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The electron correlations in narrow energy bands are examined within

the framework of the Hubbard model, generalized by taking into account the

correlated hopping of electrons. Electronic conductivity and ferromagnetic

ordering stabilization in the system with various forms of electronic density

of states are studied. The influence of magnetic field, temperature and the

form of density of states on concentration dependence of conductivity and

magnetization is investigated. The correlated hopping is shown to cause

the electron–hole asymmetry of transport and ferromagnetic properties of

narrow band materials.
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1. Introduction

Strongly correlated electron systems demonstrate unusual transport prop-
erties and peculiar magnetic behavior. Hubbard model [1] is the simplest model
describing the essential physics of materials with strong electron correlations and
is used intensively. Theoretical investigations of the conductivity in the Hubbard
model last for many decades, by both analytical [2–4] and numerical [5, 6] methods.
Extensive investigations of ferromagnetic properties of the model have been done
(see [7, 8] and references therein). Recent advances enabled us to understand some
of the peculiar properties, like metal–insulator transition under the action of exter-
nal influences [9–11]. Results of great importance were obtained by the dynamical
mean field theory (DMFT) in the limit of infinite spatial dimension [12]. Unfor-
tunately, the analysis of DMFT is restricted to the symmetrical Hubbard model
while for realistic models the non-local (dependent on wave vector) contributions
to self-energy and transport characteristics are important, the case not covered
by DMFT. At the same time, an adequate description of the electronic subsys-
tem of many real transition metal compounds requires the generalization [13–16]

(635)
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of the Hubbard model by taking into account the correlated hopping of electrons
(influence of electron concentration n on the hopping processes). In such a model
the hopping integrals, which describe translation movement of holes and doublons,
differ one from the other. Interestingly, such a generalization can provide us with
a new exactly solvable model [17, 18], which could serve as a test for the analytical
and numerical methods.

In the present paper two-pole approximation [19] is used to study effects
of electron correlations in the generalized Hubbard model. In Sect. 3 the single
particle Green function and energy spectrum are obtained. The experimentally
observable metal–insulator transitions are found in the model. In Sects. 4, 5 fer-
romagnetic ordering stabilization and static conductivity of narrow-band material
in the limit of strong Coulomb correlation are studied. The effect of temperature
changes, doping, and magnetic field is investigated. The role of correlated hopping
of electrons and the form of electronic density of states (DOS) is discussed.

2. The effective Hamiltonian of a narrow energy band

We write the Hamiltonian of correlated electron system as

H = H0 + H1 + H ′
1 + Hex, (1)

where

H0 = −µ
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Here Hubbard operator Xkl
i describes transition of site i from state |l〉 to state

|k〉, µ is the chemical potential, U is the energy of intra-site Coulomb repulsion
of electrons, J is the direct inter-site exchange interaction, µB is the Bohr mag-
neton, h stands for the external magnetic field, ηs = 1 for electron spin s =↑ and
−1 otherwise. Translation processes of holes and doublons are characterized by
different hopping integrals, tij(n) = (1 − τ1n)tij and t̃ij(n) = (1 − τ1n − 2τ2)tij ,
respectively; t′ij(n) = (1− τ1n− τ2)tij describes hoppings between single occupied
and empty sites; correlated hopping parameters τ2 and τ1 describe the influence
of sites involved into the hopping process and neighbor sites, respectively.

If we restrict ourselves to consideration of the strong correlation limit
(U À w(n)) then at partial filling of the band the conductance is due to electron
hopping within the Hubbard subbands and interband hopping can be neglected.
At these conditions we apply the canonical transformation [20] to the Hamilto-
nian (1)
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Heff = eSHe−S (2)

with S =
∑
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[
t′ij(n)

U
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i

)
− h.c.

]
. The operator S is taken to

exclude the processes with pair hopping of holes and doublons in the first order in
the hopping parameter. Finally, we obtain the effective Hamiltonian

Heff = H0 + H1 + Hex + H̃ex, (3)
where

H̃ex = −1
2

∑
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′
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i X s̄
j −Xss̄

i X s̄s
j

)

with the indirect exchange interaction parameter J̃(ij) = (t′ij(n))2/U . This is the
generalization of t−J model [21] for systems with correlated hopping of electrons.

