
Vol. 109 (2006) ACTA PHYSICA POLONICA A No. 1

Proceedings of the 2nd Workshop on Quantum Chaos and Localisation Phenomena,
Warsaw, Poland, May 19–22, 2005

Cold Atomic Gases in Optical Lattices

with Disorder

T. Schultea, S. Drenkelfortha, J. Krusea, W. Ertmera,

J.J. Arlta, A. Kantianb,c, L. Sanchez-Palenciab,d,

L. Santose, A. Sanperab,f,∗, K. Sachag, P. Zollerc,

M. Lewensteinb,h,∗ and J. Zakrzewskig

aInstitut für Quantenoptik, Universität Hannover
30167 Hannover, Germany

bInstitut für Theoretische Physik, Universität Hannover
30167 Hannover, Germany

cInstitute of Theoretical Physics, Universität Innsbruck
Technikerstr. 25, 6020 Innsbruck, Austria

dLaboratoire Charles Fabry, Institut d’Optique
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Cold atomic gases placed in optical lattices enable studies of simple con-

densed matter theory models with parameters that may be tuned relatively

easily. When the optical potential is randomized (e.g. using laser speckle to

create a random intensity distribution) one may be able to observe Anderson

localization of matter waves for non-interacting bosons, the so-called Bose

glass in the presence of interactions, as well as the Fermi glass or quantum

spin glass for mixtures of fermions and bosons.
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1. Introduction

Cold atoms placed in an optical lattice potential make it possible to realize
standard models of condensed matter theory as suggested [1] for the Bose–Hubbard
(BH) model [2, 3]. The reported realization [4] of a quantum phase transition
between superfluid (SF) and Mott insulator (MI) phases showed convincingly that
it was possible to experimentally control the parameters of the model practically at
will. This triggered several studies involving Bose condensates [5–9] as well as more
recently Bose–Fermi (BF) mixtures [10–13] placed in an optical lattice. The latter
have no direct analogues in condensed matter physics, and provide an exciting
possibility of boson–fermion pairing [13] and of creating novel phases [12, 14].

It is natural to consider whether the presence of disorder may affect the
properties of these atomic systems. For the well studied BH model the answer
is known since the seminal study of late eighties [2]. In the absence of disorder
there exist MI states, characterized by a fixed (integer) number of bosons per
lattice site, a gap in the excitation spectrum, and vanishing superfluid fraction
and compressibility. An additional insulating phase, the so-called Bose-glass (BG)
phase may occur in the presence of disorder [2]. The BG is characterized by
the absence of the superfluid fraction, a gapless excitation spectrum, and a finite
compressibility.

The nature of disorder-induced insulator phases depends on the interplay
between hopping, nonlinear interactions and disorder. In the strong-interaction
regime, the cooperation of interactions and disorder leads to the appearance of
a BG phase. For weak interactions, the situation is rather different. Here the
interactions tend to delocalize and therefore compete with the disorder (which,
for no interactions, may lead to the Anderson localization) sometimes destroying
the localization altogether while for other conditions allowing for the formation of
an Anderson-type insulator, or the Anderson glass (AG) [15]. Here no superfluid
fraction is present, while the condensate fraction is large.

It still remains to be seen whether the richness of disorder induced phenom-
ena may be observed experimentally in typical cold atoms setups. This contri-
bution aims to give a partial answer to this question. We briefly mention three
different cases in the subsequent sections: Anderson-like localization for a one-
-dimensional lattice with disorder, MI–BG transition for deep lattices, and BF
mixtures.

