x∗i
n ) ≤ 1

nϕ(x∗i ) and ψ′ > 0 on (0, γ) we get that for all t ∈ (0, γ)



A. Kamińska, M. Mastyło 295

and each 1 ≤ i ≤ n it holds ϕ(
x∗i (t)
n ) = 1

nϕ(x∗i (t)). Hence ϕ must be linear on the
interval (0,max1≤i≤n x∗i (0+)). Therefore

tϕ ≥ max
1≤i≤n

x∗i (0+).(3)

It is well known [12, formula (5.4)] that if ψ(0+) = 0 then the following formula
holds for any f ∈ Λψ,

∫ γ

0

f∗(t)ψ′(t) dt =

∫ ∞

0

ψ(df (t)) dt.

This implies that for all f ∈ Λϕ,ψ we have

ρ(f) =

∫ γ

0

ϕ(|f(t)|)∗ψ′(t) dt =

∫ ∞

0

ψ(dϕ(|f |)(t)) dt(4)

=

∫ ∞

0

ψ(df (ϕ−1(t)) dt =

∫ ∞

0

ψ(df (t))ϕ′(t) dt.

Now by the orthogonality |xi| ∧ |xj | = 0 for i 6= j, concavity of ψ and (4),

1 = ρ

(
1

n

n∑

i=1

xi

)
=

∫ ∞

0

ψ

( n∑

i=1

d xi
n

(t)

)
ϕ′(t) dt

≤
n∑

i=1

∫ ∞

0

ψ(d xi
n

(t))ϕ′(t) dt ≤ 1

n

n∑

i=1

ρ(xi) = 1.

Combining with the inequality ψ
(∑n

i=1 dxi/n(t)

)
≤ ∑n

i=1 ψ(dxi/n(t)), it yields

that for all t ∈ (0,∞) we have ψ
(∑n

i=1 dxi/n(t)
)

=
∑n
i=1 ψ(dxi/n(t)). Since 0 ≤

dxi/n(t) ≤ µ(supp (xi/n)) = µ(supp xi) for each 1 ≤ i ≤ n, so ψ is linear on the
interval (0,

∑n
i=1 µ(supp xi)). Thus

tψ ≥
n∑

i=1

µ(supp xi).(5)

Notice that by (3) and (5) both tϕ and tψ must be positive. If tϕ = ∞ or tψ = ∞
then the inequality tϕtψ ≥ n

kl is satisfied. Otherwise we have that for each 1 ≤ i ≤ n,
x∗i (0+), µ(supp xi) ∈ (0,∞). Then by (3) and (5),

1 = ρ
( 1

n

n∑

i=1

xi

)
≤

n∑

i=1

1

n
ρ(xi) =

1

n

n∑

i=1

∫ µ(supp xi)

0

ϕ(x∗i )ψ
′

=
1

n

n∑

i=1

∫ µ(supp xi)

0

kx∗i l ≤
1

n

n∑

i=1

klx∗i (0+)µ(supp xi) ≤
1

n

n∑

i=1

kltϕµ(supp xi)

≤ 1

n
kltϕ

(
tψ −

n∑

i=2

µ(supp xi)
)

+
1

n

n∑

i=2

kltϕµ(supp xi) =
1

n
kltϕtψ.

Hence tϕtψ ≥ n
kl and the proof is complete.
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The direct consequence of Theorem 2.6 is the next result.

Corollary 2.7 Let (Ω,S, µ) be a non-atomic measure space. Assume ψ′ > 0 on
(0, γ) and ψ(0+) = 0. If for some n ≥ 2, `(n)

1 is order isometrically contained in
(Λϕ,ψ)a then both ϕ and ψ are linear functions in some neighborhoods of zero.

Corollary 2.8 Let (Ω,S, µ) be a non-atomic measure space. Assume ψ′ > 0 on
(0, γ), ψ(0+) = 0 and ψ(∞) = ∞ when γ = ∞. Let 0 < tϕ ≤ ∞ and 0 < tψ < ∞.
Then for each n ≥ 2 the following conditions are equivalent.

(i) `(n)
1 is isometrically embedded in (Λϕ,ψ)a.

(ii) `(n)
1 is order isometrically embedded in (Λϕ,ψ)a.

(iii) tϕtψ ≥ n
kl .

