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Abstract 

 

Research background: With increasing evidence of cognitive technologies progressively inte-

grating themselves at all levels of the manufacturing enterprises, there is an instrumental need for 

comprehending how cognitive manufacturing systems can provide increased value and precision 

in complex operational processes. 

Purpose of the article: In this research, prior findings were cumulated proving that cognitive 

manufacturing integrates artificial intelligence-based decision-making algorithms, real-time big 

data analytics, sustainable industrial value creation, and digitized mass production. 

Methods: Throughout April and June 2022, by employing Preferred Reporting Items for System-

atic Reviews and Meta-analysis (PRISMA) guidelines, a quantitative literature review of 

ProQuest, Scopus, and the Web of Science databases was performed, with search terms including 

“cognitive Industrial Internet of Things”, “cognitive automation”, “cognitive manufacturing 

systems”, “cognitively-enhanced machine”, “cognitive technology-driven automation”, “cognitive 

computing technologies,” and “cognitive technologies.” The Systematic Review Data Repository 

(SRDR) was leveraged, a software program for the collecting, processing, and analysis of data for 

our research. The quality of the selected scholarly sources was evaluated by harnessing the Mixed 

Method Appraisal Tool (MMAT). AMSTAR (Assessing the Methodological Quality of Systemat-

ic Reviews) deployed artificial intelligence and intelligent workflows, and Dedoose was used for 

mixed methods research. VOSviewer layout algorithms and Dimensions bibliometric mapping 

served as data visualization tools. 

Findings & value added: Cognitive manufacturing systems is developed on sustainable product 

lifecycle management, Internet of Things-based real-time production logistics, and deep learning-

assisted smart process planning, optimizing value creation capabilities and artificial intelligence-

based decision-making algorithms. Subsequent interest should be oriented to how predictive 

maintenance can assist in cognitive manufacturing by use of artificial intelligence-based decision-

making algorithms, real-time big data analytics, sustainable industrial value creation, and digit-

ized mass production. 

 

 

Introduction 

 

Edge computing technologies, convolutional neural networks, and situa-

tional awareness algorithms configure event modeling and forecasting in 

big data-driven cognitive manufacturing. Data mining tools, predictive 

analytics algorithms, and sensor–actuator networks articulate autonomous 

control systems. Visual perception tools, deep learning algorithms, and 

object recognition processes assist robotic navigation systems. Context 

recognition tools, data fusion technologies, and collaborative operation 

mechanisms enable reconfigurable manufacturing processes. Sensing and 

actuation capabilities, decision and control algorithms, and edge and fog 

computing technologies further remote intelligent object and image detec-

tion, identification, and recognition. Vision and navigation systems, cloud 

computing machines, and contextual data monitoring tools shape intelligent 

simulation environments. Artificial neural networks, context awareness 

tools, and visual cognitive algorithms optimize robotic manufacturing pro-

cesses. 
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The purpose of this systematic review is to analyze recently published 

literature on how artificial Intelligence of Things-based cognitive manufac-

turing networks (Cug et al., 2022; Kovacova et al., 2022a, 2022b; Lyons, 

2022a; Robinson, 2022) having an increased level of automation (Dawson, 

2022; Kliestik et al., 2022a; Poliak et al., 2022; Rice, 2022) integrate mas-

sive machine-sensed multimodal data (Sharma et al., 2021; Woo et al., 

2020), neural network-based embedding and cognitive manufacturing con-

trol algorithms (Altaf et al., 2021; Chang et al., 2021; Chung et al., 2019; 

Perzylo et al., 2019), and enhanced operational adjustability and efficiency 

(Maier et al., 2010; Zeba et al., 2021; Zheng et al., 2021) in the direction of 

mass personalization and smart adaptive systems. We want to elucidate 

whether the integration of artificial intelligence data-driven Internet of 

Things systems and real-time advanced analytics (Kumar & Jaiswal, 2021; 

Li et al., 2021a; Zhao & Xu, 2010; Krüger et al., 2016) has furthered the 

swift advancement of Internet of Things-based real-time production logis-

tics.  

In this research, prior findings have been cumulated (Li et al., 2015; 

Palombarini & Martínez, 2012; Siafara et al., 2018; Din et al., 2019) clari-

fying that artificial intelligence data-driven Internet of Things systems 

(Cavallo et al., 2021; Chung & Yoo, 2020; Li et al., 2021b; Qin & Lu, 

2021), deep learning-assisted smart process planning (Elia & Margherita, 

2021; Gain, 2021; Liu et al., 2022; Penumuru et al., 2020), and real-time 

sensor networks (Ferreras-Higuero et al., 2020; Ksentini et al., 2021; Hu et 

al., 2016; Ding et al., 2021) advance constantly optimized smart manufac-

turing systems. In this research, previous published findings have been 

cumulated clarifying that cognitive capabilities lead to increased flexibility 

and variability (Dumitrache et al., 2019; Emmer et al., 2018; Casadei et al., 

2019; Hu et al., 2019) that enable streamlined production. The research 

problem and the literature gap developed thoroughly in the systematic re-

view is whether the integration of artificial intelligence data-driven Internet 

of Things systems and sensing networks, autonomous decision-making 

algorithms, sustainable product lifecycle management, and real-time ad-

vanced analytics has furthered the swift advancement of cyber-physical 

production logistics in relation to cognitive manufacturing.  

This is the first systematic review covering cognitive capabilities 

(Lăzăroiu et al., 2017; Nagy & Lăzăroiu, 2022; Valaskova et al., 2022) of 

the smart manufacturing systems, as an extension of a hot emerging topic 

hardly covered in the literature (Andronie et al., 2021a, 2021b, 2021c; 

Lăzăroiu et al., 2022). We supplement prior research by consistently prov-

ing that computer vision algorithms harness image recognition tools, con-

text aware systems, and machine learning techniques. Cyber-physical pro-
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duction systems deploy predictive modeling algorithms, image processing 

tools, and blockchain technologies in Industry 4.0-based networked envi-

ronments. Smart manufacturing machines leverage robotic coordination 

mechanisms, decentralized data analytics, and visual tracking algorithms 

across intelligent connectivity infrastructures. Robotic manufacturing pro-

cesses develop on cognitive decision-making algorithms, ambient intelli-

gence tools, and distributed sensor networks. Robotic navigation systems 

and industrial wireless sensor networks integrate intelligent data processing 

tools, multiple smart agents, and object perception algorithms. Multi-

machine cooperation tools require situational awareness algorithms, ambi-

ent intelligence tools, and image recognition processes in synthetic simula-

tion environments. 

The manuscript is organized as following: methodology (Section 2), ar-

tificial Intelligence of Things-based cognitive manufacturing networks 

(Section 3), cutting-edge cognitive computing, big data analytics tech-

niques, and Industrial Internet of Things in smart manufacturing systems 

(Section 4), cyber-physical systems, big data-driven deep learning, and 

real-time scheduling algorithms in cognitive manufacturing (Section 5), 

discussion (Section 6), conclusions (Section 7), specific contributions to the 

literature (section 8), limitations and further directions of research (Section 

9), and practical implications (10). 

