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We have used a pseudopotential techunique to examine the contribu-
tion of monovacancy, which is one of the point defects, to the resistivity
of alkali metals. Two dillerent forms of the bare-ion local pscudopotential,
to describe the electron-ion interaction in metals, have been employed in
the present work. Various forms of the diclectric function have been used
to incorporate the exchange and correlation effects among the conduction
electrons. Varying elfect of diclectric functions on the computed results is
concluded while comparing our findings with other theoretical data.

PACS numbers: 71.25.Pi, 71.55.At, 72.15.—v

1. Introduction

The defects are intrinsic to real crystals and determine or modify the prop-
ertics of real materials. For example, the point defects such as vacancies and in-
terstitials modify the electrical properties because they contribute to the residual
resistivity.

The main source of resistivity is the scattering of conduction electrons by
phonons, which are the energy quanta of lattice vibrations. The other source of
resistance due to lattice imperfections are: (i) replacement of one atomic species by
another atomic species, (ii) disappearance of an atom (or ion) from one site with
its emergence at another site, (iii) displacement of an atom around a distorted
site, (iv) stacking fault etc. The resistance due to these static imperfections (and
grain boundary) is called residual resistance. At low temperatures the residual
resistance due to such imperfections can be significant while at high temperatures
this contribution is very small compared to that due to the scattering of conduction
electrons by phonons.

The absence of atoms or ions at lattice site (i.e. vacancy) also contribute to
the residual resistivity. The abscnce of an atom or ion at a lattice site modifies
the potential at that site and acts as a perturbation to the conduction electrons.
These vacancies are among the static imperfections.

Much attention has been drawn in recent years towards the study of proper-
ties of crystals containing point defects. In the present study we have used pseu-
dopotential method to examine the contribution of monovacancy, which is one of
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the point defects, to the resistivity of alkali metals. It is well known that lattice
defects and impuritics destroy the periodicity of the lattice. In many important
cascs the lattice distortion duc to such defect can be neglected. The motivation of
the present investigation comes from the fact that such problems have not been
fully explored on the basis of pseudopotential theory. We have applied here the
pscudopotential technique to study vacancies because it simplifies the calculations
by eliminating the core states and strong potential responsible for binding them.
Within the framework of the pseudopotential formulation, for low vacancy concen-
tration and neglecting lattice distortion, the formula for monovacancy resistivity
can be derived using standard scattering theory with the missing pseudopotential
associated with the vacancy as [1, 2]

3 2kp 5 ) ,
P lGhnezvf,.kﬁ‘/o _/n,’/ [v(q)[*dqd s, (1)

where n is the ion number density, v(g) = v'°"(q)/e(q) is the screened form factor
of electron-ion interaction, vy the Fermi velocity, ¢ the momentum transfer wave
- vector, §2 the solid angle in the scattering vector space and g(q) the dielectric
function. Equation (1) reveals that the resistivity p, due to vacancies will depend
" sensitively on the many-electron screening through the form factor v(g). To exam-
ine this, in the present work we have calculated p, by applying two different forms
of bare-ion local pseudopotentials including various diclectric functions [1, 3-8].
2. Pscudopotential form factors

The pseudopotential theory is a theory that circumvents the needs of an ac-
curate description of the core clectrons, i.e. the electrons occupying the completely
filled shells of atoms. In a solid these electrons remain very localized around the
atom, whereas the remaining electrons called valence electrons determine the ma-
jority of the properties of solids. The pscudopotential has led to widespread use
of the method in solid state applications. An account of the most important early
contributions has been highlighted by Pickett [10]. The problem has still attracted
the attention of the recent workers cither with a view to improve the potential or
the theory underlying such properties. The basic starting point in these regards is
the pscudopotential form factor which consists of ionic part and the contribution
from the conduction electrons resulting in the screening of the bare-ion pseudopo-
tential.

