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CHOICE OF PSEUDOPOTENTIAL
AND ELECTRORESISTANCE
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An expression is investigated for inverse relaxation time for electrocon-
ductivity in the simple disordered metals within a framework of a kinetic
equation method and a perturbation theory by the powers of a pseudopo-
tential of electron—ion interaction. Numerical calculation of the third-order
term by a pseudopotential for inverse relaxation time of 25 simple disordered
metals is. carried out. Three different model local pseudopotentials are used.
Strong relation of the results of calculation between the choice of a model
pseudopotential and concrete values of the pseudopotential parameters is
found out for all metals. Selection criterions for the model pseudopotentials
are formulated.

PACS numbers: 71.15.Hx, 72.15.Cz

1. Introduction

The most important factor, influencing a numerical value of the kinetic coef-
ficients, describing electron transport phenomena in the simple disordered metals,
is the higher order terms of perturbation theory on an electron-ion interaction
in expansion of the appropriate inverse relaxation times. Complex solution of the
specified problem requires a solution of the large number of more special tasks.

The first of them derives the expressions for the higher order terms of per-
turbation theory on an electron—ion interaction. Numerous inconsistent attempts
of promoting in this direction were undertaken for a long time [1-13] and have
not reduced in emerging a conventional expression even for a third-order term.
Coinciding results are not present among the outcomes of various authors.

The second unsolved task is calculation of influence of a choice of an electron-—
ion pseudopotential on a magnitude of a third-order contribution in the various
kinetic coefficients. '
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The third task is calculation of influence of the approximations, used for
electron gas, on the results of the numerical calculations.

The fourth — influence on the calculations of the approximations, used for
the multiparticle structure factors of an ion subsystem. Nowadays, researches are
absent on the last three items.

In the present paper we want to put a beginning of a systematic study of
all formulated above problems. We shall consider only a third-order term of a
pseudopotential in expansion for the inverse relaxation time for the electrocon-
ductivity process. Numerical calculations will be carried out for majority of the
simple disordered metals. Influence on its results of a choice of the model local
pseudopotential and concrete values of adjusting parameters will be investigated,
too. The criterions, describing a fitness of the various model local pseudopotentials
for the considered numerical calculations, also will be formulated.

The third-order term, obtained by a kinetic equation method [2, 12, 14], most
simple from the point of view of deriving algorithm and numerical calculations, will
be put on a basis of reviewing. Its important feature is that a majority of results
of other authors after simplifications also can be reduced to in such aspect. In a
consequence, it is supposed to investigate the other more complicated approaches.

2. Electroresistance

For the simple disordered metals the almost free electron model is applicable

and electroresistance R is determined by the well-known Drude formula [1-5]:
m
R=—7r1, 1
7 (1)
Here n is density of the conductivity electrons, m, e are mass and charge of an elec-
tron, 7 is relaxation time for the electroconductivity process. In the most common

case the inverse relaxation time can be presented as the following series:
[e]
7l = Z L. (2)
n=2

Within the framework of the kinetic equation method [2, 12, 14] and in the
random phase approximation for an electron subsystem, and in the local model
pseudopotential approximation the common term of this expansion has the form

_ N
Tn ! = W Z W(ql) v W(Qn—Z)S(qIJ RN Qn)r(ql) ce qn) (3)
qu-nyqn
Here

S(qr,---a0) = N~ p(qy) ... p(,)) (4)
is n-particle structure factor of an ion subsystem, N is amount of the ions in a
system, angular brackets designate an average with a help of a density matrix,
containing Hamiltonian of an ion subsystem,

p(g) =Y exp(~igRn) (5)

n
is the Fourier component of an ion density operator, R, is radius-vector of the n-th
ion, W(q) is screening form factor of a local model electron~ion pseudopotential,
I'(gy,-..,4q,) is electron multipole for an electroconductivity process.
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Fig. 1. W(q) is the screening form factor of the Krasko-Gurskii pseudopotential for gold
(dashed curve) divided by the Fermi energy; W(q)S(g) is 2 product of this form factor

on the two-particle structure factor (continuous curve). Vertical dotted line corresponds
to the Fermi wave vector.