 

 

Methods  

 

Throughout April and June 2022, a quantitative literature review of 

ProQuest, Scopus, and the Web of Science databases was performed, with 

search terms including “cognitive Industrial Internet of Things”, “cognitive 

automation”, “cognitive manufacturing systems”, “cognitively-enhanced 

machine”, “cognitive technology-driven automation”, “cognitive compu-

ting technologies,” and “cognitive technologies.”, i.e., the most employed 

words or phrases across the analyzed literature. As the inspected research 

was published between 2010 and 2022, only 344 articles satisfied the eligi-

bility criteria.  

By eliminating questionable or imprecise findings (limited/nonessential 

data), outcomes unsubstantiated by replication, too general material, or 

having somewhat similar titles, 51, chiefly empirical, sources were selected 

(Tables 1 and 2). For the PRISMA flow diagram, a Shiny app was deployed 

as regards evidence-based gathered and processed data, SRDR Web-based 

collaborative resource was pivotal in configuring refined extraction forms, 

articulating the study design, MMAT assessed content validity and suitabil-
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ity of screening questions, determining quality criteria and score, AMSTAR 

(Assessing the Methodological Quality of Systematic Reviews) leveraged 

artificial intelligence and intelligent workflows, and Dedoose was used for 

mixed methods research. VOSviewer layout algorithms and Dimensions 

bibliometric mapping were deployed as data visualization tools, and the 

search outcomes and screening were displayed by a PRISMA flow diagram 

(Figure 1).  

Citation correlations as regards co-authorship have covered how ma-

chine learning algorithms, plant maintenance scheduling and sensor data 

fusion tools, and industrial automation devices are pivotal in smart con-

nected objects. Cloud computing technologies, context awareness algo-

rithms, and ambient intelligence tools are instrumental in autonomous ro-

botic systems. Image recognition algorithms, smart environment modeling 

tools, and real-time event analytics configure mobile autonomous robots. 

Data visualization functionalities, wireless sensor networks, and computer 

vision algorithms articulate computation task cooperation and production 

process modeling in smart factories. Spatial data acquisition tools, remote 

sensing algorithms, and computer vision control techniques assist behavior 

pattern clustering of mobile robotic devices and autonomous multi-robot 

systems (Figure 2). 

Citation correlations as regards citation have covered how environment 

perception sensors, data processing algorithms, and signal processing tools 

enable virtual machine interoperability across autonomous manufacturing 

systems. Smart interconnected devices, sensor fusion capabilities, and deep 

reinforcement learning tools further cognitive and cloud robotics. Swarm 

robotic algorithms, image recognition technologies, and natural language 

processing tools shape autonomous task allocation and contextual data 

monitoring. Distributed intelligence tools, fault diagnosis algorithms, and 

immersive visualization technologies optimize mobile robotic devices in 

smart interactive environments. Mobile robot technologies harness auton-

omous cognitive systems, data stream clustering algorithms, and computa-

tional intelligence tools (Figure 3). 

Citation correlations as regards bibliographic coupling have covered 

how robotic operating systems deploy image processing tools, object 

recognition algorithms, and machine intelligence technologies across col-

laborative industrial environments. Robotic autonomous systems leverage 

image recognition algorithms, data acquisition tools, and multi-sensor fu-

sion technologies. Multi-agent robotic systems and autonomous swarm 

robots develop on path planning algorithms, cognitive artificial intelligence 

tools, and data fusion mechanisms in smart manufacturing environments. 

Robotic and sensor devices integrate image recognition algorithms, data 
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analytics technologies, and vision and navigation systems in distributed 

computing networks. Computation-enabled robotic devices and virtual 

machines require object recognition algorithms, visual perception tools, and 

industrial automation technologies across distributed interoperable envi-

ronments (Figure 4). 

Citation correlations as regards co-citation have covered how multisen-

sor fusion technologies, deep convolutional neural networks, and image 

processing tools are pivotal in collaborative autonomous systems through-

out robotic swarm operations. Environment perception sensors, situational 

awareness algorithms, and spatial data processing tools are instrumental in 

multiple autonomous mobile and cloud networked robots. Big data man-

agement tools, context awareness algorithms, and visual and spatial intelli-

gence technologies configure robotic device capabilities in dynamic manu-

facturing environments. Captured image data and cognitive artificial intel-

ligence tools, remote sensing and crowd navigation algorithms, and collab-

orative localization techniques articulate object perception operations in 

mobile autonomous robots. Sensing and computing technologies, autono-

mous visual object detection tools, and spatial cognition algorithms assist 

robotic operating systems (Figure 5). 

 

 

Artificial Intelligence of Things-based cognitive manufacturing 

networks 

 

The processing of materials tends to be increasingly automated with the 

growing implementation of robotics and industrial automation in cyber-

physical system-based smart factories. The processing of data has been 

computerized by the integration of software programs (Cug et al., 2022; 

Michalkova et al., 2022; Sharma et al., 2021) for material demand and 

inventory planning, industrial big data analytics, Internet of Things-based 

real-time production logistics, and robotic process automation. Internet of 

Things sensing networks assist scanning technologies in generating the 

required data for machine learning-enabled processes. Automation of both 

production and business operations is carried out by harnessing software 

programs that employ fixed procedural logic to scramble human judgment 

by using cognitive decision-making algorithms. Developments in sensor 

technologies are optimizing both the scope and scale of information (Ku-

mar & Jaiswal, 2021; Robinson, 2022; Sharma et al., 2021) that can be 

acquired in digital form. Storing big data quantities is essential for ade-

quately training machine learning algorithms. With the transition towards 

smart manufacturing, huge quantities of data are being produced by artifi-
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cial intelligence data-driven Internet of Things systems. Machine vision 

systems configure sensing technologies, constituting an important asset for 

any production phase that necessitates accurate, swift, and constant repeti-

tive assessment of manufactured item specification and quality. Imaging 

installation can be instrumental in attaining amplified precision and 

promptness in visual analysis of products, leading to the cancelation of 

expensive manual scrutiny and heightened product quality. The perfor-

mance and lowness in price of vision sensors have escalated significantly 

due to developments in camera devices and image processing algorithms.   

In a cognitive industrial unit, product manufacturing is robotically 

planned and itemized (Altaf et al., 2021; Chang et al., 2021; Maier et al., 

2010; Zeba et al., 2021; Zheng et al., 2021), harnessing a knowledge base 

configuring component capabilities and processes of the shop floor. 

A factory knowledge base, by use of component capabilities and behavior, 

configures the intelligent capabilities of industrial units in cyber-physical 

system-based smart factories. In cognitive manufacturing, an assembly line 

sets up the production process courses of action for distinct products 

through deep learning-assisted smart process planning and artificial intelli-

gence data-driven Internet of Things systems. Cyber-physical systems, big 

data-driven deep learning, and real-time scheduling algorithms (Chang et 

al., 2021; Michalkova et al., 2022; Perzylo et al., 2019) articulate cognitive 

manufacturing. The integration of artificial intelligence data-driven Internet 

of Things systems and real-time advanced analytics has furthered the swift 

advancement of Internet of Things-based real-time production logistics that 

inspect and react to external stimuli by use of cognitive decision-making 

algorithms for business process optimization. Internet of Things has devel-

oped a thoroughly networked world driven by heterogeneous wireless sen-

sors producing massive volumes of data in various fields and applications. 

