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INTRODUCTION

In recent years, very dynamic development 
of measurement technology has been observed. 
As a result of the constant competition in the 
market, new machines, devices, new technolo-
gies and solutions appear in a relatively short 
period of time. At the same time, new possi-
bilities for surface analysis in 3D with nano-
meter accuracy have appeared [14]. Computer 
assistance has simplifi ed the analysis of mea-
surement results, including the identifi cation 
of the characteristic functions of the geometric 
surface structure – autocorrelation, load capac-
ity, power spectral density and others [7]. In 
3D measurements, the sampling interval has 
become very important. In the case of surface 
analysis in 3D, it defi nes the frequency limits 
(wavelength) of the measurement and has a 
signifi cant eff ect on the parametric evaluation 
of the surface geometry. Nowadays, selection 
of the sampling interval is based on arbitrary 
norms and recommendations, generally with-
out adequate justifi cation [7]. Increasing the 

sampling interval along with decreasing time 
and cost leads to an increase of the value of 
the parameters interval and a decrease in the 
inclination of the profi le and the curvature of 
the vertices, especially of the random profi les. 
A step which is not big enough leads to redun-
dancy and excessive correlation of ordinates 
[12]. In order to reduce the time and cost of re-
searches, it is necessary to determine the maxi-
mum sampling rate that guarantees the actual 
depiction of the area to be measured.

Heretofore, no procedure has been devised to 
select the sampling interval for surface stereom-
etry  hence numerous publications in this fi eld are 
still appearing. What is interesting is the fact that 
in almost each of these studies another suggestion 
appears. Practically, there are as many ∆X=∆Y 
values as studies. The aim of research made in 
the present paper follows from the emergence of 
many suggestions as to the method of selecting 
the sampling interval.

In many scientific articles, the issue of 
accurate surface mapping and determining 
the exact values of parameters describing its 
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topography are discussed. The research con-
cerns contact and contactless measurement 
techniques [16]. Rutherford [8] tested back-
scattering spectroscopy spectra and their re-
lationship to surface roughness. The shape 
of the RBS spectra has been found to change 
strongly with increasing sample roughness 
and an increasing angle of the incoming ion 
beam. In [9] there was presented a sampling 
method to measure surface roughness of cir-
cular flat. This non-contact method can effec-
tively use the surface roughness of sampling 
points to estimate the surface roughness of 
the overall optical surface. On the other hand, 
paper [3] presents a data sampling technique 
for the inspection of waving surfaces. Authors 
in [15] describe intelligent sampling strategy 
for surface measurement. A multi-sensor data 
fusion algorithm was developed based on de-
pendant Gaussian processes regression model 
and is served as the mathematical foundation 
to perform adaptive sampling of the surfaces 
with Bayesian inference by taking the bias and 
the variance of the fused model as the sam-
pling criteria. In [2] the author proposes a new 
method for surface measurements combining 
space-filling scan paths and adaptive sampling. 
Sampling positions are intelligently suggested 
along the scan Path and the data amount can be 
reduced to approximately 3–4%. Numerous ar-
ticles are concerned with research of sampling 
methods in surface measuring [1, 4-6, 10-11, 
13]. New measurement strategies are being 
studied, which reduces the measurement time 
and increases the accuracy of surface mapping.

In this paper [17, 19], choosing the sampling 
interval was guided by the principle that ∆X, ∆Y 
was half the radius of the rounded measuring nee-
dle and shorter than the applied filter. So for ex-
ample, authors of works [12, 18, 20, 28] mention 
in their studies, that the minimum sampling in-
terval depends on the size of measuring needle, it 
should be close to half of its radius of roundness.

In most digital profilometers, especially por-
table (workshop) ones, the sampling interval 
results from the assumed length of the measure-
ment segment and its division into a specific 
number of points. For example, in the TALY-
PROFIL software from Rank Taylor Hobson, 
which is compatible with their profilometers, the 
number of profile points may not exceed 8192 
and, depending on the adopted section, the sam-
pling interval is 0.5 µm, 1 µm or 2 µm. However, 

regardless of the adopted measuring section, the 
interval cannot be smaller than 0.5 µm. In this 
solution, it is difficult to assess the influence of 
the sampling interval on the values of surface 
roughness parameters, because they also depend 
on the length of the measuring segment, which 
in this case is also variable [39]. 