2. Anderson limit

Let us consider first a typical arrangement of a Bose condensate placed in
an elongated harmonic trap as realized in Florence [16] or Hannover [17]. In such
a trap the condensate may be treated as quasi one-dimensional (1D). In the Flo-
rence experiment the condensate is placed in a random optical potential resulting
from the projection of speckle light. The Bose–Einstein condensate (BEC) probes
about 6 (random) wells in the axial direction. One then expects that the BEC
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splits between the wells, and that the wells size bounds from above the BEC phase
coherence length; detection based on the time of flight (TOF) expansion will then
reveal stripes in the condensate image, caused by the transformation of the phase
fluctuations to the density modulations, similar to that for highly elongated con-
densates [18, 19]. We speculate that the spacing between stripes observed in the
experiment [16], seemingly in disagreement with the characteristic length of the
speckle, may in fact be related to them if the interactions during the initial stage
of TOF expansion is taken into account.

In the Hannover experiment a speckle of similar characteristic length L is
applied together with a 1D optical lattice with λ = 825 nm. Preliminary observa-
tions confirm the presence of the stripes observed in Florence; due to the presence
of the lattice striped Bragg side bands appear in addition. Let us note, how-
ever, that since λ ¿ L the speckle produces a smooth modulation of the optical
potential.

To check whether one can observe the Anderson localization in the presence
of interactions in realistic experimental conditions we assume parameters similar
to those of the Hannover experiment. We find the ground state of the 1D Gross–
Pitaevskii equation (GPE) which should be appropriate for quasi-1D experimental
situation†.

In oscillator units corresponding to the axial trap frequency the time-
-independent GPE reads[

−∂2
x

2
+

x2

2
+ V0 cos2(kx) + Vdis(x) + g|φ|2

]
φ = µφ, (1)

where V0 is the amplitude of the optical lattice created by λ = 825 nm laser
beam with k = 2π/λ. We take V0 = 6.5Er, where Er is the recoil energy. Vdis(x)
stands for a disorder potential. The interaction coefficient g is chosen such that the
axial size of the BEC corresponds to that of the (necessarily three-dimensional)
experiment [17].

While the details of the simulations will be presented elsewhere, let us men-
tion here the main message. As mentioned above, no nontrivial localization is
expected for large speckles with a correlation length order of magnitude bigger
than λ. One can decrease L so it is of the order of λ in numerical simulations
(albeit it may be difficult to realize experimentally). Still, for realistic experimen-
tal situations (minimal number of atoms of the order of 104 — that determines
the size of the BEC and the effective interaction strength g) no localization is
present due to the relatively strong interactions that tend to destroy the localiza-
tion. The effect can be easily understood considering the effective potential seen
by the atoms

†Actually we have checked, using second order Bogoliubov expansion in selected cases
that, for the values of parameters studied, the depletion of the condensate is of the order
of few percent, so the mean field GPE description should be well justified.
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Veff =
x2

2
+ V0 cos2(kx) + Vdis(x) + g|φ|2. (2)

Localization appears for g = 0 due to the random nature of Vdis(x). The nonlinear
term effectively screens the disorder, with g|φ|2 being large at the minima of the
optical potential.

To observe localization one needs thus also to decrease the interaction
strength g. Several methods are possible, e.g. by modifying the interactions
via a Feshbach resonance technique. One may also consider a smaller number of
atoms — but then the BEC typically has a much smaller Thomas–Fermi radius
and occupies few wells of the optical potential. Another possibility is to make
the harmonic trap frequency much smaller — then the BEC spreads more and a
smaller number of atoms may be used. Figure 1 shows the ground state for a non-
interacting system as well as for a small value of g corresponding to a very shallow
trap. Actually instead of small-size speckles we create an effective disorder by
superimposing two additional laser beams with incommensurate frequencies [1, 9].

Fig. 1. Ground state of BEC in an optical lattice with superimposed disorder. The

disorder is created by additional optical lattices (30 times weaker than the main op-

tical lattice). Part (a) corresponds to no interactions (g = 0), part (b) to g = 128

corresponding to 5000 atoms in a shallow trap with a frequency around 4 Hz.

Let us mention that similar destruction of localization has been predicted
by Shepelyansky [20] in the case of dynamical localization perturbed by a weak
nonlinearity. Similarly, effective screening of the disorder potential by interacting
bosons has been considered before (see [21] and references therein). The nice
feature here is that these problems may now also be addressed in the cold atoms
environment. Moreover, our simulations show the details of onset of the screening
effect (see Fig. 1b), which consists in appearance in the condensate wave function
of many exponentially localized peaks of comparable amplitudes.

