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Abstract. In this paper we consider a generalization of the separation technique
proposed in [10, 4, 7] for the separation of finitely many compact convex sets A;, i € I
by another compact convex set S in a locally convex vector space to arbitrary sets
in real vector spaces. Then we investigate the notation of shadowing set which is a
generalization of the notion of separating set and construct separating sets by means
of a generalized Demyanov-difference in locally convex vector spaces.
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1. Introduction. Separation of sets has been for long time an interesting
research area for mathematicians. Basic concepts of classification theory are linear
separability of sets, separation margin and kernel transformations. They have pro-
vided the theoretical background in constructing powerful classification tools for
data classification.

A different approach to the separation of two sets was proposed by J. Grzybowski,
D. Pallaschke and R. Urbanski 7] and A. Astorino and M. Gaudioso [1] and M.
Gaudioso, E. Gorgone et al. [4] which leads to a non-smooth optimization problem.
It is based on the method of separating two compact convex sets by an other one.
In this paper we generalize these results to the case of finitely many nonempty sets,
which are not necessarily convex

The paper is organized as follows. We begin with a survey on basic properties
of the family of bounded closed convex sets in a topological vector space. Then
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we prove a separation theorem for arbitrary sets and for closed bounded convex
sets and discuss the connection between the different separation theorems for ar-
bitrary and for bounded closed convex sets. Finally we use a generalization of the
Demyanov-difference in locally convex vector spaces to construct separating sets.

2. The Semigroup of Closed Bounded Convex Sets. For a Hausdorff
topological vector space (X,7) let us denote by A(X) the set of all nonempty
subsets of X, by B*(X) the set of all nonempty bounded subsets of X, by C(X)
the set of all nonempty closed convex subsets of X, by B(X) = B*(X) N C(X)
the set of all bounded closed convex sets of X and by K(X) the set of all no-
nempty compact convex subsets of X. (Note, that we consider only vector spa-
ces over the reals). Recall that for A, B € A(X) the algebraic sum is defined by
A+B = {r=a+b|a€c Aandb € B} and for A € R and A € A(X) the
multiplication is defined by NA = {z = Xa | a € A}.

The Minkowski sum for A, B € A(X) is defined by
A+B =c{r=a+b|acAandbe B}),

where cl(A) = A denotes the closure of A C X with respect to 7. For compact convex
sets, the Minkowski sum coincides with the algebraic sum, i,e., for A, B € (X)) we
have A + B = A+ B. In quasidifferential calculus of Demyanov and Rubinov [3]
pairs of bounded closed convex sets are considered. More precisely: For a Hausdorff
topological vector space X two pairs (A, B), (C, D) € B*(X) = B(X) x B(X) are

called equivalent it B+ C = A + D holds and [A, B] denotes the equivalence class
represented by the pair (A, B) € B?(X). An ordering among equivalence classes is
given by [A,B] < [C,D]ifand only if A + D C B 4 C. This is the ordering
on the Minkowski-Radstrom-Hérmander space and is independent of the choice of
the representatives.

For A € B(X) we denote by ext A the set of its extreme points and by exp A
the set of its exposed points (see [10]). Next, for A, B € A(X) we define: AV B =
cl conv(A U B), where conv(A U B) denotes the convex hull of AU B. We will use
the abbreviation A + BV C for A 4+ (BV C) and C + d instead of C + {d} for all
bounded closed convex sets A, B,C € A(X) and a point d € X.

A distributivity relation between the Minkowski sum and the maximum operation
is expressed by the Pinsker Formula (see [12]) which is stated in a more general
form in [10] as:

PROPOSITION 2.1 Let (X,7) be a Hausdorff topological vector space, A,B,C €
A(X) and C be a convex set. Then

(A+C)V(B +C)=C +(AVB).

