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We discuss some recent results concerning the decoherence in controlled

quantum open systems within the mathematical setting corresponding to

motion reversal experiments (the Loschmidt echo). We compare the case

of randomly chosen sequence of unitary dynamical maps with the case of

a constant dynamics corresponding to a classically chaotic evolution. The

interplay between chaos and decoherence is illustrated by the new numer-

ical results on the quantum Arnold cat map perturbed by a measurement

process. Open problems related to the simple operational characterization

of the decoherence strength are discussed.
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1. Introduction

In the last decade control of open quantum systems became an important
topic in quantum information and quantum chemistry. The main obstacle to a co-
herent experimental control of increasingly large multi-body quantum systems is
the decoherence phenomenon due to the interaction with an environment. There-
fore the quantitative characterization of decoherence factor in terms of a single
overall parameter and the operational methods of its determination are crucial.
The idea of “Loschmidt echo” leading to experiments with reversed dynamics
seems to be very useful in this context. For an isolated system and perfect realiza-
tion of the dynamics we expect a complete revival of the initial state after reversal
of motion. Any imperfections will produce the deviation of the final state from the
initial one which can be measured, for instance, in terms of fidelity. Practically,
we have to determine the residual population of the initial state.

In particular, the decay of fidelity for isolated quantum system with a per-
turbed Hamiltonian governing the reversed motion has been used to characterize
quantum chaos of classically chaotic systems [1, 2]. The natural generalization
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of this idea is to study motion reversal for open systems [3, 4]. Here, the inter-
action with an environment produces a mixed state from the initially pure one.
Once again one can consider either the decay of fidelity or the increasing deviation
from the purity of the state characterized, for example, by entropic quantities.
The Loschmidt echo experiments can be modified in the case of quantum devices
capable of universal control. Then we can choose a smoothly time-dependent
Hamiltonian or the sequence of quantum gates (kicked dynamics) which mimic a
random choice with a reasonable accuracy.

We begin with a short presentation of the mathematical formalism used in
the theory of controlled quantum open systems. Physical assumptions justifying
this approach are also discussed. In Sect. 2 we briefly review the model with a ran-
dom choice of unitary quantum gates and define the appropriate single parameter
characterizing noise in a quantum device. The measures of decoherence and chaos
based on the Renyi α-entropies are discussed in Sect. 3. In Sect. 4 we present the
new results concerning decoherence for a certain model of open quantum system
quantified in terms of the linear entropy. Its internal dynamics is given by a quan-
tized automorphism of the torus (“quantum Arnold cat map”) while the influence
of the environment is described in terms of the coarse-grained von Neumann mea-
surement with K orthogonal projections of equal dimension. The numerical results
display different regimes of decoherence depending on the relations between two
fundamental parameters: the Kolmogorov–Sinai entropy hKS characterizing the
corresponding classical Arnold cat map, and ln K which measures the strength
of the noise. Such relations were already confirmed in a number of publications,
however, for the present model we observe for the first time the crossover from the
decoherence governed by lnK to decoherence determined by semiclassical chaos
(hKS).

Section 4 is devoted to some open problems concerning the proper measure
of the “decoherence strength” for a generic noise superoperator and the relations
between fidelity decay and entropy production.

2. Controlled quantum open systems

We restrict ourselves to models of N -level quantum systems with
N -dimensional Hilbert space CN . Such finite systems are frequently used in the
context of quantum information processing and quantum control. Typically, they
are decomposed into “qubits” which can correspond either to well-defined physical
subsystems (localized spins) or some approximations of real systems (ground and
first excited state of atom, ion or quantum dot; vacuum and 1-photon state in
a cavity, two directions of current in superconducting devices, etc.). We assume
that the system can be controlled, i.e., its ideal evolution is programmable and for
mathematical simplicity described by a sequence of unitary matrices U1, U2, . . .

from the group U(N) of all N × N unitary matrices. The influence of the en-
vironment and the (random) errors in preparation of the initial state and the
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implementation of the controlled dynamics imply the use of density matrices ρ

(positive, trace = 1, N ×N matrices) representing mixed states of the system. To
describe the most general irreversible evolution we use dynamical maps treated
as linear completely positive and trace preserving “superoperators” acting on the
space MN of all complex N ×N matrices. Such maps can be always represented
in a standard form in terms of the matrices Aj :

ρ → Λ̂ρ =
K∑

k=1

AkρA†k,

K∑

k=1

A†kAk = 1. (1)

Two special cases will be used frequently:
1) a reversible unitary evolution in the superoperator form

ρ → Ûρ = UρU†, UU† = U†U = 1, (2)
2) a dynamical map corresponding to a von Neumann projective measure-

ment (without recording the outcome)