3. Bose–Hubbard model considerations

Up to now we have considered a 1D situation where several atoms occupy a
single well of the optical lattice. Without disorder we are in the deep superfluid
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regime (this justifies the application of the GPE). For higher dimensional lattices
we may expect fewer atoms per site even when the total number of atoms exceeds
105 (e.g. in 3D case of [4] up to 3 atoms per site is expected). Then there is a
chance to reach an insulating regime.

For a sufficiently high optical lattice, atoms occupy the lowest band of the
lattice. A convenient description of the system (with no disorder) in that case is
via the tight-binding Bose–Hubbard model [1] with the Hamiltonian

H = −
∑

〈i,j〉
Jb†i bj +

U

2

∑

i

ni(ni − 1) +
∑

i

Wini, (3)

with bi annihilating a boson at site i, J being the tunneling rate between nearest
neighbors (nn), while U being the effective interaction between atoms in the same
well. Wi is the energy of the bottom of i-th well, which depends on the trapping
potential, and typically will be assumed to be harmonic. Let us superimpose the
disorder on top of that lattice, either by adding additional lattices or by adding the
speckle. This modifies Wi and, for a sufficiently strong disorder also the tunneling
coefficients which receive an additional random component. For a weak disorder
the main effect comes from modifying Wi.

Following [9] we consider a 2D lattice (assuming a tight harmonic binding
in the perpendicular direction) and neglect the harmonic binding. To be specific
we consider sodium atoms and optical lattice created by λ = 1064 nm radiation.
The optical lattice potential takes the form

Vl(r) = V0[cos2(kx) + cos2(ky)] (4)
with k = 2π/λ. When tunneling dominates (small U/J) the ground state is
superfluid. With the increase in the lattice height a phase transition to the Mott
insulator phase may occur if the ratio of the number of atoms N to number of
sites M , κ = N/M is commensurate. For a non-integer κ the fraction of atoms
will remain always superfluid. We expect then that when disorder is adiabatically
turned on the system will undergo a phase transition to the Bose glass phase i.e.
the superfluid fraction will vanish.

The exact study of the dynamics, for a 2D lattice is impossible due to com-
puter memory limitations. Therefore, we use the dynamical mean field approach,
which neglects the entanglement between different wells and expresses the wave
function as a product of states at different wells. This is the so-called Gutzwiller
ansatz |ΨMF〉 =

∏
i

∑∞
n f

(i)
n |n〉i, where the f

(i)
n are the amplitudes of having n

atoms at an i-th lattice site. The adiabatic changes of the ground state when
parameters of the system are varied may then be studied using the dynamical
Gutzwiller approach [22], see [9] for details. Such an approach has been recently
used by one of us [23] for simulating details of the experiment on MI–SF quantum
phase transition [4].

To characterize the system one may use the so-called condensate frac-
tion, defined as the highest eigenvalue of the one particle density matrix, ρij =
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〈ΨMF|b†i bj |ΨMF〉, divided by the number of particles [24]. Another useful quantity
is the superfluid fraction which is determined by quantifying systems sensitivity to
changes of boundary conditions using the so-called “boost method” (see [25, 26]
for details).

To simulate the transition from a superfluid to a Bose glass one should
consider first a BEC, then turn on optical lattices to obtain a SF state, then turn
on the disorder. The BH model as a tight binding model assumes that the optical
lattice is sufficiently deep. To stay within the model we assume that initially
atoms are in a SF ground state with V0 = VSF = 7Er (this and the other values for
parameters are stimulated by experiments [4]). Then we increase the lattice depth
using a linear ramp V0(t) = VSF+(VMI−VSF)t/T with T = 20 ms and VMI = 25Er.
For integer κ we should reach then a pure MI state. Instead we take κ = 0.75 so
in the process the superfluid fraction decreases from almost unity to about 30%.
With no disorder the condensate fraction remains equal to the superfluid fraction.