Deep learning-assisted smart process planning can enable predictive analyt-

ics and big data-driven decision-making operations. Smart manufacturing 

systems are progressively equipped with perceptive capabilities (Lyons, 

2022a; Robinson, 2022; Sharma et al., 2021) by use of cutting-edge cogni-

tive computing, big data analytics techniques, and Industrial Internet of 

Things. The latter has designed the industrial sector by creating ground-

breaking applications whose objects and nodes network to gather, ex-

change, and inspect a massive volume of sensing data by employing tech-

no-social systems. Massive volumes of Internet of Things information can 

be acquired as big data useful in deploying deep neural network learning 

algorithms for product decision-making information systems, Internet of 

Things-based real-time production logistics, and sustainable organizational 

performance in smart networked factories.  
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The cutting-edge enhancements in production operations (Sharma et al., 

2021) arise out of developments in cognitive capabilities. With cognitive 

technologies progressively integrating themselves at all levels of the manu-

facturing enterprises, robots and automated technologies make decisions by 

use of industrial big data analytics in Internet of Things-based real-time 

production logistics, deep learning-assisted smart process planning, and 

cyber-physical process monitoring systems in networked factories. Ma-

chines are getting considerably harmonized with sensors and interpretation 

algorithms (Cug et al., 2022; Maier et al., 2010; Sharma et al., 2021), de-

veloping cognitive operational functions across shop floors (e.g., defining 

objectives, comprehending their environments, and organizing their pro-

cesses). Real-time predictive analytics, through affordable and robust sen-

sors, can reach time-sensitive decisions, bolstered by machine learning 

techniques and algorithms, regarding machine, tool, or process failure. 

Cognitive robots analyze the states of other industrial units in their envi-

ronment. Industrial automation has indeed redesigned material processing 

tasks to a significant extent: automation of sensing will technologize 

a growing proportion of the data processing and decision making undertak-

ings in the factory.  

Cognitive capabilities lead to increased flexibility and variability that 

enable streamlined production (Kumar & Jaiswal, 2021; Li et al., 2021a; 

Perzylo et al., 2019; Woo et al., 2020; Zhao & Xu, 2010), and thus process 

planning in smart manufacturing systems has to be robust enough for ma-

chine tools and production environments. Real-time collection of produc-

tion and process data in addition to feedback to operational control are de-

cisive when the information stream between manufacturing techniques is 

sectioned, necessitating an integrated data pattern to display information. 

Human-level data processing across cognitive computing, Industrial Inter-

net of Things, and robot learning (Kumar & Jaiswal, 2021; Li et al., 2021a; 

Lyons, 2022a) can connect knowledge categorization and information shar-

ing between smart manufacturing systems. Real-time tangible data assets 

and big data-driven technologies are pivotal in sustainable product lifecycle 

management. Data classification is an essential analytical technique across 

cognitively capable manufacturing sectors for identifying specific patterns 

throughout the structured and unstructured information (Perzylo et al., 

2019; Woo et al., 2020; Zhao & Xu, 2010) at the shop floor, company, and 

industry levels. The planning of abstract guidelines of process phases and 

their demands to executable code takes place when an operational model is 

leveraged to a manufacturing cell or assembly-line production, and can be 

determined automatically. Industry 4.0 represents a thoroughly integrated 

cognitive manufacturing system. Cognitive manufacturing systems can 
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harness semantic capability designations of production resources to coher-

ently redesign operational processes. The layer of abstraction assists in 

advancing and configuring manufacturing processes autonomous from 

equipment or software components (Table 3).  

 

 

Cutting-edge cognitive computing, big data analytics techniques, and 

Industrial Internet of Things in smart manufacturing systems 

 

Cognitive manufacturing systems can provide increased value and preci-

sion in complex operational processes (Krüger et al., 2016; Li et al., 2015; 

Palombarini & Martínez, 2012; Siafara et al., 2018), attaining elevated 

quality and efficiency at decreased expenses and diminished production 

time. Industrial robots harnessed during machining applications can opti-

mize a complementary, flexible, and affordable manufacturing technology 

in comparison with standard machine tools. Cognitive manufacturing sys-

tems can handle unpredicted events and disturbances that perpetually ne-

cessitate real-time repair decisions, and thus functionalities such as learn-

ing/reasoning abilities and interactive capabilities can reorganize a factory 

instantaneously. Unsatisfactory precision and unpredictability under heter-

ogeneous configurations of industrial robots constitute main obstacles for 

harnessing cyber-physical system-based real-time monitoring, artificial 

intelligence-based decision-making algorithms, and robotic wireless sensor 

networks (Kliestik et al., 2022a; Poliak et al., 2022; Sharma et al., 2021) in 

sustainable product lifecycle management. Cognitive systems can deploy 

artificial intelligence-based decision-making algorithms adequately even 

without a complete or accurate model. Cognitive system design patterns are 

instrumental in the robust adjustment of the big data-driven decision-

making processes and the perpetual increase in efficiency through 

knowledge assimilation by analysis of the environment and interpretation 

for reducing inaccuracies and identifying enhanced operational approaches.  

      Cognitive manufacturing is pivotal in sustainable Industry 4.0 wireless 

networks (Chung et al., 2019; Din et al., 2019; Ferreras-Higuero et al., 

2020; Hu et al., 2016; Ksentini et al., 2021) together with blockchain dis-

tributed ledger that ensures soundness, safety, and security through mining-

based smart data technologies. By leveraging data mining techniques 

throughout cognitive manufacturing processes, information can be obtained 

and intrinsic rules are identified: the mining operation assists in the config-

uration of big data-driven decision-making processes. Artificial intelligence 

data-driven Internet of Things systems, deep learning-assisted smart pro-

cess planning, and real-time sensor networks are critical in logistics, 
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equipment, allocation, production, and quality management operations, 

advancing constantly optimized smart manufacturing systems. Adequate 

approach of gathering, sharing, and processing thoroughgoing product 

manufacturing data in the course of machining processes (Balica, 2022; 

Hawkins, 2022a; Zvarikova et al., 2021) is required for carrying out in-

creased efficiency production. Internet of Things-based machine learning 

mechanisms can set up ubiquitous connections across wireless nodes, con-

figuring a network that strengthens or stabilizes communications (Dawson, 

2022; Kovacova et al., 2022a, 2022b; Rice, 2022) among algorithm-driven 

sensing devices without human interactions. The increasing advancement 

of Internet of Things-based decision support systems, cyber-physical pro-

duction networks, and deep learning-assisted smart process planning and 

their integration among cloud and fog paradigms have furthered ground-

breaking technologies. Industrial robots can be deployed at machining cells 

for automation feeding and raw material management. A reorganization of 

tasks to enhance the output performance necessitates a consolidation of the 

robot behavior, with the aim of optimizing its position precision.  

