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We have used a pseudopotential technique to examine the contribu-
tion of monovacancy, whicl is one of the point defects, to the resistivity
of alkali metals. Two dicherent forms of the bare-ion local pseudopotential,
to describe the electron-ion interaction in metals, have been employed in
the present work. Various forms of the dielectric function lave been used
to incorporate the exchange and correlation echects among the conduction
electrons. Varying effect of dielectric functions on the computed results is
concluded while comparing our findings with other theoreticał data.
PACS numbers: 71 .25.Ρi, 71.55.At, 72.15.-v

1. Introduction

The defects are intrinsic to real crystals and determine or modify the prop-
erties of real materials. For example, the point defects such as vacancies and in-
terstitials modify the electrical properties because they contribute to the residual
resistivity.

The main source of resistivity is the scattering of conduction electrons by
phonons, which are the energy quanta of lattice vibrations. The otler source of
resistance due to lattice imperfections are: (i) replacement of one atomic species by
another atomic species, (ii) disappearance of an atom (or ion) from one site with
its emergence at another site, (iii) displacement of an atom around a distorted
site, (iv) stacking fault etc. The resistance due to these static imperfections (and
grain boundary) is called residual resistance. At low temperatures the residual
resistance due to such imperfections can be signfficant wlile at high temperatures
ths contribution is very small compared to that due to the scattering of conduction
electrons by phonons.

The absence of atoms or ions at lattice site (i.e. vacancy) also contribute to
the residual resistivity. The absence of an atom or ion at a lattice site modifies
the potential at that site and acts as a perturbation to the conduction electrons.
These vacancies are among the static imperfections.

Much attention has been drawn in recent years towards the study of proper-
ties of crystals containing point defects. In the present study we have used pseu-
dopotential method to examine the contribution of monovacancy, which is one of
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the point defects, to the resistivity of alkali metals. It is well known that lattice
defects and impurities destroy the periodicity of the lattice. In many important
cases the lattice distortion due to such defect can be neglected. The motivation of
the present investigation comes from the fact that such problems have not been
fully explored on the basis of pseudopotential theory. We have applied here the
pseudopotential technique to study vacancies because it simplifies the calculations
by eliminating the core states and strong potential responsible for binding them.
Within the framework of the pseudopotential formulation, for low vacancy concen-
tration and neglectimg lattice distortion, the formula for monovacancy resistivity
can be derived using standard scattering theory with the missing pseudopotential
associated with the vacancy as [1, 2]

where n is the ion number density, υ(q) = υion(q)/ε(q)is the screened form factor
of electron-ion interaction, υF the Fermi velocity, q the momentum transfer wave
vector, Ω' the solid angle in the scattering vector space and ε(q) the dielectric
function. Equation (1) reveals that the resistivity pv due to vacancies will depend
sensitively on the many-electron screening through the form factor v(q). To exam-
ine this, in the present work we have calculated pv by applying two different forms
of bare-ion local pseudopotentials including various dielectric functions [1, 3-8].

2. Pseudopotential form factors

The pseudopotential theory is a theory that circumvents the needs of an ac-
curate description of the core electrons, i.e. the electrons occupying the completely
filled shells of atoms. In a solid these electrons remain very localized around the
atom, whereas the remaining electrons called valence electrons determine the ma-
jority of the properties of solids. The pseudopotential has led to widespread use
of the method in solid state applications. An account of the most important early
contributions has been lighlighted b y Pickett [10]. The problem has still attracted
the attention of the recent workers either with a view to improve the potential or
the theory underlying such properties. The basic starting point in these regards is
the pseudopotential form factor which consists of ionic part and the contribution
from the conduction electrons resulting in the screening of the bare-ion pseudopo-
tential.

In the present work we have used two analytical expressions for the bare-ion
local pseudopotentials [2, 9] to describe the electron-ion interaction in metals. The
first one is a bare-ion empirical form factor in q-space given by (in Rydberg units)
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Here Z is the valency, Ω0 the volume per ion, q the wave vector, and r the param-
eter of the model potential. In determining the parameter of the model potentials
we adopted the procedure as discussed in our recent papers [2, 9, 11, 12] where the
ffrst zero value of the form factor (at q = q0 ) is employed. It may be noted here
that the above two forms (one in q-space and another in r-space) were constucted
to confirm the physical sense regarding their capabilities for yieiding satisfactory
results of some solid state properties. Ιn particular, this can be confirmed when
the parameters of the potentials are determined in the same way. Moreover, these
potentials have also produced satisfactory results [9, 12] about susceptibility and
electrical transport properties of simple metals. Hence the present investigation
will supplement a comprehensive stndy of metallic density on the basis of two
proposed forms of the local pseudopotential. The contribution to the form factor
dne to conduction electrons is incorporated through the use of a dielectric func

