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Note on Trigonometrical and Rademacher’s

Series
by
A, Zygmund.
§1.
A lacunary trigononﬁetrical series is ‘ar{y series of the form
jee]
(1) (a, cos 1, x -+ b, sin 1, X),

where the integers 7, satisfy an inequality 7,41 /7. >g>1, with ¢ inde-
pendent of v. Lacunary series have a number of curious properties.
For example, if the series

{2) i (a2~ 8.

v=1

diverges, the series (1) is almost everywhere non-summable by any
linear method of summation, and, in particular, is not a Fourier series.
On the contrary, if (2) is finite, (1) is the Fourier series of a function
f(x) which is integrable in every power; more generally, the function
exp Af? () is integrable for every A>>0%). One of the objects of this

Y} For the proofs of these results, see e. g. Zygmund. Trigonometrical Series,
Warszawa, 1935, pp. I1--331, esp. p. 119 sq. We shall refer to this book by the
letters 7S.

We avail ourselves of the opportunity to correct an obvious slip on page 61,
line 19 of that book:

h
for P, (h)=o0(h) read f{‘f(xit)——-f(x)ldt=o(h)‘
0
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note is to obtain some theorems about the series (1) with

CO

@ Ml a0

=

convergent for an <2,

Let 9, (f), ©1(8) ... @a () ... (0<¢<1) denote the sequence of
Rademacher's functions, i. e,

o, (f) = signsin (2= £, v=0,1,...; 0 Tt 1,

The Rademacher series
(4) a (@),

where the complex constants ¢, are independent of £, have many pro-
perties similar to those of lacunary trigonometrical series, and the study
of the former is a little simpler than that of the latter, It will therefore
be more convenient to begin with the series (4).

§ 2.

Suppose that the series I|c|? converges. Then, by the Riesz-
Fischer theorem, (4) is the Fourier series of a function f(f)cL? and it
is known that the series (4) converges to f(x) almost everywhere?), It
is also known that f () belongs to L* for everyk >0, which is a corollary
of the following more precise proposition.

Lemma A. If 3¢ |?<oo,k22, the sum f(f) of (4) safisfies the
inequality

) {f\f(twdtl < kb (}_‘m )

In th? case k=2m, m=1, 2,,.,, the proof of this lemma will
be found in TS, p. 123 — 124; we have, then, even a little stronger

%) TS p, 123,
92
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result, for we may replace the factor &% on the right of (5) by {k/2]“”.
To obtain (5) in the general case, let 2m —2<k<(2m m=2, 3.. . Then

\flkdtl Iflz”’dt <k (8] e oY
]

' ‘/l )
<(Lata) wle s <riEiol

We shall now prove the following proposition, where r’ denotes
the number connected with 7 by the relation 1/r 41/ =1, (This notation
will be used throughout the paper).

Theorem 1. [ 1<r<(2, k> 1, and the series

©) el

v=1

converges, the sum f(£) of (4) satisties the inequality

™ {flf fl kdt} <k“(2 vv)“"

=0

Tt is sufficient to prove the inequality (7) for the n-th partial sum
fa=cCo®o...FCun, n=0,1,2,..., of the series (4), We fix 7, and
for simplicity, write f for fu.

Given any non-negative numbers o and {, let Mgz denote the
upper bound of the ratio

ff(t)‘”‘dt] ((Zlc!)

for all possible values of ¢y, €1, Cn. The fundamental theorem
of M. Riesz asserts that log M, is a convex function on any segment
lying in the triangle

() 0<ag1, 0<7Bla?).

3) M. Riesz, Acta Math., 49 (1926), p. 465—497; T S, p. 192 — 202.
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4 A, Zygmund.

In view of Lemma 4, we have My, < {2 for I+ 2; moreover
Mo <1. Therefore, for any point P(«,B) lying on the segment joining
P (1/2,1/)) and P;(1,0), we have

1—a a—1/2

Map < M11/éz, 1 /1’11.01/2 S
From the equation of the line P, P, we obtain 1—o==8//2 and so
(8) Mep = [20—«) }1_“ & :_1 1““_
L8 8

Putting a==1/r, B==1/k, we obtain the inequality (7).
It must however be observed that, since the point P, is on the

1 1 1
segment (-2—, 0) (; , —2—) the values of o, B for which the inequality has

been established satisfy the conditions %—\\m'\( 1, K1 —a, or, what
is the same thing,
12, k.
.In orc!er to prove (7) for any k>>1, we observe that for k=,
the inequality (7) is true without the factor /" (the Hausdorff-Young

inequality), and that the left-hand side of (7) decreases with k. This
completes the proof.