Progresses in deep learning techniques enable image processing algo-

rithms (Ferreras-Higuero et al., 2020; Gordon, 2022; Sharma et al., 2021) 

to improve themselves autonomously. The extensive deployment of sensors 

furthers the instantaneous generation and acquisition of data as operational 

processes take place throughout the manufacturing setting, articulating the 

transition to real-time data scanning and storage. Advancements in trained 

cognitive algorithms and deep learning techniques require developments in 

big data technologies. Machine learning-based analytics, techniques, and 

algorithms are interpretive technologies (Beckett, 2022; Kovacova et al., 

2022a, 2022b; Ksentini et al., 2021) that integrate groundbreaking cogni-

tive capabilities within robots. Machine learning algorithms maintaining the 

operations of execution technologies (e.g., machines and industrial automa-

tion) assimilate knowledge by optimizing their operations in accordance 

with the outcome of actions, leveraging the entire cognitive and automation 

capacity of the interpretive and execution technology elements. Manufac-

turing is going through a paradigmatic transition by integrating and being 

altered by cognitive technologies (Dawson, 2022; Hawkins, 2022a; Peters, 

2022a) by use of product decision-making information systems, cyber-

physical system-based real-time monitoring, robotic wireless sensor net-

works, and Internet of Things smart devices in sustainable product lifecycle 

management (Table 4).  
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Cyber-physical systems, big data-driven deep learning, and real-time 

scheduling algorithms in cognitive manufacturing 

 

Cognitive manufacturing integrates artificial intelligence-based decision-

making algorithms, real-time big data analytics, sustainable industrial value 

creation, and digitized mass production (Ding et al., 2021; Dumitrache et 

al., 2019; ElMaraghy & ElMaraghy, 2022; Emmer et al., 2018) by leverag-

ing shop floor data as regards design and maintenance, so as to advance, 

through automatically harnessing assets and equipments, cognitive process-

es by inspecting information from workflows and environment, conse-

quently leading to resource use optimization. Sustainable manufacturing 

technologies and systems, together with cognitive digital twins, integrate 

smart machines. Cognitive technical systems can perceive situations and 

contexts, determine them, and choose either to use an operational strategy 

or configure a set of undertakings that tackle aspects of the identified cir-

cumstances (Ding et al., 2021; Dumitrache et al., 2019; Peters, 2022a), 

enabling the accomplishment of the established objectives. Cognitive sys-

tems’ practice, record, and learning capacity are decisive in contextualizing 

unprocessed data as applied meaningful knowledge. Sensorial and auto-

diagnosis data have to be harnessed by heterogeneous architectural modules 

and straightened out in conformity with their consequences, extensiveness, 

and goal for the identified situation and context. A heterogeneity of meas-

urement tools, approaches, and applications are employed in the manufac-

turing sector (Emmer et al., 2018; Mladineo et al., 2022; Zvarikova et al., 

2021) to set out a certain degree of product quality: a huge volume of de-

vices and processes are deployed in quality management. Cognitive manu-

facturing typifies cyber-physical production systems. Customer-centered 

individualized manufactured items can be attained by use of cyber-physical 

system-based real-time monitoring that has to be integrated into the facto-

ry-level production system to further service-oriented shared manufacturing 

operations.  

      Cognitive manufacturing systems promptly react to satisfy fluctuating 

demands and requirements in the shop floor (Casadei et al., 2019; Hu et al., 

2019; Qin & Lu, 2021), across the supply network, and as regards customer 

needs. Current manufacturing systems are sometimes unsuccessful in align-

ing with inconstant production environments by altering system infrastruc-

tures and production arrangements while preserving robust operational 

performance. Manufacturing systems should self-optimize production pro-

cesses (Hu et al., 2019; Mladineo et al., 2022; Qin & Lu, 2021) to attain 

adjustable, self-regulating, and error-tolerant fabrication throughout large-

scale customization operations. Human–machine collaboration requires 
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cutting-edge cognitive manufacturing control algorithms to constitute 

shared intelligence. Large-scale customization necessitates responsive and 

adjustable manufacturing processes (Casadei et al., 2019; Ding et al., 2021; 

ElMaraghy & ElMaraghy, 2022) for fabricating personalized products in 

varying batch proportions and large volumes inexpensively. Artificial intel-

ligence data-driven Internet of Things systems, sustainable Industry 4.0 

wireless networks, and cyber-physical system-based real-time monitoring 

in smart networked factories have been determinants in pushing forwards 

the technical breakthroughs of intelligent manufacturing. Technological 

breakthroughs have furthered deep learning-assisted smart process plan-

ning, in which cyber-physical contextual services are supplied by use of 

Internet of Things-based real-time production logistics, digitized mass pro-

duction, and sustainable industrial big data to articulate smart networked 

factories.  

      Industrial Internet of Things-enabled cognitive manufacturing can assist 

in processing huge volumes of real-time data (Elia & Margherita, 2021; Li 

et al., 2021b; Liu et al., 2022) across cyber-physical production systems. 

Cognitive manufacturing harnesses big data-driven intelligence in the shop 

floor, empowers industrial production systems with rational and cognitive 

capabilities, carries out decision-making tasks, and perceives modifications 

in operational processes. Deep-learning based cognitive technologies can 

optimize value creation capabilities of organizations that leverage advanced 

analytics and cyber-physical production systems (Elia & Margherita, 2021; 

Li et al., 2021b; Liu et al., 2022), thus developing into cognitive enterprises 

in terms of technological infrastructure and organizational architecture, 

integrating smart data and computing processes so as to enhance situational 

awareness, resilience, agility, and reactivity. Ground-breaking cognitive 

computing, big data analytics, machine learning algorithms, and Industrial 

Internet of Things approaches can be deployed to attain on-demand manu-

facturing-based mass personalization by use of dynamic logistics schedul-

ing and production planning.  

      Technological upsides in cognitive digitalization can be attained 

through the integration of artificial intelligence-based decision-making 

algorithms, Internet of Things smart devices, industrial big data, and real-

time process monitoring (Cavallo et al., 2021; Chung & Yoo, 2020; Gain, 

2021; Penumuru et al., 2020) in sustainable product lifecycle management. 

Cognitive output can improve perceptions as regards a manufactured item, 

a process or a service, configuring assessable business purposes. Industrial 

Internet of Things business models and value propositions can harmonize 

the smart analyses of cognitive output to business purposes, reinforcing and 

requiring transparency, while providing data-driven goal analyses. Opera-
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tional indicators facilitate networking among smart things (Cavallo et al., 

2021; Liu et al., 2022; Qin & Lu, 2021) through artificial intelligence-

based decision-making algorithms, cyber-physical process monitoring sys-

tems, and real-time sensor networks in sustainable Industry 4.0. Machine 

tools and Internet of Things-based decision support systems can configure 

customized behaviors according to consumers’ sensations, emotions, and 

moods, to be consonant with users’ states and activities. Machine tools in 

cyber-physical system-based manufacturing can identify handled materials, 

implementing specific decisions autonomously. Automated material identi-

fication can deploy machine vision and artificial intelligence-based deci-

sion-making algorithms to catalyze the cognitive abilities of equipment and 

material handling devices in smart networked factories (Table 5).  