Next we introduce disorder. To this end we employ an additional 2D lattice
with λ = 795 nm and main axes rotated with respect to the original lattice.
The amplitude of that additional lattice is turned on very slowly (over more than
400 ms) with the linear ramp finally reaching V1 = 0.059Er. Let us note that this
final value is only a tiny fraction of the amplitude of the main lattice. Still the
decrease in the SF fraction (and the condensate fraction) is quite spectacular (cf.
Fig. 2). The condensate fraction stays at a few percent level, while the SF fraction
practically vanishes.

Fig. 2. Condensate fraction (solid line) during the dynamical SF to BG transition

induced by a disorder created by an additional optical lattice, for 23Na atoms placed

on the main 40 × 40 lattice with λ = 1064 nm, κ = 0.75. The inset shows the first

preparation step (see text). The dashed line presents the SF fraction.

This result seems quite promising. It seems that SF–BG transition may be
observed in cold atoms experiments. Still one should be aware of the difficulties.
To follow the ground state adiabatically, the disorder must be turned on quite
slowly. Let us observe that the turn on time above was a fraction of a second.
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This is due to the fact that the presence of the disorder leads to creation of a
manifold of quasidegenerate states — to be adiabatic takes a lot of time. That
may create difficulties with decoherence as well as other mechanisms which may
affect the experiment.

4. Bose–Fermi mixtures

Let us now consider briefly the effect of disorder on Bose–Fermi mixtures
placed in optical lattices. Here, instead of dynamics, we merely indicate the rich-
ness of possible behaviors by considering the properties of the ground state within
the effective Hamiltonian approach [27].

Under appropriate conditions Bose–Fermi mixtures can be well described by
the Bose–Fermi–Hubbard (BFH) model [11]. A particularly appealing feature of
this model is the possibility to produce novel quantum phases [12, 14], fermion-
-boson induced superfluidity [28], and composite fermions, which for attractive
(repulsive) interactions between fermions and bosons, are formed by a fermion
and bosons (bosonic holes) [13, 29, 30]. The phase diagram of the system has
been determined in Ref. [31] by means of the mean-field theory [3]. These studies
have been generalized to inhomogeneous lattices [32] to include simultaneously the
effects of the lattice and of a possible trap potential. Treating the tunneling as a
perturbation one may also include the effect of the disorder [27].

Let us consider a sample of ultracold bosonic and (polarized) fermionic atoms
(e.g. 7Li–6Li or 87Rb–40K) trapped in an inhomogeneous optical lattice. We
assume that the lattice potential consists of two terms: a periodic potential forming
a hypercubic lattice in 2D or 3D, and an additional, e.g. disordered superlattice
potential. The atoms occupy only the lowest energy band, i.e. the fermion number
NF is strictly smaller than the number of lattice sites M . The Hamiltonian of the
system reads [11, 33]:

HBFH = −
∑

〈ij〉
(JBb†i bj + JFf†i fj + h.c.)

+
∑

i

[
1
2
Uni(ni − 1) + V nimi − µB

i ni − µF
i mi

]
, (5)

where bi (fi) annihilates a boson (fermion) at site i, ni = b†i bi, mi = f†i fi, and µB
i

and µF
i are the bosonic and fermionic local chemical potentials, respectively. Later

on we assume the same tunneling rate for fermions and bosons, JB = JF = J , and
consider repulsive boson–boson interactions U , as well as repulsive on-site boson–
fermion interactions V . Since we want to treat tunneling perturbatively, we assume
strong interactions: V,U À J , and introduce a shorthand notation α = U/V > 0.
We assume that disorder affects only bosons, so we take [27] µF

i = 0, µB
i = µiU .