Theorem 2. If the series (6) converges and 1< r < 2, the function
exp|f()]"

is integrable for every L>>0. If 2her'C”" <1, where C" is the sum of
the series {6), then

1

©) jexp)\]fl"' dt<2.
8
From the inequality (7), with k replaced by r'v, v=1, 2 we
obtain Y

xvf Yoo

—_ £ vt o !y

s ) 1 de < v ey
0
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1
[ee] »
(10) fexpk]fl" dt\<1+2—(vr’c")“.
v=1v!

0

Observing that v < e'v!13%), and assuming that Aer’ Cr" < 1/2, we
obtain (9). To show that the left-hand side of (9) is finite for every
2>>0, we put f=38,-Frn, where S, is the n-th partial sum of the
series (4). In view of the second part of Theorem 2, if A is fixed
and 7 is large enough, the function exp 22" [rx(f)|” is integrable; and
it remains to observe that

exp 2| f|” expi2" {ﬁSn]-" -+ |ral™} < Const. exp 2’ |ra|",

since the function S.(f) is bounded.

We complete Theorem 2 by the following remark: If (6) is finite,
and S,(t) denotes the n-th partial sum of the series (4), then, for amy
fixed > >0,

1
fexp M| f—8a" dt—1 as n—00 ).

0

This follows from the fact that f—s, is thé sum of a Rademacher
series, and that the right-hand side of (10) tends to 1 as C—0.

§ 3.

Results analogous to Theorem 1 and 2 hold for lacunary trigono-
metrical series.

Lemma B, Let the series (2) converge, and f(x) denote the sum
of the series (1). Then, for any k> 1,-we have

%a) This inequality follows from the fact that the product of the v numbers
. 1\n
(1 +vn-) ,n=1, 2,u., v is less than ¢

4 For r=2 this remark was proved by Kaczmarz and Steinhaus, Studia

Math, 2 (1930), 331 — 247,
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ps 1k 0 12
(11) {fmmx} <¥Aﬂk‘”{;‘“f+”v”} ,

where A, depends on g only®),

Assuming the truth of this lemma, and supposing, as we may, that
the constant Ay of (11) is not less than 1, we obtain, by an argument
similar to that which led to Theorems 1 and 2, the following

Theorem 3. Jf the series (3) converges, 1< r =2, k=1, then

2w - )
{f | f(x) | kdx }1/’”<Aqk1/;,{; (la.lr-+- fbv[")}l/
0

where the constant A, depends on g only,

Theorem 4. If the series (3) converges, 1< r <2, the function
exph | f(x) |7 is infegrable for every \>>0. If 0< )\ < A==\, (7, q), then

T
ifexpz | f) | " dx<2.
2w
0
For any fixed »™>0 we have
2n
1 .
—fexpk | f—s |"dx—1 as v—s oo,
2%
0

where s, is the v-th partial sum of (1).

§ 4

Theorem 5. Let g(x) be any function such that g.(log" | & | )V,
r> 2, be integrable over (0,2r), and let
%) This result is established in the author's paper in lhe Journal of the London
Math, Soc. 5 (1?30). pp. 138 — 145, esp. pp, 141 — 142, The proof uses some rather
dee.p resultsof Little wood, Itwould be interesting to obtain (11) by the same argument
which gave (5), but a straightforward application of that argument seems lo give
a bigger constant than /lq kY2 on the right of {11), which would not be sufficient
for our purposes,
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1 ND
(12) g{x) ~ an—{— Z (¢t cos 1 x ~+ B sin 7).

n=1

Then. if nafn, >q >1,v=1, 2, ..., we have

21
N 1 - . + 1/r
(13) {;(Iaml'+|6m|']} &Aofg (log™ | & | )¥rdx+B,

where the numbers A = A,y and B=B,, depend on r and g only.
The theorem does not hold for r<(2°).
Let @, by, @5, by, ... be any sequence of numbers such that

o<

(14) dlal 161" =1

=1

The left-hand side of (13) is the upper bound of the expression
(15) 'y [’1uu a»"“?nv b]
2

for all sequences Jla,,, b.4 satisfying (14). By f(x) we shall denote thet
sum of the corresponding series (1). Since 1<(+' <2, using Theorem 4
with 7 replaced by r’, we see that

2
(16) :&fexpl\f[x)l’dxs‘z;,

where A =X (r",q).