 

 

Discussion 

 

This systematic literature review investigates how cognitive decision-

making algorithms, mobile sensors and actuators, and predictive mainte-

nance tools are pivotal in cooperative multi-robot systems. Cognitive man-

ufacturing integrates artificial intelligence-based decision-making algo-

rithms, real-time big data analytics, sustainable industrial value creation, 

and digitized mass production. Cyber-physical contextual services are sup-

plied by use of Internet of Things-based real-time production logistics, 

digitized mass production, and sustainable industrial big data (Blake, 2022; 

Kliestik et al., 2022b; Rogers & Zvarikova, 2021; Welch, 2021) to articu-

late smart networked factories. 

Significant research has elucidated how cognitive technologies progres-

sively integrate themselves at all levels of the manufacturing enterprises. 

Machine learning-based analytics, techniques, and algorithms (Andro-

niceanu et al., 2021a, 2021b; Grondys & Ślusarczyk, 2022; Mircică, 2020; 

Valaskova et al., 2021) assimilate groundbreaking cognitive capabilities 

(Beckett, 2022; Kovacova et al., 2022a, 2022b; Ksentini et al., 2021) with-

in robots. Automation of sensing will technologize a growing proportion of 

the data processing and decision making undertakings (Androniceanu, 

2021; Hawkins, 2022b; Nica et al., 2022; Vătămănescu et al., 2020) in the 

factory.  

We integrate research developing on how robotic navigation processes 

deploy visual and spatial intelligence tools, context awareness algorithms, 

and semantic sensor technologies. Manufacturing integrates and is altered 

by cognitive technologies (Sharma et al., 2021) by use of product decision-

making information systems, cyber-physical system-based real-time moni-
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toring, robotic wireless sensor networks, and Internet of Things smart de-

vices (Bailey, 2021; Hudson, 2022; Pelau et al., 2021; Vătămănescu et al., 

2022) in sustainable product lifecycle management. The integration of arti-

ficial intelligence data-driven Internet of Things systems and real-time ad-

vanced analytics (Krüger et al., 2016; Li et al., 2015; Palombarini & Mar-

tínez, 2012; Siafara et al., 2018) has furthered the swift advancement of 

Internet of Things-based real-time production logistics.  

We indicate that autonomous cognitive systems and swarm robots re-

quire cloud manufacturing processes, intelligent control algorithms, and 

image acquisition and processing tools. Deep-learning based cognitive 

technologies can optimize value creation capabilities (Elia & Margherita, 

2021; Li et al., 2021b; Liu et al., 2022) of organizations that leverage ad-

vanced analytics and cyber-physical production systems. Industrial Internet 

of Things-enabled cognitive manufacturing can assist in processing huge 

volumes of real-time data (Cavallo et al., 2021; Chung & Yoo, 2020; Gain, 

2021; Penumuru et al., 2020) across cyber-physical production systems. 

The findings gathered from our analyses clarify that cognitive capabili-

ties lead to increased flexibility and variability that enable streamlined pro-

duction. Cognitive manufacturing systems can provide increased value and 

precision (Barbu et al., 2021; Ionescu, 2020; Peters, 2022b; Watson, 2022) 

in complex operational processes. Artificial intelligence data-driven Inter-

net of Things systems, deep learning-assisted smart process planning, and 

real-time sensor networks (Altaf et al., 2021; Chang et al., 2021; Chung et 

al., 2019; Maier et al., 2010; Zeba et al., 2021; Zheng et al., 2021) advance 

constantly optimized smart manufacturing systems. The integration of arti-

ficial intelligence-based decision-making algorithms, Internet of Things 

smart devices, industrial big data, and real-time process monitoring (Kumar 

& Jaiswal, 2021; Li et al., 2021a; Perzylo et al., 2019; Woo et al., 2020; 

Zhao & Xu, 2010) is pivotal in cognitive digitalization.  

We show how robots and automated technologies make decisions (Du-

rana et al., 2022; Mihăilă & Braniște, 2021; Stone et al., 2022) by use of 

industrial big data analytics (Ding et al., 2021; Dumitrache et al., 2019; 

Emmer et al., 2018) in Internet of Things-based real-time production logis-

tics, deep learning-assisted smart process planning, and cyber-physical 

process monitoring systems (Bratu & Sabău, 2022; Lyons, 2022b; Shpak et 

al., 2021; Zvarikova et al., 2022) in networked factories.  
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Conclusions 

 

Relevant research has investigated how cognitive manufacturing systems is 

developed on sustainable product lifecycle management, Internet of 

Things-based real-time production logistics, and deep learning-assisted 

smart process planning, optimizing value creation capabilities and artificial 

intelligence-based decision-making algorithms. Cognitive robotics leverag-

es imaging and sensing tools, autonomous cyber-physical systems, and 

mobile sensors and actuators. Artificial intelligence data-driven Internet of 

Things systems, sustainable industrial big data, and robotic wireless sensor 

networks can assist in processing huge volumes of real-time data in cogni-

tive digitalization, by leveraging advanced analytics and cyber-physical 

production systems. Autonomous mobile robot navigation develops on 

motion control algorithms, predictive maintenance tools, and cloud compu-

ting machines. Smart interconnected and autonomous mobile robots inte-

grate dynamic operating systems, image enhancement algorithms, and sen-

sor and actuator devices. 

This systematic literature review covers outstanding published peer-

reviewed evidence concerning cognitive technologies progressively inte-

grating themselves at all levels of the manufacturing enterprises. Cognitive 

robotic devices and robotic coordination mechanisms necessitate autono-

mous navigation systems, swarm intelligence algorithms, and deep rein-

forcement learning tools in synthetic simulation environments. Product 

decision-making information systems, deep learning-assisted smart process 

planning, and Internet of Things smart devices enhance cognitive technolo-

gies by processing industrial big data in complex operational processes. 

Context awareness and visual perception algorithms are instrumental in 

mobile robotic devices and autonomous robotic systems across smart net-

worked environments. The findings derived from the above analyses clarify 

that cognitive manufacturing integrates artificial intelligence-based deci-

sion-making algorithms, real-time big data analytics, sustainable industrial 

value creation, and digitized mass production. Deep learning-based image 

classification algorithms configure autonomous swarm robots and robotic 

communication systems in terms of remote sensing, path planning, and 

object recognition. Artificial Intelligence of Things-based cognitive manu-

facturing networks harness real-time sensor devices, cyber-physical pro-

duction systems, and automated technologies, increasing value and preci-

sion. Cyber-physical manufacturing and mobile context awareness systems 

articulate cooperative behavior algorithms of mobile swarm robots. 
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Specific contributions to the literature 

 

This systematic review covers an important topic that has not been in-

vestigated until now: artificial intelligence-based decision-making algo-

rithms, Internet of Things sensing networks, and sustainable cyber-physical 

management systems in big data-driven cognitive manufacturing. Robotic 

operating systems necessitate remote sensing algorithms, imaging-based 

navigation technologies, and intuitive decision-making and acoustic envi-

ronment recognition tools. Motion sensing capabilities, sound recognition 

systems, and fault diagnosis algorithms are pivotal in networked cloud ro-

botics. Decision support systems, virtual manufacturing modeling and visu-

al navigation tools, and path planning algorithms configure context-aware 

robotic networks. Connected mobile devices, sensor fusion-based systems, 

and motion planning algorithms articulate autonomous operational deci-

sions of collaborative robots. Industrial wireless sensor networks, spatial 

mapping algorithms, and production process modeling and context model-

ing tools assist mobile robotic systems in dynamic industrial environments. 