The Minkowski-Radstrém-Hormander Theorem on the order cancellation property
for bounded closed convex subsets in Hausdorff topological vector spaces states that
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for A, B,C € B(X) the inclusion A + B C B + C implies A C C. A generalization
which is due to R. Urbanski [14] (see also [10]) states:

THEOREM 2.2 Let X be a Hausdorff topological vector space. Then for any A €
A(X), B e B*(X) and C € C(X) the inclusion

A+BcCC +B implies AcCC. (olc)

This implies that B(X) endowed with the Minkowski sum ”4” and the ordering
induced by inclusion is a commutative ordered semigroup (i.e. a ordered set endowed
with a group operation, without having inverse elements), which satisfies the order
cancellation law and contains K(X) as a sub-semigroup.

3. Separation and Shadowing of Arbitrary Sets. The separation of two
bounded closed convex sets by an other bounded closed set is extensively explained
in [10]. A set S separates two sets A and B if [a,b] NS # O for every a € A and
b € B where [a,b] is a closed interval. We say that a set S strictly separates A and
B if (a,b) NS # 0 for every a € A, b € B where (a,b) is an open interval. In this
section we discuss a possible generalization to the case of many nonempty sets in a
real vector space which are not necessary convex.

Although a separation concept for two sets is intuitively clear, this is not so obvious
for the separation of many sets. The following possible separation concept of convex
sets has been recently formulated by J-E. Martinez-Legaz and A. Martinén in [9]:

“A subset S separates (pairwise) a finite family {A;},.; of nonempty subsets if
S separates every pair of sets A; and A; where ¢,j € I with ¢ # j.”

If a convex subset S separates pairwise a finite family {A;},.; of nonempty subsets
then the family {SV A;},.; is pairwise convex, i.e. if the set (SV A;) U(SV 4;) is
convex for all 4, j € I ([11], Corollary 2.2).

Another possible generalization of separation is the notion of shadowing.

DEFINITION 3.1 Let X be a real vector space, a set of indices [ is finite and S, A; €
A(X), i € I. We say that the set S shadows the family {A;}icr if SOV, ai # 0
for every collection a; € A;, i € I.

Let us note that \/,.; a; is the convex hull of the finite set {a;}ic;. By relintA we
denote a relative interior of the set A.

DEFINITION 3.2 We say that the set S strictly shadows the family {A;}, ; if it
shadows this family and SN relint(\/,c; a;) # 0 for every collection a; € A;, i € I.
The set S strictly shadows the family {4;},.; if and only if for every collection
a; € A, 1 € I there exist real numbers a; > 0 with Zai =1 and Zaiai e sS.

iel icl
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Let us remark, that for two sets Ay, Ay these are exactly the definitions of separation
and strict separation given in [10], Defintions 4.5.1 and 4.6.1.

a) b) c)

Figure 1. a), b) Separation of two sets. ¢) Pairwise separation. d) Shadowing of
three sets.

REMARK 3.3 Let us add that the notion of shadowing, which generalizes separation,
comes from a physical interpretation of the separation by sets as follows: if the sets
A, B, S are considered as celestial and A shines, then S separates A and B if and
only if B lies in the shadow of S. (see Fig. 1.b))

In [6] the concept of shadowing is generalized to commutative semigroups with
cancellation property and the following equivalence is proved in Corollary 5.3:

PRrROPOSITION 3.4 Let X be a topological vector space, I a finite index set and
S,A; € B(X), i € I. Then S shadows the sets A;, i € I if and only if inf;c[A;,0] <
[S,0] in the sense of the ordering among equivalence classes in the Minkowski-
Radstrom-Hormander space.