Proof We first observe that under our assumptions on ψ the space (Λϕ,ψ)a is
strictly monotone. Indeed let x, y ∈ (Λϕ,ψ)a be such that 0 ≤ x ≤ y a.e., x 6= y
with ‖y‖ϕ,ψ = 1. Since ψ′ > 0 and ψ(∞) = ∞ so limt→∞ y∗(t) = 0 in case when
γ =∞. Hence x∗ ≤ y∗ a.e. and x∗ 6= y∗. This yields

ρ(x) <

∫ γ

0

ϕ(y∗)ψ′ = ρ(y) = 1,

and so ‖x‖ϕ,ψ < ‖y‖ϕ,ψ = 1. To conclude the proof, we apply Lemma 2.5 and
Theorem 2.6. �

Proposition 2.9 Let (Ω,S, µ) be a non-atomic measure space. If tψ > 0 then there
exists l > 0 such that for any B ∈ S with 0 < µ(B) ≤ tψ we have Λϕ,ψ(B) = Llϕ(B)
with equality of norms, where Llϕ is the Orlicz space associated to the Orlicz function
lϕ.

Proof By the assumption tψ > 0 we have that ψ(t) = lt for some l > 0 and all
t ∈ [0, tψ]. Let B ∈ S be such that 0 < µ(B) ≤ tψ. Based on formula (4) we
conclude that for all x ∈ Λϕ,ψ and ε > 0,

ρ
(xχB

ε

)
=

∫ ∞

0

ψ
(
d
ϕ(
|x|χB
ε )

(t)
)
dt =

∫ ∞

0

l d
ϕ(
|x|χB
ε )

(t) dt =

∫

B

l ϕ
( |x(t)|

ε

)
dt,

which implies that ‖xχB‖ϕ,ψ = ‖xχB‖Llϕ and completes the proof. �

Corollary 2.10 Let (Ω,S, µ) be a non-atomic measure space. Assume ψ′ > 0 on
(0, γ) with γ = µ(Ω), ψ(0+) = 0 and ψ(∞) = ∞ when γ = ∞, and let tψ < ∞.
Then the following conditions are equivalent.

(i) For some A ∈ S the space L1(A) is isometrically embedded into (Λϕ,ψ)a.
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(ii) For some A ∈ S the space L1(A) is order isometrically embedded into (Λϕ,ψ)a.

(iii) `1 is isometrically embedded in (Λϕ,ψ)a.

(iv) `1 is order isometrically embedded in (Λϕ,ψ)a.

(v) ϕ is linear on [0,∞) and ψ is linear in a neighborhood of zero.

In particular if γ = µ(Ω) <∞ then the above five conditions are equivalent.

Proof The conditions (i) and (ii) as well as (iii) and (iv) are equivalent by strict
monotonicity of (Λϕ,ψ)a and the above mentioned result from [19].

(iv)⇒ (v) If `1 is order isometrically embedded in (Λϕ,ψ)a then (Λϕ,ψ)a contains
`
(n)
1 for each positive integer n ≥ 2, and it follows from Theorem 2.6 (b) that tϕ > 0,
tψ > 0 and tϕtψ ≥ n

kl for all integer n ≥ 2. Since 0 < tψ < ∞, ψ is linear in a
neighborhood of zero, and tϕ =∞ and so ϕ is linear on [0,∞).

(v) ⇒ (ii). By Proposition 2.9 we have that Λϕ,ψ(B) = Llϕ(B) with equality of
norms for B ∈ S with 0 < µ(B) ≤ tψ. Since ϕ is linear on R+, Λϕ,ψ(B) is order
isometric to L1(B).

The implication (ii) ⇒ (iv) is clear and this completes the proof. �

3. Applications. In this section we shall present consequences of the results
from the previous section, as well as related observations for Orlicz and Lorentz
spaces. We recall that if ψ(t) = t for all t ∈ (0, γ) then the Orlicz-Lorentz space
Λϕ,ψ becomes the Orlicz space Lϕ equipped with the Luxemburg norm.

We start with the result which characterizes the containment of an isometric
copy of `(n)

1 , n ≥ 2, in the Orlicz space (Lϕ)a over a non-atomic and finite measure
space (Ω,S, µ). It extends and improves Theorem 2 in [19].

Corollary 3.1 Let (Ω,S, µ) be a non-atomic measure space with γ = µ(Ω) <∞.
Let n ∈ N and n ≥ 2. Then the following conditions are equivalent.

(i) The order continuous Orlicz space (Lϕ)a contains an order isometric copy of
`
(n)
1 .

(ii) The order continuous Orlicz space (Lϕ)a contains an isometric copy of `(n)
1 .

(iii) tϕ ≥ n
kγ .