Our analyses specifically prove that computer vision algorithms, model-

ing and simulation tools, and sensing and actuating devices enable robotic 

cooperative behaviors in Industry 4.0-based networked environments. Re-

mote interaction sensors, object tracking algorithms, and intelligent data 

processing tools further autonomous robotic technologies and manufactur-

ing processes in visual simulation environments. Perception and cognition 

algorithms, coordinated motion planning and image processing tools, and 

industrial automation technologies shape cloud and swarm robotics in smart 

manufacturing management. Space situational awareness and navigation 

management tools, obstacle detection technologies, and steering control 

algorithms optimize mobile autonomous robots. Autonomous robotic sys-

tems harness visual recognition technologies, environment mapping algo-

rithms, and computational intelligence tools in dynamic unstructured envi-

ronments. 

 

Limitations and further directions of research 

 

As limitations, by inspecting only sources published in journals indexed 

in ProQuest, Scopus, and the Web of Science databases between 2010 and 

2022, important articles on artificial intelligence-based decision-making 

algorithms, Internet of Things sensing networks, and sustainable cyber-

physical management systems in big data-driven cognitive manufacturing 

may have been omitted. Subsequent interest should be oriented to how 

predictive maintenance can assist deep-learning based cognitive technolo-
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gies in advancing machine learning-based analytics, techniques, and algo-

rithms in networked factories. The scope of our research does not advance 

how Industrial Internet of Things-enabled cognitive manufacturing, cyber-

physical system-based real-time monitoring, and industrial big data analyt-

ics articulate smart networked factories. Future research should investigate 

the relationship between cyber-physical process monitoring systems, Inter-

net of Things smart devices, real-time process monitoring in assimilating 

groundbreaking cognitive capabilities. 

 

Practical implications 

 

Image acquisition devices, context recognition tools, and computer vi-

sion algorithms enable autonomous visual object detection and sensor data 

fusion in cloud and networked robotics. Visual perception algorithms, re-

mote sensing technologies, and localization and navigation tools further 

cloud-based production processes related to operating robotic systems in 

synthetic simulation environments. Deep learning-based image processing 

algorithms, smart sensor devices, and ambient intelligence tools shape 

swarm robotic systems across mobile edge computing environments. Sens-

ing device capabilities, motion control algorithms, and context awareness 

tools optimize networked robotic systems. Robotic cooperation systems 

harness location identification tools, data processing algorithms, and vision 

sensing technology across augmented operating environments. Cloud net-

worked robots and computing technologies deploy spatial mapping algo-

rithms, smart interconnected devices, and autonomous and collaborative 

robots. Autonomous robotic systems leverage collision avoidance algo-

rithms, signal processing tools, and machine perception technologies. Mo-

bile robot movements develop on computer vision capabilities, object 

recognition algorithms, and interconnected virtual devices. Robotic agent 

behaviors integrate distributed sensor networks, predictive geospatial mod-

eling tools, and environment mapping algorithms. Networked robots re-

quire geolocation data intelligence and visual modeling tools, context 

awareness algorithms, and distributed sensing technologies. 
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Annex 
 

 

Table 1. Topics and types of paper identified and selected 

 
Topic Identified Selected 

cognitive Industrial Internet of Things 39 8 

cognitive automation 53 7 

cognitive manufacturing systems 74 10 

cognitively-enhanced machine 47 8 

cognitive technology-driven automation 41 6 

cognitive computing technologies 42 6 

cognitive technologies 48 6 

Type of paper   

original research 253 50 

review 24 1 

conference proceedings 37 0 

book 16 0 

editorial 14 0 

Note: Some topics overlap. 

 

 

Table 2. General synopsis of evidence concerning inspected topics and descriptive 

outcomes (research findings) 

 
The processing of data has been computerized by the integration of software 

programs for material demand and inventory planning, industrial big data 

analytics, Internet of Things-based real-time production logistics, and 

robotic process automation. 

Cug et al., 2022; 

Michalkova et al., 

2022; Sharma et al., 

2021;  

Developments in sensor technologies are optimizing both the scope and 

scale of information that can be acquired in digital form. Storing big data 

quantities is essential for adequately training machine learning algorithms. 

Robinson, 2022; 

Kumar & Jaiswal, 

2021; Sharma et al., 

2021 

In a cognitive industrial unit, product manufacturing is robotically planned 

and itemized, harnessing a knowledge base configuring component 

capabilities and processes of the shop floor. 

Altaf et al., 2021; 

Chang et al., 2021; 

Maier et al., 2010; 

Zeba et al., 2021; 

Zheng et al., 2021 

Cyber-physical systems, big data-driven deep learning, and real-time 

scheduling algorithms articulate cognitive manufacturing. Internet of Things 

has developed a thoroughly networked world driven by heterogeneous 

wireless sensors producing massive volumes of data in various fields and 

applications. 

Chang et al., 2021; 

Michalkova et al., 

2022; Perzylo et al., 

2019 

Smart manufacturing systems are progressively equipped with perceptive 

capabilities by use of cutting-edge cognitive computing, big data analytics 

techniques, and Industrial Internet of Things. 

Lyons, 2022a; 

Robinson, 2022; 

Sharma et al., 2021;  

Machines are getting considerably harmonized with sensors and 

interpretation algorithms, developing cognitive operational functions across 

shop floors (e.g., defining objectives, comprehending their environments, 

and organizing their processes). 

Cug et al., 2022; 

Maier et al., 2010; 

Sharma et al., 2021 

Cognitive capabilities lead to increased flexibility and variability that enable 

streamlined production, and thus process planning in smart manufacturing 

systems has to be robust enough for machine tools and production 

environments. 

Kumar & Jaiswal, 

2021; Li et al., 

2021a; Perzylo et 

al., 2019; Woo et  



Table 2. Continued  

 
 al., 2020; Zhao & 

Xu, 2010 

Human-level data processing across cognitive computing, Industrial Internet 

of Things, and robot learning can connect knowledge categorization and 

information sharing between smart manufacturing systems. 

Kumar & Jaiswal, 

2021; Li et al., 

2021a; Lyons, 

2022a 

Data classification is an essential analytical technique across cognitively 

capable manufacturing sectors for identifying specific patterns throughout 

the structured and unstructured information at the shop floor, company, and 

industry levels. 

Perzylo et al., 2019; 

Woo et al., 2020; 

Zhao & Xu, 2010 

Cognitive manufacturing systems can provide increased value and precision 

in complex operational processes, attaining elevated quality and efficiency 

at decreased expenses and diminished production time. 