In the present work we have used two analytical expressions for the bare-ion
local pseudopotentials [2, 9] to describe the electron—ion interaction in metals. The
first one is a barc-ion empirical form lactor in g-space given by (in Rydberg units)
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and another one is in direct space of the form
] o piongy 0, r< 1,
Model IT: vj"(r) = { N, (3)

The ¢-space version of model Il is
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Here Z is the valency, £2y the volume per ion, ¢ the wave vector, and r, the param-
eter of the model potential. In determining the parameter of the model potentials
we adopted the procedure as discussed in our recent papers (2,9, 11, 12] where the
first zero value of the form factor (at ¢ = go) is employed. 1t may be noted here
that the above two forms (one in ¢-space and another in r-space) were constructed
to confirm the physical sense regarding their capabilities for yieiding satisfactory
results of some solid state properties. In particular, this can be confirmed when
the parameters of the potentials are determined in the same way. Mdreover, these
potentials have also produced satislactory results [9, 12] about susceptibility and
electrical transport properties of simple metals. Ilence the present investigation
will supplement a comprehensive study of metallic density on the basis of two
proposed forms of thie local pseudopotential. The contribution to the form factor
due to conduction clectrons is incorporated through the use of a dielectric func-
tion €(q) either by Ilartree form or by a modified form which includes exchange
and correlation cffects among the conduction clectrons [1, 3-8]. This exercise has
been carried out by keeping in mind the fact that different forms of a screening
function give varying contributions to the form factor [11-13]. Therefore, major
uncertainty in form factor could be due to the use of an improper screening func-
tion even though the barc-ion pseudopotential is stabilized by determining its
paramcter adequately. Finally, such an investigation helps in identifying a unique
combination of a bare-ion pscudopotential and its corresponding screening func-
tion. Eventually this identificd form factor could be utilized for the unified study
of any metallic systern.

To evaluate the above procedure, we have calculated residual resistivity due
to vacancy (monovacancy resistivity) for the alkali metals by employing aforesaid
model potentials T and 11. In the present work we have used different dielectric func-
tions due to Iartree [1], Hubbard-Sham [3, 4], Taylor [5], Kleinman~Langreth [6],
Vashishta-Singwi [7] and Shaw [8] to infer relative merit of screening functions in
the particular metal. We note here that the motivation for the present calculation
of monovacancy resistivity is evident {from the success of similar investigations of
other clectrical transport properties [11, 12] based on pseudopotential formalism.

3. Results, discussion and conclusions

The value of the potential parameter r, determined from the go value and
other constants used in the computation are given in Table I. For computing mono-
vacancy resistivity, we have performed the integral in Eq. (1) in the physically valid
range 0 < ¢ < 2kp [1, 14]. The outcome of the present investigations due to both
models with different screcning functions [1, 3-8] are summarized in Table II along
with other available theoretical valucs. Regarding py, a piece of good quantitative
information has been obtained from the work of Sharma et al. [15]. They have
computed the monovacancy resistivity for the alkali metals by employing difler-
ent forms of the model potential. They have considered the form factors from the
model potentials of Bardeen [16], Animalu and Ileine [17], Schneider and Stoll [18],
Ashcroft [19], Shaw [20], Lee and Ileine [21], Giuliano-Ruggeri [22], Bortolani and
Calandra [23], Sharma and Srivastava [24] and Appapillai and Williams [25]. Sen
and Sen [26], Hussain and Akinlade [27] and Khanna [28] have also used the lo-
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cal pseudopotential to obtain p,. Shyu et al. [29] have determined the residual
resistance due to vacancies for Li, Na and K using Shaw’s [20] non-local model
potential.

TABLE I
Constants and parameters used in the calculation.
Metal | Z 2 kp qo/2k1.~ 7'c(1) 7',;([[) Ay B

(a.u.) | (a.u.) (a.u.) | (a.u.)

Li 11449 [ 0.5890 | 0.67 { 1.3050 | 1.7027 { 1.00714 | 0.29857
Na 12545 (04882 0.97 | 1.0875] 1.4190 | 1.07783 | 0.28554
K 14814 {0.3947| 0.94 | 1.3881 | 1.8111 | 1.16730 | 0.27051
Rb 1|587.90.3693] 0.94 | 1.4835| 1.9357 | 1.19750 | 0.26573
Cs 17455 {0.3412 | 1.07 | 1.4107 | 1.8405 | 1.23460 | 0.26010

r¢ (I) — parameter of the model potential I;
re (IT) — parameter of the model potential IT;
A; and By — Vashishta-Singwi’s constants [7].