ρ → Êρ =
K∑

k=1

PkρPk, Pk = P 2
k = P †k ,

K∑

k=1

Pk = 1. (3)

In the following we use a picture of the system observed in discrete time
steps n = 0, 1, 2, . . . with the corresponding sequence of states ρ(n):

ρ(n) = Λ̂nÛn · · · Λ̂2Û2Λ̂1Û1ρ(0), (4)
where Ûk represents the perfect controlled unitary evolution while Λ̂k describes the
cumulative influence of noise during k-th evolution step. The product structure
of the total dynamics reflects the Markovian assumption behind this model. One
should remember that although the Markovian approximation is justified for the
weak coupling with an environment and constant system Hamiltonian, in the case
of fast quantum gates Uk the non-Markovian effects can be relevant. Another,
often used assumption is the independence of the noise from the unitary dynamics
which implies

Λ̂n ≡ Λ̂ for all n = 1, 2, 3 . . . (5)
This is again an idealization which cannot be universally justified. Indeed, in the
case of “thermal noise” one should expect that the system is driven to a thermal
equilibrium given by a Gibbs state depending on the temporal Hamiltonian and
hence noise must be correlated with the unitary dynamics. However, very often
the main source of noise are various macroscopic imperfections in the devices
controlling the system and then the assumption (5) can be a proper one.

3. Fidelity in Loschmidt echo experiment
We consider now a discrete-time model of Loschmidt echo experiment [3] for

a quantum open system with the dynamics of the type (4) with the condition (5).
The final state for the reversal motion experiment is given by

ρ(2n) = Λ̂Û−1
1 Λ̂Û−1

2 · · · Λ̂Û−1
n Λ̂Ûn · · · Λ̂Û2Λ̂Û1ρ(0). (6)

A natural measure of a noise strength could be a fidelity of the final state with
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respect to the initial one, which is assumed to be pure, i.e. ρ(0) = |ψ〉〈ψ|, given
by the following formula:

F (2n) = 〈ψ, ρ(2n)ψ〉

= Tr
[
ρ(0)Λ̂Û−1

1 Λ̂Û−1
2 · · · Λ̂Û−1

n Λ̂Ûn · · · Λ̂Û2Λ̂Û1ρ(0)
]
. (7)

Obviously, the fidelity (7) generally depends on the choice of unitary gates and
the initial state and therefore a proper averaging is necessary to obtain a universal
behavior. We can imagine that we are able to implement a set of unitary maps
{Uk} randomly and independently chosen from the group U(N). But even then
we are not able to compute the average of (7) because of statistical correlation
between the reversed path of the evolution and the initial one. However, we can
compute a simpler object, the fidelity of the “interaction picture”

F int(n) = 〈ψ, ρ(2n)ψ〉

= Tr
[
ρ(0)Û−1

1 Û−1
2 · · · Û−1

n Λ̂Ûn · · · Λ̂Û2Λ̂Û1ρ(0)
]
. (8)

Now we can average the fidelity (8) by multiple integration over the normalized
Haar measure dU on U(N):

F int(n) = 〈ψ, ρ(2n)ψ〉

=
∫

dU1 . . .

∫
dUnTr

[
(ρ(0)Û−1

1 · · · Û−1
n Λ̂Ûn · · · Λ̂Û1ρ(0)

]
. (9)

We use the identity

Tr
[
ρ(0)Û−1

1 · · · Û−1
n Λ̂Ûn · · · Λ̂Û1ρ(0)

]
= Tr

[
ρ(0)Λ̂n · · · Λ̂1ρ(0)

]
, (10)

where Λ̂k = Û−1
1 · · · Û−1

k Λ̂Ûn · · · Û1 and the invariance of Haar measure with respect
to the group action to obtain

F int(n) = Tr
[
ρ(0)(Λ̂av)nρ(0)

]
. (11)

In the formula (11) Λ̂av denotes the averaged superoperator

Λ̂av ≡
∫

dU Û−1Λ̂Û . (12)

The averaging procedure has been discussed in [3] and always leads to the so-called
depolarizing channel of the form

Λ̂avρ = pρ + (1− p)Tr(ρ)
1
N

, (13)

where

p =
∑

k |Tr(Ak)|2 − 1
N2 − 1

. (14)

Combining (11), (13) and (14) we obtain the exponential decay of fidelity to the
value 1/N :



Decoherence and Noise in Loschmidt Echo Experiments 125

F int(n) = pn +
1− pn

N
. (15)

For large n and N we can expect that the statistical dependence present in the
formula (7) becomes practically irrelevant and one can approximately use the
averaged interaction picture fidelity (8) to analyze the Loschmidt echo experiment
putting

F (2n) ' F int(2n). (16)
Therefore, at least in principle we have a single parameter characterizing the level
of noise in a quantum device which can be directly measured.