Expansion in a perturbation theory series is carried out by the dimensionless
parameter W(q)/er, where ep is the Fermi energy. Graph of the Krasko—Gurskii
pseudopotential form factor for gold is demonstrated in Fig. 1, as an example.
Here the dashed vertical line corresponds to the value of the Fermi wave vector.
As can be seen, this parameter is not small for all values of the wave vector. In
the same Fig. 1 a graph of a product of this form factor on a two-particle static
structure factor of an ion subsystem (the continuous curve) is reproduced. Such
product already is small in the whole range of the wave vector values
(W{(q)S(¢q)/er < 1). Only this fact that in any order of perturbation theory on
pseudopotential its form factor enters in a combination with appropriate structure
factor of an ion subsystem as weight factor, allows to consider a pseudopotential
as a small parameter for the majority of simple disordered metals.

3. Third-order contribution to electroresistance

Second-order contribution to inverse relaxation time of the simple disordered
metals for the electroconductivity process is investigated enough (see for exam-
ple {15]). For this reason we shall review the higher-order terms. The third-order
contribution on a pseudopotential has the form

= % Z W(g,)W(a2)W (43)S(41, 92, 93) (41, 92, 95)- (6)
a9

For a noninteracting electron gas the electron three-pole, obtained by a kinetic
equation method, has the form
I'(ky ~ k2, ko — k3, ks — ki)

hzm ‘5(5k2 - 5k1)

= Ska TN B~ k3)? n(ky) [1 — n(k1)] EED (7)
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where T is absolute temperature, kp is the Boltzmann constant, ¢, is free electron
energy, n(k) is the Fermi-Dirac distribution function.

In this case for a third-order contribution is possible to obtain the following
expression:

hr
R ey R w — ko) 2W (k1 — ko)W (ks — k)W (ks — k
T3 3kaTZV3 Z (kl kZ) W( 1 2)W( 2 3) ( 3 1)
. kl,kz,ka .
' b(ep, ~€p,)
X S(k1 — ko, kg — k3, k3 — ki)n(k)[1 — n(kl)]_g_;.__g_k_’ (8)
2 3

where z is metal valency.

4. Numerical calculations

Numerical calculations of a third-order contribution were carried out with
the use of three different model local pseudopotentials, namely the Ashcroft pseu-
dopotential

47z '
W()(q) = —-EZ— COS(qT’), (9)
a local form of the Xeine-Abarenkov pseudopotential,
_4mz sin(gr) ¢t )
Wo(g) = vl (1 + a)cos(gr) a———qr—} exp ( 0.03 Tokr )’ (10)

and the Krasko—Gurskii pseudopotential

2 _

wa(y) = T2 e L (1)
¢ [(gr)2+1]
Detailed discussion of these form factors can be found in [16, 17]. Here  and a are
adjusting parameters, r is effective radius of an ion, a is depth of a potential hole
created by an ion.

For effective dielectric permeability of a cooperating electron gas in the ran-
dom phase approximation we used an expression

e(q) = 1+ [v(g) + u(g)Inmo(q). : (12)
Here v(q) is the Fourier component of the Coulomb potential of an electron—electron
interaction. Exchange interaction and correlations of the electrons were taken into
account in a local field approximation with the help of the potential

2m
u(q) = ‘"m; (13)

where A is taken equal to 2 for all metals. Polarising operator of a noninteracting
electron gas has a traditional form

3 (1 4kE—q¢® |2kp+gq
WO(Q)—E<§+ 8krq n2kp~q '