For example, the paper [40] (Table 1) reviews 
the literature on sampling interval and depends 
∆X, ∆Y on the value of the rounding radius of 
the measuring stylus ρ and ∆X, ∆Y. According to 
the author, ρ and ∆X, ∆Y are two parameters that 
greatly affect the measurement result.

Yet another way to determine the sampling 
interval is to relate it to the cutoff wavelength. Its 
value should be 1/100 of the filter cutoff wave-
length or the ratio of filter cutoff wavelengths 
λC/λS should be 300 [41]. J. Michalski has done 
an extensive literature review on the sampling 
interval. The author found that for periodic pro-
files, the correct value of the sampling interval 
determined from the autocorrelation function is 
0.4 ∙ DK0.1 (DK0.1 - is the correlation length at 
an autocorrelation function value of 0.1). This 
corresponds to a sampling interval of 0.4 β * (β * 
– is the parameter value of the exponential func-
tion approximating the autocorrelation func-
tion). For a random profile of the drilled surface, 
the sampling interval is best determined from 
the relation 1/(4 ∙ fk) (fk – frequency corresponds 
to the position of the curvature maximum of the 
function approximating the cumulative normal-
ized spectral power) [42].

With the above listing (Table 2), could be seen 
how the sampling interval values proposed by many 

Table 1. Summary of sampling interval values [40]
Value [μm] Literature

1 [19, 20]1

2 [21, 22]1

1.4 [23, 24]1

4 [25]1

2 [26, 27]2

<1.6 [28]2

1÷2 [29]3

1.1 [30]2

0.63 [12]2

1) Assuming that, rtip = 2 μm
2) Assuming that, the minimum wavelength calculated 
on the basis of the Shannon condition is 6.3 μm
3) Assuming that, the profile slope is in the range 15÷30°
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researchers vary widely. Their range is practically 
between values of 0.1 and 120 µm, even zero.

The guidelines for the operation of three-
dimensional measuring instruments do not pro-
vide any specific recommendations for the se-
lection of measurement parameter values when 
measuring surfaces with specific geometries in 
order to obtain reliable SGP mapping results. In 
such a situation, it seems undoubtedly necessary 

to carry out analytical and experimental studies 
to develop a strategy of SGP measurements that 
guarantee the reliability of SGP mapping and 
its parametric evaluation.

The purpose of the paper is to develop 
a scientifically sound method for selecting  
a sampling interval for obtaining a reliable para-
metric evaluation of SGP without unnecessarily 
increasing measurement time and cost.

Table 2. Adopted sampling intervals covering the entire range of their length recommended in the literature [42]

No. Sampling interval by 
criterion

Surface profile

Sinusoidal Triangular Arched
Symmetrical

Arched
veriable

Arched
reverse Drilled Bored

1. 1/(2 * f0.95), [26] 62 62 52 79 74 8 28

2. 1/(2 * fP), [31] 51 51 34 52 50 7 14

3. 1/(4 * fK), [32] 64 56 38 56 56 7 22

4.
1/(3 * fc) lub 1/(8 * 

fc),(fMmax ), [33]
9 (240) 9 (235) 9 (200) 9 (235) 9 (250) 2 (54) 12.5 (67)

5. 0.4 * β, [34] 19 17 16 21 21 38 10

6. 2.3 * β, [35] 108 97 90 120 120 218 57

7. 0.4 * DK0.1
(0.92 * β) 19 (43) 19 (39) 18 (36) 24 (48) 25 (48) 86 (86) 10 (22)