The main difficulty in implementation of the above scheme is the practical
realization of the random and statistically independent choice of quantum gates
Uk. As random evolution provides a generic model of quantum chaos the natural
question arises: Can we replace a sequence of random unitaries {Uk} by a single
“chaotic enough” U? A partial answer is known in the case of the Loschmidt echo
with unitary perturbation [1, 2]. If the perturbation is large enough the exponential
decay of fidelity F int(n) for short times is governed by the Kolmogorov–Sinai
entropy of the corresponding classical unperturbed dynamics. Therefore, at least
in this regime we do not obtain any information about the noise level but only
about the chaotic properties of the unperturbed evolution U .

In the next sections we shall investigate the similar problem for open systems
(i.e., irreversible nonunitary perturbation) using a different entropic measure of
decoherence.

4. Entropic measures of decoherence and chaos

Applying an irreversible dynamical map Λ̂ to an initial pure state |ψ〉〈ψ| we
generally obtain a mixed state ρ = Λ̂(|ψ〉〈ψ|). Its Renyi α-entropy defined as

Iα(ρ) =
1

1− α
lnTrρα ≤ ln N (17)

is a natural measure of decoherence. In practice two cases are most frequently
used: the von Neumann entropy S(ρ) = limα→1 Iα(ρ) and the “linear entropy”
I2(ρ) directly related to the “purity” Trρ2. In the scheme similar to that of the
previous section we can define the time-dependent entropy

Iα[n, ψ] = Iα

[
[Λ̂Û ]n(|ψ〉〈ψ|)

]
, (18)

which describes a loss of quantum coherence due to a combined effect of the unitary
evolution and the environmental influence. To extract a measure of decoherence
independent of the initial state we have to perform certain averaging with respect
to ψ. An interesting and important construction involves an “ancillary” N -level
system with a trivial dynamics. Starting with an initial state for the composed
system (system+ancilla) chosen as a maximally entangled state,

|Ψmax〉 =
1√
N

N∑

j=1

|ej〉 ⊗ |e′j〉, (19)
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where {ej} and {e′j} are orthonormal bases for the system and ancilla, respectively,
we can define a time-dependent entropy

Iα[n] = Iα([Λ̂Û ⊗ 1N ]n(|Ψmax〉〈Ψmax|)) ≤ 2 lnN. (20)
It is not difficult to show that the entropy Iα[n] does not depend on the choice
of these two bases. One can find also an upper bound in terms of the number of
matrices in the Kraus representation of Λ̂ (see (1))

Iα[n] ≤ n ln K. (21)
The interesting feature of the definition (20) is its relation to the Kolmogorov–Sinai
dynamical entropy hKS in the case of α = 1, I1 ≡ S. The extensive discussion of
this topic can be found in [4, 5]. Here we notice only that for the quantum open
system possessing a classical counterpart the von Neumann entropy S[n] converges
in the classical limit (N → ∞) to the quantity which coincides with the entropy
used in the definition of hKS [6]. Therefore for large enough N and the choice of
the map Λ̂ such that ln K > hKS we can expect a linear increase in S[n] with the
slope approximately equal to hKS up to the saturation point 2 lnN . Indeed such a
short time semiclassical behavior has been observed in [7, 4] for the von Neumann
entropy.

5. Quantum cat map subjected to measurements

The automorphism of the torus called Arnold cat map defined by

x′ = Tx|mod1, x = (x1, x2), xk ∈ [0, 1),

T = [tkl], tkl − integer, detT = 1, TrT > 2 (22)
is the simplest example of a smooth conservative dynamical system with highest
ergodic properties. It is ergodic, mixing and even Anosov dynamical system. The
last strongest property means that we can globally decompose the (2-dimensional)
phase space into expanding and contracting components characterized by a positive
and negative Lapunov exponents λ+ and λ−, respectively. The Lapunov exponents
are given by the logarithms of the eigenvalues of T and satisfy λ+ + λ− = 0. Due
to the Pesin theorem the Kolmogorov–Sinai entropy is equal to the sum of positive
Lapunov exponents and hence for the cat map hKS = λ+. The different types of
quantization of the cat map were discussed extensively in the literature [8–10].
We use here the simplest version based on the N -dimensional Hilbert space with a
basis {|m〉; m = 1, 2, . . . , N} and under the assumption t21 ≡ 1. Then the unitary
matrix UT describing the quantization of the evolution map (22) has the following
matrix elements:

〈m|UT |n〉 =
1√
N

exp
[
− πi

Nt21
(t11m2 + t22n

2 − 2mn)
]

. (23)

We assume that after any evolution step governed by the unitary map (23) a von
Neumann measurement ÊK is performed. It is given in terms of K-projections
with respect to the canonical basis {|m〉}:
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Pk =
∑

r(k−1)<m≤rk

|m〉〈m|, k = 1, 2, . . . , K, N = Kr. (24)

