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On a certain case of asymptotic stability of the solution ¥ =0
of a system of ordinary differential equations Y’ = F(x, Y)

In this paper we shall give sufficient conditions for the solution ¥ =0
of the system of ordinary differential equations

(1) Y = F(z, Y),

where ¥ = [y,, ¥sy ..., Y1, F(2, Y)=[fi(x, ¥), ..., f.(x, X)], to be asymp-
totically and wuniformly sta,ble Wlth respect to the 1n1t1a1 conditions.
The theorems which are given in this paper are generalizations of the-
orems of paper [2], where the asymptotic stability of the solution y = y,
of the differential equation

Yy =f=9)
was investigated.

We shall use the definition of uniform stability given in paper [1].
We start with two lemmas: *

LeEMMA 1. Assume that
1° funetions f,(x, Y) (¢ =1,2,...,n) appearing on the right-hand
side system (1) are defined and continuous in the set
D = A4,xD,,
where 4g = {a, + o),

Dy ={Y = [y1, o0, 9]: ¥ <}

n

(Da < R\ Y| =: (D} )1/2), a> 0, in particular a = + oo is possible,
=1

2° Y-F(x, Y) Zylf, 2, Y)<< 0 for each (x, Y)eD,

3° F(x,0) =0 for xed,.
_ Under these assumptions the solution Y (x) = 0, xed,, of system (1)
8 Ligpunov stable.
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Proof. Let (%, Y) be an arbitrary point of D. It follows from Assump-
tion 2° that each solution of system (1) issuing from the point (%, ¥) is
defined in (%, 4-oc). We shall demonstrate that for each ¢ > 0 and z,¢ 4,
there exists a 6 > 0 such that each solution ¥ = & (x) of system (1) satis-
fying the condition ||P(x){l < 6 satisfies also the inequality ||@(z)| < ¢
for xelmy, + o0). v

It follows from Assumption 2° that the function ¢(z) = |@(»)] is
non-increasing. For a fixed ¢ > 0 and z,ed, we take 0 < 6 << e and we
obtain from the initial inequality |@(x,)] < § the inequality P (@)l < &
for xe{x,, +oc) and hence also ||@ ()} < & for welw,, + o) what com-
pletes the proof of Lemma 1.

Levmma 2. If

1° the function u(w) is defined in A, and there exists w'(w) for xe A, ,

2° limsupu'(g) = 6, d <0,

T—+00

then

limuls) = — oo,
T—>00

Proof. It follows from Assumption 2° that for each fixed % satisfy-
ing the condition 0 < k < |§] there exists an A > 0 such that

(2) w(x) < —k<0 fora>mz + A.

Let {o,} be a sequence such that a,>x,+4 and a,—ea,;, =1 for
n =1,2,...Thenu(a,)—u(a,_;) = u'(4,), where a,_, < 1, < a,. From (2)
we obtain u(a,) < #(ay) —nk for n =1,2, ... what completes the proof
of Lemma 2.

Basing on these two lemmas, we come to the proof of the following
theorem:

TOEOREM 1. Assume that

1° the functions f;(x, Y) (¢ =1,2,...,n) are defined and continuous
in the set D defined in Lemma 1,

2° ewactly one solution of system (1) passes through every point (x, Y)eD,

3° Y-F(x, Y)< 0 for any (z, Y)eD,

4° F(x,0) =0 for xed,,

5° limsupY -F(x, Y) = 8, 6 <O for any YeD,, |Y| > 0.

e

Under these assumptions the solution ¥ = 0 of system (1) is asympto-
tically stable in A, uniformly with respect to the initial conditions given on
the set N

Kzoﬁ ={x, Y): v =&, |Y|<B 0<B<a}

for fized xy, B what means that
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1) the integral Y = 0 s stable in A, and that

2) for any & > 0 and for any x,, ¥, = & there exists an A > 0 dependent
on & and on x, such that for an arbitrary solution Y = ®(x) of (1) issuing
Jrom an arbitrary point of the set K, 4, the inequality || (w)ll < e holds if
only & >xy+4 A

Proof. It follows from Assumptions 1° 3° 4° and Lemma 1 that
the solution ¥ = 0 is Liapunov stable. Now we shall show that for any
2,¢4, the solution Y = @(x) (P(x) = [¢1(®), ..., @, (2)]) of system (1)
satisfying the condition ||@(x,)|| < B satisfies also the condition

lim |@(z)|| = 0.