8. fc  ~ λfali/2.56, [36] 73 73 73 73 73 7 39

9. ρ/2, [20, 22, 28] 1.25 1.25 1.25 1.25 1.25 12.5 1.25

10. ρ, [21, 22, 26, 27] 2.5 2.5 2.5 2.5 2.5 2.5 2.5

11. ρ*√2, [24] 3.5 3.5 3.5 3.5 3.5 3.5 3.5

12. 2 * ρ * sin(∆a), [29] 0 0.6 0 0.1 0 0.1 01

13. 2*ρ, [27] 5 5 5 5 5 5 5

14. 0.25 * S, [28] 50 50 50 50 50 3 21

15. λc/100, [21] 8 8 8 8 8 8 8

16. λfali/6, [37] 31 31 31 31 31 3 17

17. λfali/8, [33] 23 23 23 23 23 2 12.5

18. λfali/16, [38] 12 12 12 12 12 1 5.25

19. λfali/20, [22] 9 9 9 9 9 1.0 5

Fig. 1. Tested surfaces: a) anisotropic mixed, b) anisotropic periodic, c) anisotropic random, d) isotropic random

a)

d)c)

b)
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Fig. 2. Roughness measurements on the mixed anisotropic surface with different sampling intervals:  
a) ∆X = ∆Y = 5 µm, b) ∆X = ∆Y = 10 µm, c) ∆X = ∆Y = 20 µm, d) ∆ X = ∆Y = 50 µm, e) ∆X = ∆Y = 100 µm

Fig. 3. Change in amplitude parameters values obtained during surface measurement 
with different sampling intervals relative to ΔX = ΔY = 5 µm

e)d)

c)b)a)
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AREA MEASUREMENTS

Measurements were made using the contact 
method using a measuring stylus with a rounding 
radius of 5 μm on the following surfaces (Fig. 1): 
mixed anisotropic, periodic anisotropic – turned 
surface, random anisotropic – milled surface, ran-
dom isotropic – peened surface.

In order to obtain reliable results, the same 
surface area was tested with different sampling 
lengths with the remaining parameters constant.

The tests were carried out on the surfaces of 
5x5 mm2 presented above. Various sampling in-
tervals were used during the measurements: ΔX = 
ΔY = 5, 10, 20, 50, 100 µm.

In order to compare the relative values (pa-
rameters tested with a different sampling in-
terval) for the values of the parameters of the 
tested surface with ΔX = ΔY = 5 µm, the value 
equal to 1 was adopted, for the remaining ΔX = 
ΔY deviations from the value equal to 1. Thus, 
you can see the differences between the parame-
ter values caused by the change of the sampling 
interval (Fig. 2, Table 3).

SURFACE TESTS 

Anisotropic mixed surface

As a result of surface measurements with vary-
ing sampling interval presented above (Fig. 2) val-
ues of selected individual roughness parameters 
were analyzed and compared (see Fig. 3 and Fig. 4). 

Anisotropic periodic (turned surface)

Table 3 below shows parametric values of 
anisotropic surface measurements, which alter 
depending on the applied sampling intervals. 
During the measurements varying sampling inter-
vals were used: ΔX = ΔY = 5, 10, 20, 50, 100 µm. 
The value equal to 1 was adopted (see column 2 
in Table 3) to facilitate the comparison between 
the relative values (i.e. parameters tested with a 
different sampling interval). The value of 1 cor-
responds to the values of the parameters of the 
tested surface with ΔX = ΔY = 5 µm. Graphic rep-
resentation of the parameters presented in Table 3 
is illustrated further in Figure 5.

Fig. 4. Change in hybrid parameters values obtained during surface measurement 
with different sampling intervals relative to ΔX = ΔY = 5 µm

Table 3. Change in parameter values obtained during turned surface measurement with different sampling 
intervals relative to ΔX = Δ = 5 µm

Sampling Interval

DX=DY [μm] 5 10 20 50 100

Roughness parameters

Sa 1 0.992 0.984 1.023 0.92

Sz 1 0.944 0.915 0.846 0.765

St 1 0.959 0.95 0.888 0.792

Sq 1 1 0.993 1.025 0.954

Sp 1 0.982 0.972 0.892 0.739

Sv 1 0.937 0.931 0.884 0.839

Sdq 1 0.824 0.614 0.376 0.193

Ssc 1 0.477 0.2 0.053 0.014
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Anisotropic random (milled surface)

Table 4 presented below shows parametric val-
ues of anisotropic random surface measurements. 
The values evidently change depending on the in-
troduced sampling intervals. The manner of data 
presentation, used parameters, sampling interval as 
well as the method are analogical to those imple-
mented and shown in Table 3. Parameters present-
ed in Table 4 are presented graphically in Figure 6.