-tion 6(q) either by Hartree form or by a modified form which includes exchange
and correlation effects among the conduction electrons [1, 3-8]. This exercise has
been carried out by keeping in mind the fact that different forms of a screening
function give varying contributions to the form factor [11-13]. Therefore, major
uncertainty in form factor could be due to the use of an improper screening func-
tion even though the bare-ion pseudopotential is stabilized b y determining its
parameter adequately. Finally, such an investigation helps in identifying a unique
combination of a bare-ion pseudopotential and its corresponding screening func-
tion. Eventually this identified form factor could be utilized for the unified study
of any metallic system.

To evaluate the above procedure, we have calculated residual resistivity due
to vacancy (monovacancy resistivity) for the alkali metals by employing aforesaid
model potentials I and'''. Ιn the present work we have used different dielectric func -

tions due to Hartree [1], Hubbard-Sham [3, 4], Taylor [5], Kieinman-Langreth [6],
Vashishta-Singwi [7] and Shaw [8] to infer relative merit of screening functions in
the particular metal. We note here that the motivation for the present calculation
of mono vacancy resistivity is evident from the success of similar investigations of
other electrical transport properties [11, 12] based on pseudopotential formalism.

3. Results, discussion and conclusions

The value of the potential parameter rc determined from the q0 value and
other constants used in the computation are given in Table I. For computing mono
vacancy resistivity, we have performed the integral in Eq. (1) in the physically valid
range 0 < q < 2kß. [1, 14]. The outcome of the present investigations due to both
models with different screening functions [1, 3-8] are summarized in Table II along
with other available theoretical values. Regarding pν , a piece of good quantitative
information has been obtained from the work of Sharma et al. [15]. They have
computed the monovacancy resistivity for the alkali metals b y employing differ-
ent forms of the model potential. They have considered the form faction from the
model potentials of Bardeen [16], Animalu and Leine [17], Schneider and Stoll [18],
Ashcroft [19], Shaw [20], Lee and Heine [21], Giuliano-Ruggeri [22], Bortolani and
Calandra [23], Sharma mld Srivastava [24] and Appapillaí and Williams [25]. Sen
and Sen [26], Hussain and Akinlade [27] and Khanna [2S] have also used the lo
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cal pseudopotential to obtain w. Shyu et al. [29] have determined the residual
resistance dne to vacancies for Li, Na and K using Shaw's [20] non-local model
potential.

TABLE I
Constants and parameters used in the calculation.

It can be seen from Table II that the results obtained from both model po
tentials are consistent, satisfactory and lying within the range of other theoretical
findings [15, 26-29]. It may be inferred that the use of different screening functions
[1, 3-8] affects largely the values of vacancy resistivity. Even the results obtained
with Hartree dielectric function (without exchange and correlation) differ much
more from those obtained with various exchange and correlation functions. In the
present investigation we have found that the use of Hartree screening function [1]
gives the lowest values of monovacancy resistivity while Shaw,s screening func-
tion [8] has yielded relatively higher values. Shyu. et al. [29] have also obtained
varying effect of exchange and correlation on the monovacancy resistivity of Li,
Na and K. From the response of the dielectric functions it follows that it is abso-
lutely necessary to examine the stability of the form factor before its application
for the study of such properties. fence the nature of the screening in a particular
metal could be established.

Further, it is interesting to point out here that in spite of relatively simple
application of the pseudopotential technique in the study of point defects, there
have been only a few attempts [2, 15, 26-29] to calculate the contribution of point
defects to the electrical resistivity of different metals using the same. pseudopoten-
tial. Therefore, testing of various pseudopotentials proposed so far with the same
approximation in the calculation of monovacancy resistivity might give additional
information.

Unfortunately, detailed experimental data are not available for alkali metals
about monovacancy resistivity to work out a quantitative comparison. Therefore,
we have compared our values with other available theoretical data in Table II.
Finally, we conclude that the calculation of monovacancy resistivity based on
the pseudopotential formalism can also be regarded as one of the sensitive tests
for the proper assessment of the form factor and in the absence of experimental
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TABLE II
Monovacancy resistivity of alkali metals (in μΩ cm/at %).
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information such calculations may be considered as one of the  guidelines for further
investigations either theoretical or experimental.
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