We have computed the values of linear entropy I2[n] for different N = 16,
32, 64 and K = 2, 8 with two choices of T and corresponding values of hKS = λ+:

T 1 =

[
2 1

1 1

]
, hKS(T 1) = 0.96, (25)

T 2 =

[
2 3

1 2

]
, hKS(T 2) = 1.32. (26)

The results confirm the expectation that the behavior of I2 should be essentially
the same as for the von Neumann entropy used previously in different examples
[4, 7]. This expectation is based on the Shannon−McMillan–Breiman theorem for
classical systems [11] which translated to the quantum domain implies that for
large N the density matrix [Ê Û ⊗ 1N ]n(|Ψmax〉〈Ψmax|) satisfies “microcanonical
condition”, i.e., all eigenvalues are practically equal (in logarithmic scale) or vanish.
Then such a density matrix is roughly proportional to a projector (' P/(TrP ))
and therefore all entropies (Iα(P/(TrP )) = ln(TrP )) coincide.

Figures 1 and 2 show that for lnK < hKS the entropy I2[n] grows linearly
with the slope equal to the maximal admissible by (21) value ln K. This confirms
the previous result obtained for different systems and von Neumann entropy. The
case ln K > hKS is illustrated by Figs. 3 and 4. We observe for the first time
a clear crossover between two regimes. In the first interval, independent of the
Hilbert space dimension, the slope of the plot I2[n] is equal to ln K then the
chaotic behavior dominates and the slope is given by hKS.

Fig. 1. The linear entropy evolution governed by T 1 matrix for different Hilbert space

dimensions N = 16, 32 and 64 and 2-projections (K = 2) vs. the step number. The

slope of the initial evolution is equal to ln 2 ≈ 0.693 and the slope given by hKS(T 1)

equals 0.96.

Fig. 2. The linear entropy evolution governed by T 2 matrix for different Hilbert space

dimensions N = 16, 32 and 64 and 2-projections (K = 2) vs. the step number. The

slope of the initial evolution is equal to ln 2 ≈ 0.693 and the slope given by hKS(T 2)

equals 1.32.
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Fig. 3. The linear entropy evolution governed by T 1 matrix for different Hilbert space

dimensions N = 16, 32 and 64 and 8-projections (K = 8) vs. the step number. The

slope of the initial evolution is equal to ln 8 ≈ 2.08 and the slope determined by hKS(T 1)

equals 0.96. The continuous line with the slope given by hKS demonstrates the slope of

the linear evolution in the second interval.

Fig. 4. The linear entropy evolution governed by T 2 matrix for different Hilbert space

dimensions N = 16, 32 and 64 and 8-projections (K = 8) vs. the step number. The

slope of the initial evolution is equal to ln 8 ≈ 2.08 and the slope determined by hKS(T 2)

equals 1.32. The continuous line with the slope given by hKS demonstrates the slope of

the linear evolution in the second interval.

6. Discussion

The presented results provide a partial answer to the question: How to
characterize by a single measurable parameter the averaged level of noise in a
quantum device with a controlled dynamics?

The case of a device capable of universal control seems to be much simpler.
Applying a sufficiently random sequence of unitary gates one can characterize the
level of noise by the parameter γ = − ln p with p given by (13)−(14) which can be
determined from the exponential decay of the fidelity.

In a more realistic case of restricted control the results of Sect. 5 and of the
previous publications [12, 4, 1] show that we have to use a dynamical map with a
high degree of chaos in comparison with the expected degree of noise. Otherwise,
the observed decoherence rate depends rather on the internal dynamics of the
device and not on the interaction with an environment — the source of noise.

In this context several open problems have to be discussed. First of all one
should confirm that the fidelity decay, which is a much easier parameter to be
determined experimentally than the entropic quantities, displays also the different
regimes of decoherence. Secondly, it is not obvious which single parameter asso-
ciated with the noise map Λ̂ characterizes the decay rate of fidelity. There are at
least three candidates:

1) ln K, where K is a minimal number of terms in the Kraus decomposi-
tion (1),

2) the Renyi entropy Iα[Λ̂] ≡ Iα

(
Λ̂⊗ 1N (|Ψmax〉〈Ψmax|)

)
≤ ln K,
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3) γ = ln(N2 − 1)− ln(
∑

k |Tr(Ak)|2 − 1).
In the case of a simple von Neumann measurement ÊK (24) with a uniform

choice of projection ranges all these parameters practically coincide

Iα[ÊK ] = ln K, γ ' ln K (for N À K), (27)
and therefore one should study more generic examples of Λ̂.
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[12] M. Žnidarič, T. Prosen, J. Phys. A 36, 2463 (2003).