Now we prove that the concept of separation of sets satisfies the fundamental prin-
ciple on set-separation of J-E. Martinez-Legaz, and A. Martinon [9]:

PROPOSITION 3.5 Let X be a real vector space, I a finite indez set, S, A; € A(X), i €
I and S be convex. If S [strictly] separates pairwise the family {A;}..; then S [stric-
tly] shadows the family {A;},c; -

iel

PROOF The case of separation is obvious. Assume strict separation. Let S, A; C
X, 1 € I be given, where I consists of k elements. The set S strictly separates all
pairs of sets A; and A; with 4,j € I and i # j. Then for every collection {a;}ier
with a;, € A; there exist real numbers a;; > 0 with z;; = ay;a; + (1 — ;) a; € S for
1# 7. Puto = ﬁ then the convex combination o Z z;j € S has only nonzero
i,j€I
i
coefficients, i.e., S strictly shadows the sets A;, i € I. n

3.1. Algebraic separation law for arbitrary sets. The following theorem
states the algebraic separation law for arbitrary sets.
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THEOREM 3.6 Let X be a real vector space, I a finite index set and S, A; C X, i €
1. Then the following statements are equivalent:

(S1) S shadows the family {A;}icr.
(S2) For any convex set C C X we have

(N(C+A)cC+s.
iel
(S3) For any {b;}icr € X we have
A+ \/ b)) € S+ \/ bi.
iel kel iel

PrOOF (S1) = (S2) Let 2 € (;c;(C + A;). Then 2 = ¢; + a;,i € I for some
c; € C,a; € A;. By (S1) there exist y € SN\/,.;a;. We have y = >, Aja; for
some A; > 0 such that .., \; =1. Hencez =y +> .., \i¢c; € S+ C.

iel
iel i€l
(S2) = (S3) Obvious. (S3) = (S1) Let {a;}icr € [[;,c; Ai- Denote b; = —a;. Notice
that 0 € (V;c;(Ai + Vyerbk) € S+ Ve bio There exist z € S and A\; > 0,5 € [
such that Y, ; A =1land 0 =2+, ; Aibi. Hence z =37, ; Nia; € SNV, aim

The following two corollaries are an immediate consequence:

COROLLARY 3.7 The following conditions are equivalent:
(a) N;er Ai shadows the family {A;}icr.
(b) For any convex set C' C X we have

NC+4)=Cc+(4
el el

(Translation property of intersection with respect to the family of convex sets).
(c) For any {bi}icr € X' we have

ﬂ(Ai + \/ by) = (m A;) + \/bi.

i€l kel el el

COROLLARY 3.8 The following conditions are equivalent:

(a) AN B separates A and B.

(b) For any convex set C C X we have (C'+ A)N(C+ B) = C+ AN B (Translation
property of intersection with respect to the family of convex sets).

(¢) For any a € A,b € B we have (A+aVb)N(B+aVb)=ANB+aVb.

Second corollary is a generalization of Lemma 3.4 in [15].
3.2. Algebraic separation law for bounded closed convex sets. We
k

write in the following: Z A, = A1+ A+ F Ay

i=1
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For the weaker concept of separation we have the following algebraic characteri-
zation:

THEOREM 3.9 Let X be a topological vector space, I a finite index set and S, A; €

B(X), i € I. Then S shadows the family {A;};c; if and only if

A (D A4) + 8

iel i€l kel\{i}

PROOF Necessity: Let a; € A;, i € I be given. Then there exist a; > 0, Zai =1

iel
such that Zaiai € S. Therefore,
iel
Zai = Z( Z ozk)ai + ZOQ’CLZ‘
icl i€l kel\{i} icl
= Zal( Z ak) + Zaiaie\/( Z Ak) + 5,

i€l kel\{i} i€l i€l kel\{i}

which proves the necessity.

Sufficiency: Now fix any a; € A;, i € I. Then it follows from the assumption
A\ (Y A) +5
il i€l kel\{i}
that for every i € T
a; + Z AkC\/( Z Ak)+S,
kel\{i} i€l kel\{i}

which means:

Z Ak C \/( Z Ak) —i—(S—ai),iEI.

kel\{i} iel  kel\{i}

From the Pinsker rule we get:

VY a) ¢ VIVEY 4) + (5—a)]

i€l keI\{i} i€l i€l Kel\(i}
= V> A4+ \V©E-aw
i€l kel\{i} i€l

and from the order cancellation law we get 0 € \/ (S — a;) . Again from the Pinsker
i€l
rule follows 0 € \/ (S—a;)) =8 + \/ {—a;}, which implies SN\/,.;a; #0. m
i€l i€l
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4. The relation between the different separation theorems. The follo-
wing implication holds:

PROPOSITION 4.1 Let X be a topological vector space, I a finite index set and
S,A; € B(X), ¢ € I. If S shadows the sets A;, i € I then condition (S2) of
Theorem 3.6 implies the condition of Theorem 3.9.