For this purpose denote by » the funetion

(3) u@) = 2@ = D ¢i(a).
Then -
(4) (@) =2 D pile)ei@) = 2 3 m@)fi(z, ¢@))

= 20(z)-F(z, D(x)) < 0.
We shall demonstrate that lim % (2) = 0.
a0
Assume that the last condition does not hold. Then u(x) > 0 and.
%' () < 0 for any zeA, implies that
(5) lim u(z) =5, y>0.

-0

From (3), (4) and () we infer that there exists the limit
limsup®(x) = Y, %0

T+

and therefrom and from Assumption 5° we infer that

limsupw’(») = limsup2®(x)-F (v, P(z)) = 26 < 0.

— >

It would follow from the above given conditions and from Lemma 2 that:

lim u(x) = —o0
X0
what contradicts (5). Therefore the stability is indeed asymptotic.
To complete the proof we must show that this asymptotic stability
is uniform with respect to the initial conditions given on a fixed set K, p-
Assume on the contrary that for some g > 0 no such A > 0 can
be chogen that if

D (x)ll < B,
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‘then
[@(x)]| <& for &> axy+ A

and for all solutions ¥ = @(x) of system (1) issuing from K, , with fixed u,
and pg. .

This would mean that for each positive integer n there exists a point
{2y, Y,)eK, 5 such that the solution ¥ = &, () issuing from this point
satisfies the condition
{6) 19, (@, +n)l| > &.
As I?xoﬁ is a compact set, therefore the sequence {(x“i Y,)} contains the
Subsequence {(z,, Y,,)} convergent to some point (z,, Y)e_%g.

Denote by ¥ = Y (z) the solution of system (1) satisfying the ini-
tial condition

-

Y(x,) = Y.
As the solution ¥ = 0 of system (1) is asymptoticaly stable,
lim || ¥ (z)] = 0.

:and hence there exists an A4, > 0 such that
1Y (220 + Ao)ll < &

As the solution of (1) depends continuously on the initial conditions,
there exists a neighbourhood U (x,, '.f’) of the point (w,, f’) such that all
solutions of system (1) issuing from this neighbourhood satisfy the ine-
quality

4 WY (4 Ay))) < &
As for a sufficiently large n, the points («,, ¥, ) belong to the neighbour-

hood U (x,, i’) therefore
I|¢nk(x0+A0)” < 80

for the sufficiently large n,, what contradicts inequality (6).

Thus the stability is uniform with respect to the initial conditions
given on a fixed set I?xoﬁ.

Remark 1. In the case where 6 = 0 the stable solution ¥ = 0 of
system (1) may not be asymptotically stable as the following example
shows:

Consider the following system of differential equations

dy,, _ _ys  dy, __ wiw,

{7 _
{ )’ de! g’ dx x
in the set

D = {(w7 Y1, Yg): ®e(l, +o0), y“}+y§< +O°}.
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Functions occurring on the right-hand side of (7) satisfy assumptions
1°-4° of Theorem 1, but

limsup [¥, y2]-colon[fi(z, ¥1, ¥2), fo(®, Y1, ¥2)] = 0.

ZT—~+00
W1.v2)~ (W1, v0)

B+5>0
The general solution of (7) has the form

2922
01 01/211

(8) ¥ =77 Yo = Ca€

It follows from (8) that the solution ¥, = 0, ¥, = 0 of system (7) is stable,
although not asymptotically.

Remark 2. If
limsupY-F(x, ¥Y) =0

XT—00

Y-Y

I¥li>0 .
for some Y # 0, then the zero solution of system (1) may be asympto-
tically stable as the following example shows:

The system of equations

d:z;z z’ dm=~y2

considered in the same set D has the solution y, = 0, y, = 0 which is
asymptotically stable, although
limsupY -F(z, ¥Y) = —7;

YT

1710
{the limit is equal to zero for y, = 0).