Let ®(x)=exp A" —1, and let ¢ (z) denote the function inverse
0 ¢)=%" (W)= rw—texprw, If W(u) denotes the integral of ¢ over
he interval (0, 1), then

V() < ud @) << A u(logt | u )4 B,

where A’ and B’ depend on r and ¢ only.

In view of Young's inequality’)

%) It was shown by Paley, Annals of Mathematics, 34 (1933), p, 615—616, that,
if g(x) is integrable, and the series conjugate to (12) is a Fourier series, then the
expression on the left of (13) is finite for r =2,

") See e. g. T S. p. 64,

7. Prace Matemat.-Fiz. T. 44. ) 917
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8 A Zygmund,
2 17‘,
ffgdx [m lgldx< ; f‘lugudx
0 "
. 1”'{‘.
(17) \2+ﬁj‘l(lg|]zix
1]

A f lg | llogh | | )rdx--B,

0

where A=Az , B=2B"+-2.
Now we observe that, since ® (| f|) and W (| g | ) are integrable,
we have

1 /‘fga’.x,

.

o0
' (@n &t )
vzl

the series on the left being summable (C, 1)¥). Taking into account

that the signs of the numbers a,, b, may be arbitrary, we see that (15)

converges for every {av, b,} satis{'yil_lg (14), and its sum does nol exceed

the last expression in (17). This completes the proof of the first part
of Theorem 5.

To show that this result does not hold for any 0<_7r< 2, we shall
show that there is a function g, such that g(logt | g | ) e L, 0<r<_2,
and yet the left-hand side of (13) is infinite. For simplicity we restrict
ourselves to the case 1<(r<(2; the case 0<r <1 requires small modifica-
tions only, Let ®(#) and W (1) have the same meaning as before!
except that we now suppose that A==1. It is not difficult to see that

W {n) ~ u(log )" as tw-—>c,
Let o,(x) denotg the first Cesdro means of the series
X
(18] cos /;\,)c
: 2:1 ] v

§ TS p. 88
98
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(the vacant terms of (18) mnust be replaced by zeros). Suppose, contrary
to what we want to prove, that the series X (| o, | "~} | B | 1), 1<r<{2,
converges for every g with g (logT | £ | )V ¢ L, or, what is the same thing,
W (|gl|)eL. Then, by Hélder's inequality, the series

& .
{19) Zﬂ

=0

converges, and, & fortiori, is summable (C, 1). The first arithmetic
means of (19) are equal to

20) = (e j 50 (x) d
0

The sequence (20) being bounded for every g with ¥ (] g I
there is a constant |» >0 such that

2%

j@mlﬁm;mx=om%

and so (18) would be a Fourier series?), which as we know (cf. § 1 of
this paper) is false,

§ 5.

Theorems 3 and 4 have applications to series of the form

21 Z te, f. (%),

where the = are chosen in a quite arbitrary manner, the coefficients ¢
are constants, and {ﬂ[x)}, 0<x< 1, is a sequence of measurable and
uniformly bounded functions; to fix ideas we suppose that | f. {x) | <1,
v=20, 1, ... The series

22) + 1 a, -+ S’ * (a. cos v x 4 b, sin v X)
2 =

are special cases of (21).
% TS, p 100.
9 TS, p. 83
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10 A, Zygmund,

Neglecting sequences [f] which are constant from some place
onwards, we may write the series (21) and (22) in the forms

(23) PMIATAUR
(24) ; @, 90 (z)+§ (0. cos % - businv-4) . (4

v=1

respectively, where the ¢, are Rademacher’s functions. If for almost
every value of ¢ the series (23) has a property P, we shall say that
almost all the series (23) have the property P. The sum, wherever it
exists, of the series (23) (and also of the series (24)), will be denoted
by F; (JC] .

Theorem 6. [F the expression

25) (Z le|r )1/' (1< r<2)

vz

is finite, then, for almost every value of ¢, the series (23) converges
almost everywhere in x. Moreover, for almost every value of ¢, the
function

exph | (%) |7

is integrable over 0 x <1, however large } may be.

Theorem 7. The preceding theorem holds for the series (24),

provided that
o0
(Y 1alr+1e

=

4 (1< r"2)
is finite.

In the case r==2, Theorem 6 is known!!), The proof of the
general result does not differ essentially from that of the special case.