As a two-particle static structure factor of an ion subsystem an exact solution
for the rigid sphere model of Percuss—Yevic equation [18] was used. Density packing
parameter 1 = 0.45 is considered identical for all metals.
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TABLE
Input data for numerical accounts.
Met. | Z kp Rexp Met. | Z kp Rexp
[a.u] | [#€ cm] [a.u] | [¢Q cm]
Li 110.5752 25.0 Si | 4]0.9838 71
Na | 1]0.4742 9.61 Ge | 4 {0.9298 73
K 170.3820 | 13.45 Sn | 4 | 0.8537 48
Rb [ 1]0.3564 | 22.89 Pb | 4 |0.8171 95
Cs [ 103320 39.47 Sb | 5 |0.8898 113.5
Mg | 2 10.7018 27.4 Bi | 5 1{0.8090 128
Ca | 2 {0.5650 33.0 Zn | 2 | 0.8090 37.4
Sr | 21]0.5232 84.8 Cd | 2]|0.7217 34.7
Ba | 2 0.5037 306 Hg | 2 ]0.7060 91
Al | 3]0.8863 24.2 Cu | 1]0.6937 21.1
Ga | 3 |0.8861 25.8 Ag | 1]0.6116 17.2
In | 3 |0.7860 33.1 Au |1 0.6145 31.3
T1 | 3 [0.7807 73.1

All data, used for calculations of the electroresistance of 25 simple disor-
dered metals, namely valency, Fermi wave vector and experimental value of an
electroresistance, are reproduced in Table. All of them are taken at the melting
temperature of metals.

One parameter r of the Krasko-Gurskii and Xeine-Abarenkov pseudopoten-
tials was chosen arbitrarily. For determination of the second parameter a (for the
Ashcroft pseudopotential this one is unique) the Ziman formula, i.e. the second-order
term in an appropriate expansion of an inverse relaxation time, was used. Such
approach to a choice of the pseudopotential parameters is chosen because we are
interested only in a relative magnitude of a third-order term by a comparison
with a second-order one. Thus, it is possible to exclude from consideration all re-
maining reasons of a divergence between the experimental data and the results of
calculations, based on Ziman formula.

For all considered model pseudopotentials there are at least two values of a
pseudopotential parameter a, which for the experimental values of electroresistance
equal the values determined with the help of Ziman formula (see, for example,
Fig. 2 for the Krasko—Gurskii pseudopotential).

Thus, a magnitude of a third-order correction essentially depends on what
values of the pseudopotential parameters are used in the calculations. This distinc-
tion is especially essential for the Ashcroft pseudopotential (see Fig. 3). It is less
essential for the Xeine—Abarenkov pseudopotential and, at last, it is least essential
for the Krasko—Gurskii pseudopotential (see Fig. 4). In the latter case an absolute
value of a correction almost does not vary. For a smaller value of a parameter a
a third-order correction is always positive, for greater — is always negative. For
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Fig. 2. Electroresistance of the liquid gold calculated on the basis of the Ziman formula
with the use of the Krasko—Gurskii pseudopotential and divided by experimental value,
as a function of the adjusting parameter a.
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Fig. 3. Relative magnitude of a third-order correction (in %), calculated with the use
of the Ashcroft pseudopotential for two different values of the adjusting parameter r
(r = o/4 for the lower curve and r == ¢/2 and r = o/4 for the upper curve).

the Ashcroft (Xeine-Abarenkov) pseudopotential (see Fig. 3) it is negative for
a greater value and can be both positive and negative for a smaller value of a
parameter r (a).

Among the results of other authors we meet equally frequently both positive
and negative values of a third-order correction. The problem about what sign of a
third-order correction should be for different metals was not considered. From our
point of view a third-order correction should be always positive, as it takes into
account an additional scattering of the conductivity electrons on the ion density
fluctuations, circumscribed by a three-particle correlation function.

In this connection, it is possible to formulate the first criterion for a choice
of a model pseudopotential in a form: that model pseudopotential is better, which
for bigger numbers of the metals ensures a positiveness of a third-order correction
to an electroresistance. Let us notice that from the three considered model pseu-
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Fig. 4. Relative magnitude of a third-order correction (in %), calculated with the use
of the Krasko—Gurskii pseudopotential for two different values of the adjusting param-

eter a (r = o/4).
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Fig. 5. Relative magnitude of a third-order correction (in %), calculated with the use of
the Xeine-Abarenkov pseudopotential for two different values of the adjusting parameter

r = o/4 (lower curve) and r = /2 (upper curve).

dopotentials only the Krasko—Gurskii one for a definite set of the parameter values
ensures a positiveness of a third-order correction for all considered metals.