The asymptotic stability follows from the form of the general solution

of system (9)

Y=k, Yy = pe"
1= 2 = U2 .
z

We shall prove a theorem on the asymptotic stability uniform with
Tespect to any initial conditions. We shall apply in the theorem Lemma 2
ﬁom [3], p. 314, which we quote here in an appropriate form as the follow-
ing

Lemva 3. Assume that

1° the functions f;(x, Y) (i =1,2,...,n) are continuous in D,

2° exactly one solution of system (1) passes through each point of D,
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3° Y -F(w, Y)< O for (z, Y)eD.
If we denote by C the part of integral curves of system (1) issuing from
K.z for Ty K @< @yt A, then under these conditions the curves C issuing
from K, o5 and defined for ze{@y, @o+ A form in D a closed domain. The
bound of this domain consists of the set Kz sy the surface I' formed of the
curves C issuing from the set

{(m7 Y): 2 =, | Y| = 8}

e d,, 0 < B << aand of the set Z consisting of points of curves C correspond-
ing to the coordinate © = xy+ A.

THEOREM 2. Assume that
1° the functions f;(x, Y) (¢ =1,2,...,n) are defined and continuous
in the set D,
2° exactly one solution of system (1) passes through each point of D,
3° F(x,0) =0 forzed, and Y-F(x, Y) < 0 for each (v, Y)eD,
4° there exists the limit
limsup Y -F(x,Y) =46, <0,
Z->c0

I_’—»i;
ixi>o

5° Y-F(e+h,Y)< Y -F(z, Y) for (, Y)eD such that (x+h, Y)eD
and for any h> 0.

Under these assumptions the solution Y = 0 of system (1) is asympto-
tically stable uniformly with respect to any arbitrary initial conditions, whick
means that

1) ¥ = 0 is a stable solution of (1) in A, and that

2) for each & > O there exists a number A > 0 depending exclusively
on & thalt for x> xy+ A the inequality

P (@) <&

holds for all solutions ¥ = @ (x) of system (1) issuing f1om any arbitrary
point of the set

Kzoﬁ ={, Y): o =x, |Y|<B}

Jor any zy = a and for fived value B¢ (0, a).

Proof. It follows from assumptions 1°-4° and from Theorem 1 that
the solution Y = 0 of system (1) is asymptotically stable uniformly with
respect to the initial conditions given on the set I?xoﬁ for a fixed z,. It
follows hencefrom that for any &> 0 and 2, = a there exists a number
A > 0 such that the inequality

1Y (@) <e
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holds for > a+ 4 and for any solution ¥ = Y (x) satisfying the initial
inequality '
Y (a)<B.
We shall demonstrate that for the same values of ¢ and 4 and for
any «,¢(a, --oo) the inequality
1 (@)l <e
holds for @ > x,+ A and for any solution Y = ¥(x) satisfying the initial
inequality
¥ (@)l < B
It follows from Lemma 3 that integral curves of system (1) for a < @
< a+ A issuing from the initial set :
{(, Y): 2 = a, |YI<B}

form a closed and bounded domain Q.
Let Y = ¥(») be an arbitrary solution of system (1) satisfying the
initial condition

(10) P(@) =Y, where 2,645y ¥ = [F1y...,Fa], 17} = 5.

We shall show now that the curve C defined by the equation
Y=P@®, a<az<alAi,

where )

(11) () =¥@x+h), h=z—a

is contained in 2 for a< s << a}- 4.
Denote by v(x) the function

(12) v(x) =qu§(w), a<r<atA.
=1

Then

n P n
vig =2 Y@ B0 25 M) sfo+, Pla).
i=1

=1

For # = a we have by (10) and (11)
n
v'(a) =2 Y Gifi(a+h, T).
i=1
It follows from Assumption 5° that the function

(13) - Zgifi(“'i'h, Y)— Z?/ifi(a", Y)

=1 i1
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takes a negative value for (z, Y) = (a, Y). As the function is continuous
(with respect to (z, Y)), there exists a set U defined in the following way

U= {zY): |Y-Y|<4, |[YI|=8, a<z<d}

such that the function defined by formula (13) is negative for (z, Y)eU.
Assume that ¥ = Y () is the solution of system (1) satisfying the
initial condition
Y(a) =Y, (a,Y)eU.

Then the function

u(@) = Y yi(@)

=1

has a derivative given by the formula

W@ =2 3 y@le, @)

As (a,¥)eU, then
v (a) < u'(a).

We obtain from the above inequality and from the fact that u(a) = v(a)
= f# the following condition
~ v(z) < u(x)
»
for values of z belonging to some interval (@, a), where @ > a. This ine-
quality means that the curve Y = T (x) lies nearer the x-axis for
xe(a, a) then the curve ¥ = Y (x).