It can be seen from Table IT that the results obtained from both model po-

tentials are consistent, satisfactory and lying within the range of other theoretical
findings [15, 26-29]. It may be inferred that the use of different screening functions
{1, 3-8] allects largely the values of vacancy resistivity. Even the results obtained
with Iartree diclectric function (without exchange and correlation) differ much
more from those obtained with various exchange and correlation functions. In the
present investigation we have found that the use of Hartree screening function [1]
gives the lowest values of monovacancy resistivity while Shaw’s screening func-
tion [8] has yielded relatively higher values. Shyu et al. [29] have also obtained
varying eflect of exchange and correlation on the monovacancy resistivity of Li,
Na and K. From the response of the dielectric functions it follows that it is abso-
lutely necessary to examine the stability of the form factor before its application
for the study of such properties. Ilence the nature of the screening in a particular
metal could be established.

Further, it is inleresting to point out here that in spite of relatively simple
application of the pseudopotential technique in the study of point defects, there
have been only a few attempts [2, 15, 26-29] to calculate the contribution of point
defects to the electrical resistivity of different metals using the same pseudopoten-
tial. Therefore, testing of various pscudopotentials proposed so far with the same
approximation in the calculation of monovacancy resistivity might give additional
information.

Unfortunately, detailed experimental data are not available for alkali metals
about monovacancy resistivity to work out a quantitative comparison. Therefore,
we have compared our values with other available theoretical data in Table II.
Finally, we conclude that the calculation of monovacancy resistivity based on
the pseudopotential formalism can also be regarded as one of the sensitive tests
for the proper assessment of the form factor and in the absence of experimental
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TABLE II

Monovacancy resistivity of alkali metals (in uQ cm/at %). '

| Li [ N [ K [ R | G©
Present results with model-T and different dielectric functions
i (1] 0.54763 | 0.77680 | 0.98855 | 1.09495 | 1.88841
In-S [3,4] | 0.65335 | 0.95649 | 1.21361 | 1.34320 | 2.34519
T [5]) 0.89935 | 1.22997 | 1.65443 | 1.87720 | 3.65895
K-L (6] 0.73690 | 1.02326 | 1.28733 | 1.42222 | 2.51776
V-8 [7] 0.77950 | 1.17115 | 1.57465 | 1.78189 | 3.32812
S [8] 0.91296 | 1.49455 | 2.02588 | 2.29737 | 4.28444
Present results with model-1T and dilferent diclectric functions
I [1] 0.30265 | 0.60214 | 0.75953 | 0.83960 | 1.45313
n-S [3,4] ] 0.35946 | 0.73738 | 0.92654 | 1.02327 | 1.79455
T [5] 0.47532 1 0.93357 | 1.23943 | 1.40139 | 2.73374
K-L [6] 0.39861 | 0.78495 | 0.97836 | 1.07864 | 1.91696
V-S (7] 0.42180 | 0.89451 | 1.18773 | 1.33980 | 2.51216
S (8] 0.49595 | 1.13683 | 1.52103 [ 1.71952 | 3.23036
Other results
Bardeen [16]* | 0.49686 | 0.406260 | 0.805527 | 0.91404 | 1.15344

Animalu-Heine [17]* | 2.72457 | 0.207050 | 0.534177 | 0.73259 | 0.288477
Schneider—Stoll [18]* | 0.59212 | 0.482355 | 0.3000 0.414522 | 0.383076

Asheroft [19]* | 0.99589 | 0.203742 | 0.45159 | 0.385776 | 0.71125 .
Shaw [20]* | 1.50489 | 0.25127 |0.878265 | - -
Lee-Tlcine [21]* | 0.96471 | 0.491256 | 0.171882 | 0.893079 | 1.95579

Giuliano-Ruggeri  [22]* | 1.20051 | 0.79798 | 0.397845 | 3.6261 5.23780
Bortolani—
Calandra (23] - - 0.32339 | 1.20087 | 1.51452
Sharm-Srivastava [24]* | 0.88732 | 0.242262 | 0.562328 | 1.23525 | 1.14066
Appapillai-

Williams [25]* | 3.50629 | 0.16656 | 0.47379 | 1.88931 | 1.93097
Sen-Sen [26] - 1.32 1.66 1.84 -
Hussain-Akinlade [27] [ 0.40 0.57 0.85 0.95 0.63
Khanna (28] -~ 0.67 1.00 1.06 1.21

- 0.77 0.98 - -
Shyu et al. [29] 10578 0774 | 1.028 - -

0.719 1.061 1.451 - -
0.763 1.138 1.531 - -

* From Ref. [15].
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information such calculations may be considered as one of the guidelines for further
investigations either theorctical or experimental.
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