Let £ denote the set of the points of convergence of (23), situated in
the square 0 (¢ 1, 0<Cx <1, Using the theorem of Rademacher !}

rs ”)122 aley and Zygmund, Proc. Cambridge Phil. Society, 26(1930), p. 337—357;
, p. 125,

) T8, p. 123
100
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that the series (4) converges almost everywhere, provided that
S|c|2<co, we see that, under the hypothesis of Theorem 6, the
intersection of E with every line x=1x,, 0<{x,<1, is of linear
measure 1. The set E being measurable, its plane measure is equal
to 1, and so the intersection of E with almost every line =1, is of
linear measure 1. This proves the first part of Theorem 6.

To prove the second part, we observe that, in view of Theorem 2,
we have, for every X, 0 <x <1,

1

(26) fexp W F) | di<2,

]

provided that 2%er C”"<1, where C is the value of (25). Integrating
(26) with respect to X, and inverting the order of integration, we obtain

1 1
fdtfexp M F )" dx<2.
o 0

Tt follows that the inner integral is finite for almost every #, provided
that 2 <1/2er' C”. To remove the last restriction, we argue as in
he proof of Theorem 2.

Theorem 7 is a corollary of Theorem 6.

For further applications we shall require the following extensions
of Theorem 2.

Theorem 8. Assuming that (6) is finile, and 1<r<2), let

i < 9. (%)

| |
! |
=

F* (¢£)=Sup

Then, for every ) >0, the function
27 exp L F™' (f)

is integrable. If 2%er' C”" <1, then

1
(28) f exp L F* () d 1< 24,
0

where A is an absolute constant,
101
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For r=2 this result is known'®), The proof of the general case
does not require new devices. Let 5,(f) denote the 7-th partial sum
of (4), and let Z,5= p/29. If fyel,=(12"% ({4 1)27%), then, since si— ()
is- constant over /., we have ') ’

St (L) = ";*i fSk--x'(t] At = V%ff(t]‘tit 10y
k R
. T

k

Therefore

E,
) R LG )

&

By the well-known theorem of Hardy and Littlewood ')

f gwat<a( f Florde s>,
; ;

S -

and so
1

) [(ewdoa1forda s 2,
Jeoea]

where A is an absolute constant. From (29), (30), and (7) we obtain

1

(31) fp'ns Wdt=A| |flrdt=<A SS/I,,( o " )x/r
J >

0 vz=0

for 1<(r<C2«Cs. Since 72> 2, starting from (30), and arguing as in the
proof of Théorem 2, we obtain (28).

Theorem 9. Let

F¢ (%) == Sup

pNIATIRY 1 .

yz=0)

") Paley and Zygmund, Proc S
esp, p. 190 — 161, gmun roc. Cambridge Phil, Soc, 28 (1932) p. 190—205,

) By |l | we denote the measure of J,,
¥ T8, p. 123, g
1 TS, p, 244,
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where |f,{x) | <1, and the expression (6) is finite. Then, for almost
every t, the function - )

exp . {Ff" (=)} (1<r<2)

is integrable over 0 x <1, however large )} may be.

This follows from Theorem 8 in the same way as Theorem 6
follows from Theorem 2. :

As a special case, we obtain a similar result for the series (24).
More interesting, however: is the following

Theorem 10, Let

Stn (%) == % ay 90 () + 2 (@, cosvx b, sinv x) e, (f) .
w=1
If (3) is finite, and 1<7 <2, then, for almost every t we have

St,n [)C) =0 (log ll)li"
uniformly in x.

Also this result is known for r=217), The proofs of the gener-
al theorem and of the case r=2 do not dilfer essenptially, if we take
account of Theorem 9, with ¢ f'(x)=a.cosvx-tb.sinvx. For this
reason we omit the proof of Theorem 10 here, and refer the reader to
the paper quoted in the last footnote.

We add that the theorem similar to Theorem 10 would be false
for general series of the form (23), with ifx)] <1, v=0,1,... For
let ¢,=0, c,=1/v for v>>0, f.(x)=1¢. (), and consider the series
7, (%) 2. ()

(32)

v

i

If £ pj27, and x=*, the n-th partial sum of (32) is exactly of
the order logn, although I{ |7 < co for every r >1.

Theorem 11. If the expression (3) is finife, then almost all the series

[oe) .
v x
Z a, cos x—ll—bysmv o ()

— e
(log v)}”

converge uniformly in X, and so are Fourier series of continuous functions.
This follows from Theorem 10 by partial summation.

v=2

7y Paleyand Zygmund, Proc Cambridge Phil, Soc. 28 (1932) p. 190, The
result is proved there for power series,” but this point is without importance.
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Theorem 12. /f Y (|a. [ 16,17} (log W, 1<(r <2, 750, js
finite, then almost all the series (24) converge uniformly in x.
The theorem follows from Theorem 11.