Isotropic random

Table 5 presents results of isotropic random sur-
face measurements, whose values change depending 
on the used sampling intervals. As before, the way of 
presenting data, used parameters, sampling interval, 
and the method are analogical. Parameters presented 
in Table 5 are shown graphically in Figure 7.

Studying the changes in the parametric val-
ues in the Tables 3, 4, 5, and inspecting the same 
values illustrated in corresponding Figures 5, 6, 
7, it can easily be noticed that a majority of the 
8 parametres change their values along with the 
change of sampling interval. The values notice-
ably decrease, with values of two parameters, 
namely Ssc and Sdq, dropping drastically with 
the rise in the sampling interval.

ANALYSIS OF SAMPLING 
INTERVAL SELECTION

The purpose of the study is to find (calculate) 
the maximum sampling interval (ΔX = ΔY) that 
guarantees coverage of points measured with a 
certain probability.

Fig. 5. Change in parameters values obtained during surface measurement 
with different sampling intervals relative to ΔX = ΔY = 5 µm

Table 4. Change in parameter values obtained during milled surface measurement with different sampling 
intervals relative to ΔX = Δ = 5 µm

Sampling Interval

DX=DY [μm] 5 10 20 50 100

Roughness parameters

Sa 1 0.97 0.958 0.951 0.963

Sz 1 0.863 0.847 0.835 0.871

St 1 0.854 0.834 0.83 0.885

Sq 1 0.968 0.954 0.95 0.969

Sp 1 0.79 0.77 0.768 0.83

Sv 1 0.915 0.9 0.884 0.938

Sdq 1 0.951 0.894 0.7 0.283

Ssc 1 0.745 0.576 0.292 0.052
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Fig. 6. Change in parameters values obtained during milled surface measurement 
with different sampling intervals relative to ΔX = ΔY = 5 µm

Table 5. Change in parameter values obtained during isotropic random surface measurement with different 
sampling intervals relative to ΔX = Δ = 5 µm

Sampling Interval

DX=DY [μm] 5 10 20 50 100

Roughness parameters

Sa 1 0.997 0.994 0.994 1.002

Sz 1 0.988 0.956 0.84 0.776

St 1 0.972 0.943 0.835 0.808

Sq 1 0.997 0.993 0.995 1.004

Sp 1 0.96 0.898 0.803 0.764

Sv 1 0.984 0.984 0.864 0.854

Sdq 1 0.929 0.827 0.584 0.37

Ssc 1 0.657 0.442 0.17 0.059

Fig. 7. Change in parameters values obtained during isotropic random surface 
measurement with different sampling intervals relative to ΔX = ΔY = 5 µm
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The measurement of the geometrical structure 
of the surface in a 3D system relies on the mea-
surement of parallel profiles in mutually perpen-
dicular directions using a measuring stylus, which 
moves on the examined surface measuring it at a 
given sampling period ΔX = ΔY. Consequently, 
one obtains the so-called measuring grid, which 
corresponds to the measured surface (Fig. 8a).

Points located at the intersection of the grid 
correspond to the location of the points of mea-
surement. By superimposing a measuring grid 
onto the surface, a three-dimensional image 
of the surface is obtained (Fig. 8b). The points 
(measurement grid nodes) at the intersection of 
the grid are the measurement locations.

The reliability of the analyzed surfaces and 
the value of the roughness parameters largely de-
pends on the density of the mesh nodes (proxim-
ity of the measurement points). It becomes clear 
that when ΔX = ΔY → 0, then the measurement 
results are getting increasingly accurate. In case 
when ΔX = ΔY → ∞ their fidelity is lost. 

In turn, when the sampling interval increases, 
their accuracy is lost, as shown in Figure 9.

With increasing the sampling interval, the 
differences between the profiles of the examined 
surfaces are significant and visible. This is be-
cause the instrument ignores individual peaks and 
dimples between passes.