Krüger et al., 2016; 

Li et al., 2015; 

Palombarini & 

Martínez, 2012; 

Siafara et al., 2018 

Unsatisfactory precision and unpredictability under heterogeneous 

configurations of industrial robots constitute main obstacles for harnessing 

cyber-physical system-based real-time monitoring, artificial intelligence-

based decision-making algorithms, and robotic wireless sensor networks in 

sustainable product lifecycle management. 

Kliestik et al., 

2022a; Poliak et al., 

2022; Sharma et al., 

2021 

Cognitive manufacturing is pivotal in sustainable Industry 4.0 wireless 

networks together with blockchain distributed ledger that ensures soundness, 

safety, and security through mining-based smart data technologies. 

Chung et al., 2019; 

Din et al., 2019; 

Ferreras-Higuero et 

al., 2020; Hu et al., 

2016; Ksentini et 

al., 2021 

Adequate approach of gathering, sharing, and processing thoroughgoing 

product manufacturing data in the course of machining processes is required 

for carrying out increased efficiency production. 

Balica, 2022; 

Hawkins, 2022a; 

Zvarikova et al., 

2021 

Internet of Things-based machine learning mechanisms can set up 

ubiquitous connections across wireless nodes, configuring a network that 

strengthens or stabilizes communications among algorithm-driven sensing 

devices without human interactions. 

Dawson, 2022; 

Kovacova et al., 

2022a, b; Rice, 

2022 

Progresses in deep learning techniques enable image processing algorithms 

to improve themselves autonomously. Advancements in trained cognitive 

algorithms and deep learning techniques require developments in big data 

technologies. 

Ferreras-Higuero et 

al., 2020; Gordon, 

2022; Sharma et al., 

2021;  

Machine learning-based analytics, techniques, and algorithms are 

interpretive technologies that integrate groundbreaking cognitive capabilities 

within robots. 

Beckett, 2022; 

Kovacova et al., 

2022a, b; Ksentini 

et al., 2021 

Manufacturing is going through a paradigmatic transition by integrating and 

being altered by cognitive technologies by use of product decision-making 

information systems, cyber-physical system-based real-time monitoring, 

robotic wireless sensor networks, and Internet of Things smart devices in 

sustainable product lifecycle management. 

Dawson, 2022; 

Hawkins, 2022a; 

Peters, 2022a 

 

Cognitive manufacturing integrates artificial intelligence-based decision-

making algorithms, real-time big data analytics, sustainable industrial value 

creation, and digitized mass production by leveraging shop floor data as 

regards design and maintenance, so as to advance, through automatically 

harnessing assets and equipments, cognitive processes by inspecting 

information from workflows and environment, consequently leading to 

resource use optimization. 

Ding et al., 2021; 

Dumitrache et al., 

2019; ElMaraghy & 

ElMaraghy, 2022; 

Emmer et al., 2018 



Table 2. Continued 

 
Cognitive technical systems can perceive situations and contexts, determine 

them, and choose either to use an operational strategy or configure a set of 

undertakings that tackle aspects of the identified circumstances, enabling the 

accomplishment of the established objectives. 

Ding et al., 2021; 

Dumitrache et al., 

2019; Peters, 2022a 

A heterogeneity of measurement tools, approaches, and applications are 

employed in the manufacturing sector to set out a certain degree of product 

quality: a huge volume of devices and processes are deployed in quality 

management. 

Emmer et al., 2018;  

Mladineo et al., 

2022; Zvarikova et 

al., 2021  

Cognitive manufacturing systems promptly react to satisfy fluctuating 

demands and requirements in the shop floor, across the supply network, and 

as regards customer needs. 

Casadei et al., 

2019; Hu et al., 

2019; Qin & Lu, 

2021 

Manufacturing systems should self-optimize production processes to attain 

adjustable, self-regulating, and error-tolerant fabrication throughout large-

scale customization operations. 

Hu et al., 2019; 

Mladineo et al., 

2022; Qin & Lu, 

2021;  

Large-scale customization necessitates responsive and adjustable 

manufacturing processes for fabricating personalized products in varying 

batch proportions and large volumes inexpensively. 

Casadei et al., 

2019; Ding et al., 

2021; ElMaraghy & 

ElMaraghy, 2022 

Industrial Internet of Things-enabled cognitive manufacturing can assist in 

processing huge volumes of real-time data across cyber-physical production 

systems. 

Elia & Margherita, 

2021; Li et al., 

2021b; Liu et al., 

2022 

Deep-learning based cognitive technologies can optimize value creation 

capabilities of organizations that leverage advanced analytics and cyber-

physical production systems, thus developing into cognitive enterprises in 

terms of technological infrastructure and organizational architecture, 

integrating smart data and computing processes so as to enhance situational 

awareness, resilience, agility, and reactivity. 

Elia & Margherita, 

2021;  Li et al., 

2021b; Liu et al., 

2022 

Technological upsides in cognitive digitalization can be attained through the 

integration of artificial intelligence-based decision-making algorithms, 

Internet of Things smart devices, industrial big data, and real-time process 

monitoring in sustainable product lifecycle management. 

Cavallo et al., 2021; 

Chung & Yoo, 

2020; Gain, 2021; 

Penumuru et al., 

2020 

Operational indicators facilitate networking among smart things through 

artificial intelligence-based decision-making algorithms, cyber-physical 

process monitoring systems, and real-time sensor networks in sustainable 

Industry 4.0.   

Cavallo et al., 2021; 

Liu et al., 2022; 

Qin & Lu, 2021 

 

 

Table 3. Synopsis of evidence regarding debated topics and descriptive results 

(research findings) 

 
The processing of data has been computerized by the integration of software 

programs for material demand and inventory planning, industrial big data 

analytics, Internet of Things-based real-time production logistics, and 

robotic process automation. 

Cug et al., 2022; 

Michalkova et al., 

2022; Sharma et al., 

2021;  

Developments in sensor technologies are optimizing both the scope and 

scale of information that can be acquired in digital form. Storing big data 

quantities is essential for adequately training machine learning algorithms. 

Robinson, 2022; 

Kumar & Jaiswal, 

2021; Sharma et al., 

2021 

 



Table 3. Continued  

 
In a cognitive industrial unit, product manufacturing is robotically planned 

and itemized, harnessing a knowledge base configuring component 

capabilities and processes of the shop floor. 

Altaf et al., 2021; 

Chang et al., 2021; 

Maier et al., 2010; 

Zeba et al., 2021; 

Zheng et al., 2021 

Cyber-physical systems, big data-driven deep learning, and real-time 

scheduling algorithms articulate cognitive manufacturing. Internet of Things 

has developed a thoroughly networked world driven by heterogeneous 

wireless sensors producing massive volumes of data in various fields and 

applications. 

Chang et al., 2021; 

Michalkova et al., 

2022; Perzylo et al., 

2019 

Smart manufacturing systems are progressively equipped with perceptive 

capabilities by use of cutting-edge cognitive computing, big data analytics 

techniques, and Industrial Internet of Things. 

Lyons, 2022a; 

Robinson, 2022; 

Sharma et al., 2021;  

Machines are getting considerably harmonized with sensors and 

interpretation algorithms, developing cognitive operational functions across 

shop floors (e.g., defining objectives, comprehending their environments, 

and organizing their processes). 

