68 W. Sierpifski. (10)
Eqz+f+1 Egqy-+1 Egx Egy

~+ (gz—Egz)(gy - Eqy [ N & Au S P S S ]
@ 9%) (v - Eqy) f( 7 Z ) f( . q)

skad, wobec zaktadane]j ciagtosci funkeyi f(z, ), z tatwoscig wnosimy, ze
dla [z] <1 oraz |y | <1 funkecya f,(z, ¥) jednostajnie zmierza
do f(z, y). Przechodzac wreszcie od funkcyj ¢ (gz —p') oraz ¢ (qy—p")
do odpowiednich przyblizeri przez wielomiany, dojdziemy do wniosku, ze do
kazdej danej liczby dodatniej ¢ mozna dobra¢ wielomian catkowity P(x, )
taki,izdla |z | <1 oraz |y | < 1 stale:

[F(z, 9)— Pz, ) <e

Stad wynika natychmiast twierdzenie Weierstrassa dla funkeyj dwuch
zmiennych.
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G. A. MILLER.

Extension of a group by operators of orders fwo and four.

(Rozszerzenie grupy za pomoca operatoréw rzedow 2 i 4).

It frequently happens that a group H of order 1 is extended by means
of operators of orders two or four so as to obtain a group @ of order g==217.
For instance, the alternating group of order 12 is extended by 6 operators
of order 2 and 6 operators of order 4 to obtain the symmetric group of order
24, and the cyclic group of order & may be extended by h operators of order
2 to obtain the dihedral group of order 2/. The present article is devoted to
a study of some groups which may be extended by operators of orders 2 or
4 50 as to obtain a group whose order is the double of the order of the origi-
nal group. Many questions relating to such groups remain unsolved, and the
present brief article deals only with a few of the simpler cases.

A necessary and sufficient condition that a group H of order i may be
extended by means of & operators of order 2 so as to obtain a group of or-
der 2% is that H be abelian. This theorem results direclty from the known
fact that the abelian group is the only group in which all the operators cor-
respond to their inverses in an automorphism of the group. Hence the theory
of extending groups by means of operators of order 2 is very simple, but if
we extend a group by means of operators of order 4, or by means of operator
of orders 2 and 4 the matter becomes very much more difficult.

Among the simplest cases is the one when H is extended by means of
I operators of order 4 which have a common square. If the group G is ob-
tained in this way it involves the group of order 2 generated by this common
square as an invariant subgroup, and the corresponding quotient group co-
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mes under the theorem of the preceding paragraph. Each of the A given
operators of order 4 in G must transform every operator of H into its inverse,
as it could not transform such an operator into its inverse multiplied by the
given common square. From this it results that H must be an abelian group
of evenl order. As such a @ can always be constructed when I is an abe-
lian group of even order we have arrived at the theorem: A necessary
and sufficient condition that a group H of order 4 may be
extended by % operators of order 4 which have acommon
square so as to obtain a group of order 24 is that H be an
abelian group of even order. When H is cyclic the groups of this
theorem are the dicycle groups.

In the case which has just been considered the % operators of order 4
by means of which H was extented had a common square. Another extreme
case which is equally simple is the one in which H is extended by means of
h operators of order 4 which have #/, distinct squares, 30 as to obtain a group
of order 2h. These squares must generate H since no two of them can be
commutative; for if one of these "/, operators of order 2 were commutative
with more than two of the given operators of order 4, it would follow that more
than two of these operators of order 4 would have a common squares and one
of these operators of order 2 could not transform one of the given operators of
order 4 into its inverse. Hence each of these %/, operators of order 2 trans-
forms into a different subgroup each of /,—1 of the given cyclie subgroups
of order 4, and it is therefore not commutative with any other one of these i,
operators of order 2. This proves that the order of H is twice an odd number,
and hence its substitutions of odd order constitute an abelian subgroup.
Hence the theorem: A necessary and sufficient condition that
agroup H of order 5 may be extended by means of 4 opera-
tors of order 4 having *, distinct squares so as to obtain a
group of order 27, is that H involve an abelian subgroup
of order ¥, composed of all of its operators of odd order and
that the group of isomorphisms of this abelian subgroup in-
volves an operators of order 4 whose squares is in H and
transforms each operator of odd order in & into its inverse.

It has been observed that a necessary and suificient condition that
a group be abelian is that more than threefourths of the operators of the group
correspond to their inverses in some automorphism of the group ?; and if more
than half of the operator of an abelian group correspond to their inverses in
an automorphism of the group, ail of its operators must correspond to thier
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inverses in this automorphism. Hence it results that when H is extended so as
to obtain a group of order 27 the number of operators of order 2 which have
been added is h whenever this number exceeds 3/, k. If this number is exac-
tly 3/, /s the remaining Y/, 2 eperators are of order 4 and the group of cogredient
isomorphisms of H is the four-group. Hence the theorem: A necessary
and sufficient condition that a group H of order % can be ex-
tended by 3/, h operators of order 2 and ¥/, h operators of or-
der 4 so as to obtain a group of order 27 is that the group
of cogredient isomorphisms of H be the fourgroup.
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