Fig. 8. a) measuring graticule, b) three-dimensional image

Fig. 9. Surface profile measured with: a) ∆X = ∆Y = 10 µm, b) ∆X = ∆Y = 100 µm

b)a)

b)

a)
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So what should be the largest ∆X = ∆Y to 
fully reproduce the examined surface image and 
obtain reliable values of roughness parameters, 
reducing the time and cost of the measurement?

In order to answer the question posed, it 
was assumed that the extreme surface irregulari-
ties (more precisely their vertices and pits) were 
marked as dimensionless points. In this way, the 
set of randomly distributed points resulting from 
the adopted assumptions reflects the irregularities 
on the tested surface (Fig. 10).

In addition, the following axiomatic assump-
tions were introduced:
1. The target area is a continuous area.
2. Extreme points form a set of points of equal 

probability on the surface.
3. The extreme points of elevations and depres-

sions are equal and possess approximant values.

As a result of measuring the area, the measur-
ing grid overlaps with a disordered set of points 
as shown in the Figure 11.

The probability of covering all points with the 
measurement grid P → 1 may take place only in 
the case when ∆X = ∆Y → 0. However, this case 
is not feasible, and the use of a sampling interval 
that approaches zero is absurd.

In fact, extreme surface irregularities, previ-
ously denoted as dimensionless points, can be 
interpreted as elements with specific dimensions 
and boundaries. Therefore, a circle with specific 
dimensions was inscribed in the characteristic in-
clusions and recesses of the surface. It turns out 
that almost every surface unevenness (based on 
calculations of the average curvature of individual 
vertices) has a similar value of curvature (Fig. 12).

Therefore, the measurement surfaces were 
treated as a set of chaotically distributed peaks 

and pits, forming on the surface a set of elements 
of equal probability in the shape of cones with 
rounded vertices.

In order to determine the value of surface un-
evenness in the form of cones, the following nor-
malized measurement parameters were used: Ssc 
- the arithmetic mean of the curvature of the sur-
face unevenness peaks and Sdq - the mean square 
inclination of the surface unevenness. Based on 
the parameters mentioned, the radius of rounding 
the peaks of the inequality was calculated: Rw = 
1/Ssc (seen Fig. 13).

Subsequently, the scheme of covering the 
tested surface with a measuring grid is slightly 
different than in Figure 12. The set of cones is 
an unordered set of elements (Fig. 14., Hatched 
fields), the ordered set is the measuring grid 
formed during 3D measurements (when plotting 
the measuring surface) with the sampling inter-
val, most often ∆X = ∆Y.

Fig. 10. Diagram showing the assumption of treating extreme surface irregularities as dimensionless points [43]

Fig. 11. Covering a disordered set of 
points with a measurement grid
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The highest measurement accuracy is achieved 
when the measuring stylus at the moment of the sig-
nal registration (mesh node) (Fig. 14) is in line with 

the part of the cone with rounded vertices. The transi-
tion points between the extreme points do not play a 
decisive role in the parametric evaluation of the SGP.

Fig. 12. A circle inscribed in the vertices and recesses of the surface unevenness

Fig. 13. Graphical interpretation of the mea-
surement surface unevenness element

Fig. 14. Scheme of surface cover-
age with a measuring grid
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Thus, the task formally comes down to 
the analysis of the coverage of a disordered 
(chaotic) set “A” with the set “B” arranged in 
the shape of a square grid ∆X = ∆Y. The basic 
task of the analysis of the mutual overlapping 
of such sets is to determine the necessary and 
sufficient value of the measuring segment ∆ of 
set “B”, guaranteeing the given probability P 
(j) of covering the points of set A with points 
of set B.

A measurement grid is an ordered set of 
points obtained as a result of isometric and 
symmetrical transformations with respect to 
the axis of symmetry. Therefore, considerations 
were made on the basis of one elementary link 
of the grid. We take Δ = 1.

Presented in Figure 15. the hatched field 
marked with the symbol “j” is the place where 
the appearance of the centers of the circles with 
radius R guarantees that the measurement grid 

node will hit the surface irregularities in the 
shape of cones with rounded vertices. These in-
equalities are shown in Figure 16 in the form of 
circles with radius R.