§ 6.

In the previous paragraphs we studied properties of the series of
the form (23). Introducing, the complex unit factors €™ Q.70 1,
instead of the real unit-factors &= 1, we obtain the series
(o]

(33) e sy

v==0

where the independent variables 0, vary within the interval (0, 1).
Every sequence of numbers 0, 0;, 0,, ... belonging to (0, 1) may be
considered as a point in a space & of infinitely many dimensions, which
is defined by the inequalities

@ 0< 8 <1, (i=0,1,2...)

A theory of measure and integration may be constructed for this space't)
and if the series (33) has a property P for¥any point 0=(0,,9,,...)
except for those which belong to a set of measure 0, we shall say that
almost all the series (33) have the property P. The results which we
obtained for the series (23), hold also for the series of the form (33);

and the proofs remain, substantially, the same as before. This is due to’

the fact that the theorems which we established for Rademacher's
series (4) remain valid for the series of the form

0 ;
(34) e eZHLOV 15) 00, 1)

As an example, we state the following theorem, which is an
analogue of Theorem 8.

Theorem &. Suppose that ¥ |ef <~ , 1< r "2, and et

1
2}
$je

PES

F*(0)=Sup

.

¥) See H. Steinhaus, Math Zeifschrift, 31 (1930), 408 —416, B, Jessen,
Acta Mathematica, 63 (1934), 249 — 323; in the last paper a further bibliography of the
subject will be found.

1) The reader interested in the subject will fi ils i
quoted in the last two footnotes. ¢ subject wi ind more detafls in the papers
104
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Then, for evzry 2 >0, the function exp )~{F" (9]}" is inlegrable over

the space Q. If ) is small enough, % < ky(r,C), the integral

fexp L {F* ()} a6

&

does not exceed an absolute constant,

We add that, as regards applications of the complex unit-factors
it is more natural to consider not the trigonometrical series, but the
power series

[se]

2%,
Z ¢z e,
v=0

§ 7.
We conclude this paper by a few remarks about the series

[2e)
chelu—‘ (s=o+1it),

v=0

where {)} is sequence of different real numbers, and the coefficients
¢, are independent of the variable s. It is well-known that the theory
of such series is closely connected with the theory of almost periodic
functions. The sum, if it exists, of the series

S ,
(35) Zc‘e*»se . (s=c-}if)

v=0

will be denoted by f; {s). A number of interesting properties of almost all
the series (35) was found by Jessen?), Combining Jessen's
argument with Theorem 8, we obtain a number of further results.

Let f{f),—co<t<co, be a function integrable over any finite
interval. We shall say that f has a mean value M;{f({)} over (—=o, c9),

if the limits
T 0
1 1
im — Hdt, im — fdt
lim lefn ;;%Tfm
—T

T =00
]

20) Jessen, loc. cif.
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exist and are equal; this common value will, by definition, be M; {f(t]}’
In the case when f(#) is non-negative, the greater of the two numbers,
A 9
i’iﬁillff(r)dt, lim (f(t}dt
T Tesco 10
0 .

00 J
T

will be denoted by M {f(#}-

Theorem 13. Let the series

be convergent; then, for almost all points 0 in @, the series

[sls) .
N int 2wl
e e v

(36) ¢,

=0

s convergen! everywhere in t, to a sum fy(f) such that

et Aoy
is finite for every >0, Moreover, for almost every 0, and every 1 >0

lim M {eMi0—Fug®") 1,

nN=HTO
where fuy(t) is the n-th partial sum of the series (36).

Theorem 14. Suppose that the series

-
Z |e.|r b e
ve=: )

converges in every interval interior to <5< B. Then, for almost every
point 0 in Q, the series (35) is uniformly convergent in every closed and
bounded domain D interior fo the strip v.<_ <, and so represenis a func-
tion f; () regular in that strip,

Denoting by fu;(5) the n-th partial sum of (35), we have
106
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ko)

1

lim M [ exp2|fy(o+i0—fus G-Hin) ds) =1,

3.

el
&

for every A>>0, every finite (o, §8,) interior to (=, B), and almost every
Moreover, for almost all 6,

Fylo+it)=o(log it)¥"

uniformly in (o, 3).

For r=2 these theorems have been established by Jessen (loc.
cit). Using Theorem 8’, the proofs of the general results are mere
repetitions of the Jessen argument, and so may be omitted here.
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