Let us consider first J = 0. For 0 ≤ µi < 1 (the situation discussed
here) in the absence of a fermion one expects one boson per site. The fermions
tend to push bosons out of different sites. In fact there are two possibilities:
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(i) A-sites, for which µi − α ≥ 0, and these fermions do not push bosons out, and
(ii) B-sites, for which µi − α < 0, and the fermion pushes the boson out forming
a composite fermion-bosonic hole. Energetically, the second situation is favorable,
so the fermions tend first to fill B-sites and only if NF > NB they will start to
occupy the A-sites. The number of A (B) sites NA (NB) depends on µi’s as well
as the presence of a possible additional harmonic trap. We construct the corre-
sponding projector operators P, Q = 1− P , which depend on NA and NF. Using
second order effective Hamiltonian approach [34] we obtain Heff in the form

Heff =
∑

〈ij〉
[−(dijF

†
i Fj + h.c.) + KijMiMj ] +

∑

i

µ̃iMi. (6)

Now Fi, F
†
i are the corresponding composite fermionic annihilation and creation

operators, and Mi = F †i Fi. The hopping amplitudes dij and the nn couplings Kij

(which might be repulsive (> 0) or attractive (< 0)) are of order of J2/U . The
hopping i → j, or back causes the energy change ±∆ij = µi − µj in units of U ,
i.e. is highly non-resonant and inefficient for ∆ij ' 1. Composite fermions may
feel the local disordered chemical potential µ̃i.

We briefly mention here different physical cases, while more details may be
found in Ref. [27]. We consider the situation when all sites are of type B. We
have then a gas of composites flowing within the MI with 1 boson per site. The
following interesting cases may be realized:

• We may have attractive (although random) interactions for α > 1, Kij ≤ 0.

• The qualitative character of interactions may be controlled from site to site
for α ≤ 1, since Kij may in these cases take positive or negative values for
∆ij small or ∆ij ' α.

Let us consider a small disorder; then one may neglect the site-dependence
of dij and Kij denoting them as d and K, respectively. It is then feasible to realize
the following quantum phases:

• Fermi-glass phase is realized for K ¿ d. The states are Anderson-like local-
ized, although include many-body effects, which may tend to delocalize the
system — see the case of bosons discussed above.

• For repulsive interactions and K/d À 1, the ground state will be a Mott
insulator for large enough and commensurate filling factors. The composite
fermions will be pinned. In particular for 1/2 filling the so-called checker-
board phase is expected.

• ∆ij ' α ' 1. The tunneling becomes then non-resonant and negligible,
while the couplings Kij fluctuate strongly. The (fermionic) Ising spin glass
model is realized [35] described by the Edwards–Anderson model with si =
2Mi − 1 = ±1 [36]:
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HEA =
1
4

∑

〈ij〉
Kijsisj +

∑

i

µ̃isi/2. (7)

Let us note that the last case suggests to address various open problems of
spin-glass theory via cold atoms experiments! Let us mention that in the presence
of A-sites we can address the different questions concerning quantum percolation
in the model, too [27].

5. Summary

We have discussed how disorder may lead to modifications of the physics of
cold atoms placed in optical lattices. We have barely touched the subject, the
interested reader is referred to original papers. We point out the difficulties which
arrive when a reaL experiment is being planned. On the other hand, it may be
worthwhile to attempt to overcome possible difficulties — model studies indicate
that several situations known from condensed matter theory as well as novel ones
may be addressed via cold atoms physics.

Damski has made a major contribution to the results reviewed here. Mean-
while, he has developed several novel interesting ideas [37, 38], related to physics
of ultracold disordered gases, involving frustrated systems without disorder, and
quenching in the dynamics of quantum phase transitions. It is also worth
mentioning recent work of two of us on ultracold atomic gases in quasi-crystal
lattices [39].
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Note added in proof

After submittal of this paper, we became aware of recent work in the Orsay
group where suppression of transport in the elongated BEC in a random potential
has been observed [40]. No additional optical lattice potential is present in the
Orsay experiment in difference to the case discussed in the present paper. Simi-
larly, no additional lattice is present in the recent Florence experiment [41]. Both
[40] and [41] do not observe Anderson localization.
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