Cug et al., 2022; 

Maier et al., 2010; 

Sharma et al., 2021 

Cognitive capabilities lead to increased flexibility and variability that enable 

streamlined production, and thus process planning in smart manufacturing 

systems has to be robust enough for machine tools and production 

environments. 

Kumar & Jaiswal, 

2021; Li et al., 

2021a; Perzylo et 

al., 2019; Woo et 

al., 2020; Zhao & 

Xu, 2010 

Human-level data processing across cognitive computing, Industrial Internet 

of Things, and robot learning can connect knowledge categorization and 

information sharing between smart manufacturing systems. 

Kumar & Jaiswal, 

2021; Li et al., 

2021a; Lyons, 

2022a 

Data classification is an essential analytical technique across cognitively 

capable manufacturing sectors for identifying specific patterns throughout 

the structured and unstructured information at the shop floor, company, and 

industry levels. 

Perzylo et al., 2019; 

Woo et al., 2020; 

Zhao & Xu, 2010 

 

 

Table 4. Synopsis of evidence regarding debated topics and descriptive results 

(research findings) 

 
Cognitive manufacturing systems can provide increased value and precision 

in complex operational processes, attaining elevated quality and efficiency 

at decreased expenses and diminished production time. 

Krüger et al., 2016; 

Li et al., 2015; 

Palombarini & 

Martínez, 2012; 

Siafara et al., 2018 

Unsatisfactory precision and unpredictability under heterogeneous 

configurations of industrial robots constitute main obstacles for harnessing 

cyber-physical system-based real-time monitoring, artificial intelligence-

based decision-making algorithms, and robotic wireless sensor networks in 

sustainable product lifecycle management. 

Kliestik et al., 

2022a; Poliak et al., 

2022; Sharma et al., 

2021 

Cognitive manufacturing is pivotal in sustainable Industry 4.0 wireless 

networks together with blockchain distributed ledger that ensures soundness, 

safety, and security through mining-based smart data technologies. 

Chung et al., 2019; 

Din et al., 2019; 

Ferreras-Higuero et 

al., 2020; Hu et al., 

2016; Ksentini et 

al., 2021 

 



Table 4. Continued  

 
Adequate approach of gathering, sharing, and processing thoroughgoing 

product manufacturing data in the course of machining processes is required 

for carrying out increased efficiency production. 

Balica, 2022; 

Hawkins, 2022a; 

Zvarikova et al., 

2021 

Internet of Things-based machine learning mechanisms can set up 

ubiquitous connections across wireless nodes, configuring a network that 

strengthens or stabilizes communications among algorithm-driven sensing 

devices without human interactions. 

Dawson, 2022; 

Kovacova et al., 

2022a, b; Rice, 

2022 

Progresses in deep learning techniques enable image processing algorithms 

to improve themselves autonomously. Advancements in trained cognitive 

algorithms and deep learning techniques require developments in big data 

technologies. 

Ferreras-Higuero et 

al., 2020; Gordon, 

2022; Sharma et al., 

2021;  

Machine learning-based analytics, techniques, and algorithms are 

interpretive technologies that integrate groundbreaking cognitive capabilities 

within robots. 

Beckett, 2022; 

Kovacova et al., 

2022a, b; Ksentini 

et al., 2021 

Manufacturing is going through a paradigmatic transition by integrating and 

being altered by cognitive technologies by use of product decision-making 

information systems, cyber-physical system-based real-time monitoring, 

robotic wireless sensor networks, and Internet of Things smart devices in 

sustainable product lifecycle management. 

Dawson, 2022; 

Hawkins, 2022a; 

Peters, 2022a 

 

 

 

Table 5. Synopsis of evidence regarding debated topics and descriptive results 

(research findings) 

 
Cognitive manufacturing integrates artificial intelligence-based decision-

making algorithms, real-time big data analytics, sustainable industrial value 

creation, and digitized mass production by leveraging shop floor data as 

regards design and maintenance, so as to advance, through automatically 

harnessing assets and equipments, cognitive processes by inspecting 

information from workflows and environment, consequently leading to 

resource use optimization. 

Ding et al., 2021; 

Dumitrache et al., 

2019; ElMaraghy & 

ElMaraghy, 2022; 

Emmer et al., 2018 

Cognitive technical systems can perceive situations and contexts, determine 

them, and choose either to use an operational strategy or configure a set of 

undertakings that tackle aspects of the identified circumstances, enabling the 

accomplishment of the established objectives. 

Ding et al., 2021; 

Dumitrache et al., 

2019; Peters, 2022a 

A heterogeneity of measurement tools, approaches, and applications are 

employed in the manufacturing sector to set out a certain degree of product 

quality: a huge volume of devices and processes are deployed in quality 

management. 

Emmer et al., 2018;  

Mladineo et al., 

2022; Zvarikova et 

al., 2021  

Cognitive manufacturing systems promptly react to satisfy fluctuating 

demands and requirements in the shop floor, across the supply network, and 

as regards customer needs. 

Casadei et al., 

2019; Hu et al., 

2019; Qin & Lu, 

2021 

Manufacturing systems should self-optimize production processes to attain 

adjustable, self-regulating, and error-tolerant fabrication throughout large-

scale customization operations. 

Hu et al., 2019; 

Mladineo et al., 

2022; Qin & Lu, 

2021;  

Large-scale customization necessitates responsive and adjustable 

manufacturing processes for fabricating personalized products in varying 

batch proportions and large volumes inexpensively. 

Casadei et al., 

2019; Ding et al., 

2021; ElMaraghy & 

ElMaraghy, 2022 



Table 5. Continued  

 
Industrial Internet of Things-enabled cognitive manufacturing can assist in 

processing huge volumes of real-time data across cyber-physical production 

systems. 

Elia & Margherita, 

2021; Li et al., 

2021b; Liu et al., 

2022 

Deep-learning based cognitive technologies can optimize value creation 

capabilities of organizations that leverage advanced analytics and cyber-

physical production systems, thus developing into cognitive enterprises in 

terms of technological infrastructure and organizational architecture, 

integrating smart data and computing processes so as to enhance situational 

awareness, resilience, agility, and reactivity. 

Elia & Margherita, 

2021;  Li et al., 

2021b; Liu et al., 

2022 

Technological upsides in cognitive digitalization can be attained through the 

integration of artificial intelligence-based decision-making algorithms, 

Internet of Things smart devices, industrial big data, and real-time process 

monitoring in sustainable product lifecycle management. 

Cavallo et al., 2021; 

Chung & Yoo, 

2020; Gain, 2021; 

Penumuru et al., 

2020 

Operational indicators facilitate networking among smart things through 

artificial intelligence-based decision-making algorithms, cyber-physical 

process monitoring systems, and real-time sensor networks in sustainable 

Industry 4.0.   

Cavallo et al., 2021; 

Liu et al., 2022; 

Qin & Lu, 2021 

 

 

Figure 1. PRISMA flow diagram describing the search results and screening 

 

 



Figure 2. VOSviewer mapping of the topic regarding co-authorship 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. VOSviewer mapping of the topic regarding citation 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4. VOSviewer mapping of the topic regarding bibliographic coupling 
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