We investigated also a problem of arbitrariness in a choice of a parameter r
for the two-parameter model Xeine—Abarenkov and Krasko—Gurskii pseudopoten-
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Fig. 6. Relative magnitude of a third-order correction (in %), calculated with the use of
the Krasko—Gurskii pseudopotential for two different values of the adjusting parameter
r = o /4 (dark rectangle) and r = ¢/2 (bright rectangle).

tials. With this purpose the magnitude of a third-order correction was calculated
with the use of the two different values of parameter 7. In one case (see Figs. 5
and 6) the value » = ¢/4 was used. Here ¢ is a rigid sphere diameter appearing
in an exact solution of Percuss—Yevik equation. The value r = 0/2 was used in
other case (see Figs. 5 and 6). Different choice of considered parameter of the
Xeine-Abarenkov pseudopotential has resulted in an essentially different magni-
tude of a third-order correction (see Fig. 5). For the Krasko-Gurskii pseudopo-
tential (see Fig. 6) the magnitude of correction practically does not depend on a
choice of this parameter.

In this connection, the second criterion for a choice of a model pseudopo-
tential can be formulated in this way: that model pseudopotential is better, which
ensures the least association of a third-order correction with a concrete choice of
the adjusting parameter values. The Krasko-Gurskii pseudopotentlal in the best
way satisfies the second criterion, too.

The numerical calculatlons, carried out by us, allow to draw such conclusion:
a choice of a model local pseudopotential essentially influences the magnitude of
a third-order correction and this one is enough large for all considered simple
disordered ‘metals. The same conclusion follows from the numerical calculations of
other authors. Really, in the paper [8] a third-order correction for Na is greater
than 100%, for Zn is 20%, for Al is greater than 100%. In the papers [4, 5] a
correction for Zn is greater than 100%. In the paper [11] the corrections for one
and two-valence simple metals are from 5% to 40%.

- Appendix
Calculated formula for a third-order contribution

Let us show that the integration multiplicity in the third-order contribution
can be essentially reduced. For that goal we shall decompose the integrand to a
triple series with the use of the Legendre polynomials
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(ky — k2)? W (ky — ko)W (k — ks)W (ks — k1)S(hy — ks, ky — ks, ks — k1)

= Y Fami(ks, k2, k3) Pa(cos 613) P (cos 633) Pi(cos 031 ). (A.1)
n,m,l
The following designations here are introduced:
Pp[cos(k; A k;)] = Py(cos 6;), , (A.2)

2n+12m+12[+1

anz(k1,/€2, ks) = D) 5 2 / delg sin 012Pn(COS 912)
0

X/ d(923SiH923Pm(C08923)/ d931 sin6’31P1(c05031)(k1—k2)2
0 0

XW(k1 haed kg)W(’cz b kg)W(kg - kl)S(kl — kz, kg - k3, k3 — kl) (A3)

After integration of this expansion the expression for the third-order contri-

bution has the form
2

-1 m k2
= N@n+1) [ dk (ke kE, K .
5= Sty 0 ) [ty Fonn e, ke, (A4)

and contains one integration and one summation. With the use of the next uncou-
pling of a three-particle structure factor

S(q1, 92, g3) = S(¢1)5(92)5(g3) (A.5)

we can represent the function Fipn(kr, kr, k) with the help of the following com-
bination of the single integrals:

ann(kF; kFy k) = An(kF, k)Bn(kF)2~ (A6)
Here
2kp 2 _ .2
L (A7)
[k Wo(q) ¢ k2 + k3 — ¢?
Balkri)= [ SR e (A.8)

where P,(z) is the n-th order Legendre polynomial.
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