A circle with radius R will cover one of the 
nodes of the square if the distance between the 
center of the circle and the node is less than or 
equal to the radius R. The value of “j” depends 
on the dimension ratio R – the radius of the 
apex circumference and the sampling interval 
Δ, hence j = R/Δ.

The hatched zones represent the areas where 
the center of a circle with radius “j” guarantees 
coverage of at least one of the mesh nodes. Non-
hatched areas stand for the so-called dead zone, 
which, depending on the case under consider-
ation, has the following shape:
 • for j ≤ 1/2, corresponding to the curvilinear 

rhombus (a), the shaded area is πj2 of the 
square Δ = 1,

 • for j ≤ 1/2 ≤ √2/2, corresponding to the curvi-
linear rhombus (b), the probability P (j) equals 
the area of the square Δ = 1 minus the areas of 
the curvilinear rhombus in its center,

 • for j ≥ √2/2, corresponding to midpoint (c), the 
location of the center of the circle at any point 
in the square guarantees coverage of at least 
one of the nodes P (j) = 1. 

In order to find the probability P (j) for 
case b), it is necessary to calculate the area of 
the non-hatched curvilinear rhombus forming 
the dead zone. After deriving the formula, it 
was obtained.

Fig. 15. Scheme of coverage of finite elements 
with radius R with nodes of the measuring grid

Fig. 16. Scheme of possible positions of the fields (zones) of the center of the 
element with the radius “j”; a) j ≤ 1/2; b) 1/2 ≤ j ≤ √2/2; c) j ≥ √2/2

c)b)a)



Advances in Science and Technology Research Journal 2021, 15(4), 283–298

294

𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧ 𝜋𝜋𝜋𝜋𝑗𝑗𝑗𝑗2

1 − 4 �
1
2 �

0.5−�𝑗𝑗𝑗𝑗2 − 0. 52 + 𝑗𝑗𝑗𝑗2 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
�𝑗𝑗𝑗𝑗2 − 0. 52

𝑗𝑗𝑗𝑗
− 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

0.5
𝑗𝑗𝑗𝑗
���

1

=

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑗𝑗𝑗𝑗 ≤

1
2

1
2
≤ 𝑗𝑗𝑗𝑗 ≤

√2
2

√2
2
≤ 𝑗𝑗𝑗𝑗

 (1)

A graphic interpretation of the formula is 
provided in Figure 17. The formula (1) and the 
graph (Fig. 17) were prepared for the case where 
the measurement grid nodes were theoretical 

dimensionless points. In fact, the points (i.e. 
points of measurement) occurring at the intersec-
tion of the grid (see Fig. 18) are not dimension-
less points but elements with specific dimensions. 
Their dimensions are related to the value of the 
rounding radius of the measuring stylus ρ.

As a result, the scheme of covering the sur-
face roughness with the measuring grid takes the 
form presented in Figure 19.

Fig. 17. Graphical interpretation of the probability of covering the surface of a set of 
elements with dimensions R with a grid of measurement points with dimensions Δ

Fig. 18. Graphical interpretation of the contact 
element of the measuring stylus with the surface

Fig. 19. Scheme of coverage of a disordered 
random (chaotic) set with an ordered set in 

the shape of a square grid ∆X = ∆Y
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In this case, the task comes down to super-
imposing the set of mesh nodes elements on the 
set of elements related to the surface roughness 
values. The actual scheme of covering the tested 
surface with a measuring grid was considered as 
follows (Fig. 20).

Figure 20 illustrates the following relationship:
𝑅𝑅𝑅𝑅

Δ− 𝜌𝜌𝜌𝜌
≤
√2
2

 (2)

as a result of which
𝑅𝑅𝑅𝑅 =  0.7𝛥𝛥𝛥𝛥 –  0.7 𝜌𝜌𝜌𝜌 (3)

Taking into account the radius of rounding 
of the measuring stylus ρ, the final formula (4) 
was obtained, allowing to calculate the maximum 
sampling length ∆X = ∆Y guaranteeing 100% full 
coverage of the peaks of the tested unevenness 
with the measuring grid.

𝛥𝛥𝛥𝛥𝑝𝑝𝑝𝑝=1 = 1.41 ×  𝑅𝑅𝑅𝑅 + 𝜌𝜌𝜌𝜌 (4)

where: R – the radius of the circumference of the 
vertex representing the circular element 
of the vertex set, ρ – rounding radius of 
the measuring needle.