PROOF Let us assume that the bounded closed convex set S € B(X) separates the
sets A; € B(X), i € I. Now choose for the convex set C' C X in condition (S2) of

Theorem 3.6 the set
c=\ (> A
iel  kel\{i}

Now we observe that for every i € I we have
A; + Z AkCﬂ Ai—i-\/ Z Ap
kel\{i} iel i€l kel\{i}

Using condition (S2) this implies:

ZAkCCl ﬂ A1+\/( Z Ak) C\/( Z Ak)+5

kel i€l i€l kel\{i} iel  kel\{i}
which completes the proof. n

5. The Demyanov-Difference. Demyanov original subtraction A—B (see

[13]) of compact convex subsets in finite dimensional space is defined with the help
of the Clarke subdifferential (see [2]) of the difference of support functions, i.e.

A=B = dua(pa — pB) o
where p4 and pp are the support functions of A and B, i.e. pa(z) = max (a, )
This can be equivalently formulated by
A~B =tonv{a —bla € A,b€ B,a+b € exp(A+ B)},
where exp(A 4 B) are the exposed points of A+ B. For the proof see [13] and note
that every exposed point of A+ B is the unique sum of an exposed point of A with

an exposed point of B.

To extend the definition of the difference A~B to locally convex vector spaces,
the set of exposed points will be replaced by the set of extremal points.



62 Algebraic Separation and Shadowing

DEFINITION 5.1 Let (X, 7) be a locally convex vector space and K(X) the family
of all nonempty compact convex subsets of X. Then for A, B € K(X), the set

A-B =conv{a —bla € A,b€ B,a+b € ext(A+ B)} € K(X)
is called the Demyanov Difference of A and B.

This is a canonical generalization of the above definition, because for A, B € (X))
every extremal point z € ext(A + B) has a unique decomposition z = x + y into the
sum of two extreme points z € ext A and y € ext B (see [8], Proposition 1).

Since in the finite dimensional case the exposed points are dense in the set of
extreme points of a compact convex set, this definition coincides with the original
definition of the Demyanov difference in finite dimensional spaces.

The Demyanov difference in finite dimensional spaces possesses many important
properties. Some of them hold also for its generalization (see [5]):

PROPOSITION 5.2 Let X be a locally convex vector space and A, B,C € K(X). The
Demyanov-Difference has the following properties:

(D1) If A= B+ C, then C = A-B.
(D2) (A=B)+B D A.

(D3) fBCAthenOEA “B.
(DY (4°8) = (B4,

(D5) AZC C (AZB) + (B-0).

From property (D2) of the above proposition follows immediately:

THEOREM 5.3 Let X be a locally convex vector space, I a finite index set and
S, A; € K(X), i € I. Then the Demyanov-Difference

= (2_4) = V(X2 4
iel i€l kel\{i}
shadows the family {A;},c; .

COROLLARY 5.4 Let Ay, As, ..., A € K(R™) be given. Then for the Demyanov-
Difference holds

k ko k
(2_4) =V (2_45) = daPly,
i=1 i=1 J=1

Jj#i

where 861P|0 is the Clarke subdifferential of P = min{pa,,pa,,...,04a,}, at 0 € R,
i.e. the minimum of the support functions of the sets A;.
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ProoF This follows immediately from the definition of the Demyanov-Difference
for the finite dimensional case (see [13]) and the formula

k k
(ZPAI) — max ZpAl |ie{l,..,k} p =min{pa,,pa,, DA}
i=1 =1

Jj#i

which completes the proof. n
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