Proof The equivalence of (i) and (ii) is a result of Lemma 2.5 and the fact that
(Lϕ)a is strictly monotone. For the equivalence of (i) and (iii) we apply the last
part of Theorem 2.6 for l = 1 and tψ = γ. �

The conditions (iii)-(v) in the next corollary recover Theorem 2 for Orlicz space
Lϕ in [19] in the case of µ(Ω) = ∞. The corollary is a consequence of Lemma 2.5
and Theorem 2.6 applied to tψ =∞. In this case Λϕ,ψ = Llϕ isometrically.
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Corollary 3.2 Let (Ω,S, µ) be a non-atomic measure space with γ = µ(Ω) =∞.
Let n ∈ N and n ≥ 2. Then the following conditions are equivalent.

(i) The order continuous Orlicz space (Lϕ)a contains an order isometric copy of
`
(n)
1 .

(ii) The order continuous Orlicz space (Lϕ)a contains an isometric copy of `(n)
1 .

(iii) The order continuous Orlicz space (Lϕ)a contains an isometric copy of `1.

(iv) The order continuous Orlicz space (Lϕ)a contains an order isometric copy of
`1.

(v) ϕ is linear in a neighborhood of zero.

The corollary below follows from Corollary 2.10. The equivalence of (iii)–(v) has
been proved in Theorem 3(b) in [19].

Corollary 3.3 Let (Ω,S, µ) be a non-atomic measure space such that µ(Ω) <∞.
Then the following conditions are equivalent.

(i) For some A ∈ S the space L1(A) is isometrically embedded into (Lϕ)a.

(ii) For some A ∈ S the space L1(A) is order isometrically embedded into (Lϕ)a.

(iii) `1 is isometrically embedded in (Lϕ)a.

(iv) `1 is order isometrically embedded in (Lϕ)a.

(v) ϕ is linear on [0,∞) that is Lϕ = (Lϕ)a ' L1.

Remark 3.4 If we assume in Theorem 2.6 and all above corollaries in this section
that ϕ satisfies the appropriate condition ∆2 then they remain true if the space
(Λϕ,ψ)a or (Lϕ)a is replaced by the whole space Λϕ,ψ or Lϕ respectively.

If ϕ(t) = t, then the Orlicz-Lorentz space becomes the Lorentz space Λψ. If
in addition ψ(0+) = 0 and ψ(∞) = ∞ when γ = ∞, then (Λϕ,ψ)a = Λψ. Our
last result follows immediately from Corollary 2.10 and Theorem 2.6 and implies
the description of Lorentz spaces Λψ on [0, 1] containing `(2)

1 due to Briskin and
Semenov in [3].

Corollary 3.5 Let (Ω,S, µ) be a non-atomic measure space. If n ∈ N, n ≥ 2, and
ψ ∈ P is such that ψ′ > 0 on (0, γ), ψ(0+) = 0 and ψ(∞) = ∞ when µ(Ω) = ∞,
then the following conditions are equivalent.

(i) For some A ∈ S the space L1(A) is isometrically embedded into Λψ.

(ii) For some A ∈ S the space L1(A) is order isometrically embedded into Λψ.
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(iii) `1 is isometrically embedded in Λψ.

(iv) `1 is order isometrically embedded in Λψ.

(v) `(n)
1 is isometrically embedded in Λψ.

(vi) `(n)
1 is order isometrically embedded in Λψ.

(vii) ψ is linear in a neighborhood of zero.

We conclude with the following result on the description of universal Orlicz-
Lorentz (and so also Orlicz and Lorentz) spaces for all two-dimensional normed
spaces. We recall that a Banach space U is called universal for all two-dimensional
normed spaces if for each two-dimensional normed space X there is a subspace Y
in U such that X is isometrically isomorphic to Y.

Theorem 3.6 Let (Ω,S, µ) be a non-atomic separable measure space. Assume ψ′ >
0 on (0, γ) with γ = µ(Ω), ψ(0+) = 0 and ψ(∞) =∞ when γ =∞, and let tψ <∞.
Then the separable Orlicz-Lorentz space Λϕ,ψ is universal for all two-dimensional
normed spaces if and only if ϕ is linear on [0,∞) and ψ is linear in a neighborhood
of zero.

Proof Ferguson [8] (independently, Herz [10]) proved that any two-dimensional
normed space can be embedded isometrically into L1(0, 1). Consequently our hy-
pothesis follows from Corollary 2.10 and the fact that L1(A) with µ(A) > 0 is
isometrically isomorphic to L1(0, 1). �
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