The value of the radius R is the product of the 
rounding radius of the vertex of the inequality Rw 
and the sine of the angle α.

𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝛼𝛼 (5)

In order to calculate Rw, the normalized pa-
rameters Ssc and Sdq were used. Rw has the re-
ciprocal value of the arithmetic mean curvature of 
the peaks of surface unevenness,

𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤 =  1/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (6)

while the angle α is closely related to the Sdq 
parameter - the mean square slope of surface un-
evenness (Fig. 21).

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼 (7)

𝛼𝛼𝛼𝛼 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (8)

According to the derived formula (4), the max-
imum sampling length ΔX = ΔY was calculated, 
which guarantees full 100% coverage of the peaks 
of the tested unevenness with the measuring grid.

RESEARCH WITH THE USE 
OF A FORMULA (2)

Sixty surfaces with different geometrical 
shapes and different height parameters from St 
(height of unevenness) = 0.426 µm to St = 141 
µm were examined.

The following parameters were measured in 
all surfaces: Sdq, Ssc.

Fig. 21. Graphic interpretation of the Sdq parameter

Fig. 20. The actual scheme of covering 
the test surface with a sampling grid

Fig. 22. The sampling length Δp=1 guarantees 100% coverage of the peaks of the roughness
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Then, the maximum sampling length ΔX = ΔY, 
which guarantees full 100% coverage of the peaks 
of the tested inequalities with the measuring grid, 
was calculated according to the formula (4). The 
calculation results are presented in Figure 22.

For surfaces with a high inclination of the 
roughness (high value of the Sdq parameter) and 
high curvature of the vertices (high value of the 
Ssc parameter), the maximum sampling length 
Δp = 1 guaranteeing full 100% coverage of the 
peaks of the tested inequalities with the measur-
ing grid has a small value of 7±8 μm. This is due 
to the characteristic shape of the tested uneven-
ness (narrow steep hills with a large rounded 
apex) (see Fig. 23a).

A too large sampling length could result in 
omission of vertices, and, consequently, measur-
ing the area would be inaccurate. Therefore, in or-
der to carry out precise tests, the smallest possible 
value of ΔX = ΔY should be used.

For surfaces characterized by a high inclination 
of the roughness (high value of the Sdq parameter) 
and a small curvature of the vertices (low value of 
the Ssc parameter), the maximum sampling length 
Δp=1 guaranteeing a full 100% coverage of the peaks 
of the tested inequalities with the measuring grid has 
a value of approx. 13 μm. This is due to the wide 
shape of the irregularities (gentle elevations with a 
small radius of rounding at the tops) (see Fig. 23b). 
In this case, the measuring instrument identifies ir-
regularities of the shape under consideration much 
more easily. Therefore, in order to carry out accurate 
tests, the sampling interval ΔX = ΔY with values in 
the order of 12±13 μm can be used, thus reducing 
the time and cost of the tests.

CONCLUSIONS

Based on the tests performed, it can be con-
cluded that the sampling interval has a significant 
impact on the parametric evaluation of the SGP. 
Accuracy of measurements decreases with in-
creasing sampling interval. When creating a large 

sampling interval, e.g. ΔX=ΔY [μm], one should 
take into account that the obtained measurement 
results will be not very accurate. It may happen that 
they do not give a real image of the tested surface, 
because the moving stylus will ignore the detail in 
the curvature of the tested surface. The hybrid pa-
rameters: Ssc - arithmetic mean curvature of the 
vertices of surface unevenness and Sdq - mean 
square slope of surface irregularities, are very sen-
sitive to the sampling interval. The sampling in-
terval should be selected depending on the type of 
the tested surface. It largely depends on the shape 
of its geometric structure. For surfaces with a high 
inclination of unevenness and high curvature of the 
peaks, the smallest possible sampling interval of 
7±8 μm should be used. For surfaces characterized 
by a high inclination of unevenness and a small 
curvature of the peaks, a larger sampling interval 
ΔX = ΔY of 12±13μm can be used, thus reducing 
the time and cost of testing.
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