As any arbitrary solution ¥ = ¥ () issuing from a sufficiently small
neighbourhood of the point (a, Y) and lying on the bound of 2 has the
above mentioned property therefore the curve ¥ = ¥(z) lies inside 2
for ze(a, a).

We shall show in the further part of the proof that this curve lies
entirely in Q for zela,a+ 4.

Assume on the contrary that there exist on € points not belonging
to Q. Then there exists a point (¥, Y*) such that @ < #* < a+ 4 and

1) W(x*) = Y*7

2) the curve Y = ¥(z) lies in 2 for o <o < 2",

3) the curve ¥ = ¥(x) lies outside 2 for ze(z", ¢*) o > o™

Then the point (2", Y*) is the point of intersection of ¢ and the surface
I being a bound part of 2 and formed of integral curves of system (1)
issuing from the set

{(, Y): 2 = a, |Y|| = 8}.
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The derivative of v(z) defined by formula (12) has in the point # = o™
the value .

=2 sz 7. 1 ¢($*)).

The funection
Dyifi@ +h, ¥ — Zylfz @, ¥)
i=1 i=1

takes a negative value for » = 2*, ¥ = Y*. As it is continuous function
of the variables (x, Y) hence there exists a set

U* = {(&, T): |[Y=Y*| <&, VeI, a* << &)

such that the above mentioned function is negative for (z, ¥Y)eU*. We
can state by means of a method similar to that applied in the first part:
of the proof that there exists an interval (#*, &), @ > «" such that for
we(a*, @) the points (v, ¥(»)) lie inside the set Q.

Hence we obtained a contradiction with the assumption that there
exists an interval (¢*, o) such that (v, 7 (2))¢ 2 for ze(2*, a*). Therefore
the curve ¥ = P(z) lies in L. It follows therefrom and from the uniform
stability of the solution Y = 0 with respect to the initial conditions
given on the set K, , for a fixed ,, that

P(x) <e forae>atd
and hence and from (11) it follows that
Wz <e forx>a+4

which means that the stability is uniform with respect to arbitrary initial
conditions. The proof of the theorem is complete.

Assumption 5° in Theorem 2 is essential, as the following example
shows:

ExawprE. Congider the following system of differential equations.

(14) dy, Y. d?/z _ Y2

TJ—CU~~ _yl_']_/‘;ﬁ P “’yz‘—ﬁ
Let us investigate the position of its solutions in the set
= { y Y1y Yg): @ell, + 00), y§+y§< + oo},

Funections appearing on the right-hand side of system (14) satisfy assump-
tions 1°-4° of Theorem 2. Indecd,

1° the functions f;(z, ¥,, ¥,) (¢ = 1, 2) are continuous in D,

2° exactly one solution of (14) passes through each point of D,
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5 Y1Y2
3 Y F(x,Y) = —~yi—y;——= ——=
( , 1 2 }/x ]/x

Fx,0) =0 for #ell, + o0},

< Ofor each (x, ¥y, ys) D and

4° limsup Y -F(w, ¥) = — 72 —§ < 0.
Tor
Pi>0

The function Y -F(z, Y) of the variable x is not decreasing for any

fixed Y.
The general solution of system (14) has the form

= (¢;+¢ e~21/5 e=® —¢ e—zl’i——m_
Y 1170y y Y 2

The integral curve ¥ = &(x) passing through the point Py(1, yi, ¥3)
satisfies the equations

Y = (y‘l’—yg)e“ﬂryges-“’i—z, Y, = yg&-?'/ﬂ—ﬂ—w.

Consider an arbitrary solution ¥ = ¥(z) satisfying the initial condition
Y(z,) =Y, where ,>1, Y =[y2,y)].
This solution has the form
Yy = (Y e fyseTnEmE gy Sty Ea
The integral ecurve ¥ = ¥ (x) when translated to the point P, has the form

Y =¥Y@+n,—1) = Pz,
where

a0 0y 21—z 0 oVZ{—2VT+xy—1+l—z a0 g2V VT 1+ 12
Y= (Yi—Yz)e Tty ! ) Y =Ype 1 .

As can be easily seen that the inequa.lit'y
VP (@)F > @ (@)

holds, and therefore the solution y, = 0, y, = 0 is not uniformly stable
with respect to the arbitrary initial conditions.
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