Using the variant of projection procedure in the case of n < 1 we obtain

Es(k) = −µ− zJns − zJ̃ns̄ + αstk(n) + βs (4)
for the single particle energy spectrum, where the correlated narrowing of the band
and spin-dependent shift of subband center are

αs =
2− n + ηsm

2
+
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2(2− n + ηsm)
,

βs = − 2
(2− n + ηsm)

∑
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j 〉k,

respectively, and z is the number of nearest neighbors to a site. The respective
results for n > 1 describe upper Hubbard subband

Ẽs(k) = −µ + U − zJns − zJ̃ns̄ + α̃st̃k(n) + β̃s,

α̃s =
n + ηsm

2
+
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, β̃s = − 2
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i X2s

j 〉k. (5)

3. Metal–insulator transition in the model

To consider the metal–insulator transition (MIT) problem, we have to cal-
culate the single-particle Green function for the case of intermediate correlation
strength U ' w(n) (here w(n) denotes a half of band width). The functions
〈〈X↓2

p |X2↓
s 〉〉 and 〈〈X0↑

p |X2↓
s 〉〉 satisfy the equations of motion

(E + µ− U)〈〈X↓2
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p ,H1 + H ′

1

]|X2↓
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with [A,B] = AB − BA. To obtain the closed system of equations we apply the
two-pole approximation [19]. Let us suppose in Eq. (6) that

[
X0↑

p ,H1

]
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j ,

[
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]
=
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where ε(pj) and ε̃(pj) are non-operator expressions which we calculate using the
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method of paper [20]. At half-filling in a paramagnetic state we have

ε(pi) = (1− 2d + 2d2)tpi − 2d2t̃pi, ε̃(pi) = (1− 2d + 2d2)t̃pi − 2d2tpi (9)
with d = 〈X2

p〉 being the concentration of doublons.
The functions 〈〈[X↓2

p ,H ′
1

]|X2↓
s 〉〉 and 〈〈[X0↑

p ,H ′
1

]|X2↓
s 〉〉 in Eq. (6) are taken

into account in the mean-field approximation, in this way we neglect the processes
describing the “inter-band” hoppings of electrons. Therefore, we close the system
of equations and obtain Green function and the energy spectrum, exact in the
band and atomic limits

E1,2(k) = −µ +
U

2
+ (1− 2d)

t(k) + t̃(k)
2

∓1
2

√
{U − [t(k)− t̃(k)](1− 2d + 4d2)}2 + [t′(k)]2, (10)

where t(k), t′(k), and t̃(k) are the Fourier transforms of hopping integrals tij , t′ij ,
and t̃ij , respectively. Expression (10) describes the vanishing of the energy gap in
the spectrum of paramagnetic insulator at critical value (U

w )c when the half-band
width w increases (under pressure or doping). This expression also reproduces the
exact result for a partial case of the model [18]. The energy spectrum (10) depends
on temperature through the polar states concentration. For zero temperature and
rectangular density of states some analytical expressions for d can be derived. In
the case of |ε1,2| > w where ε1,2 are the roots of equation E1,2(ε) = 0 the concen-
tration of polar states is found from the equation
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1
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where Q1,2 =
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] 1
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The dependence d(U
w ) given by Eqs. (11), (12) is plotted in Fig. 1a. One can

see that in the point (U
w )c the slope of d(U

w )-dependence changes. Our result for
d(U

w ) in region of MIT is in good agreement with result of papers [12, 22] obtained
in the limit of infinite dimensions. Additionally, we have found that the correlated
hopping reduces the doublon concentration and shifts the point of the cusp to the
region of weak correlation. The dependence of the energy gap on temperature
can lead to the transition from metallic to insulating state with an increase in
temperature (in this connection let us note the transitions observed in the systems
NiS2−xSex and (V1−xCrx)2O3). The application of the external pressure or other
influences favoring electron hoppings (for example, a doping of anion subsystem)
leads to the transition to a metallic state.
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Fig. 1. (a) Polar states concentration as a function of the correlation strength param-

eter. Upper curve corresponds to τ2 = 0, middle curve τ2 = 0.1, lower curve τ2 = 0.2;

(b) the concentration dependence of magnetization m at zJeff/w = 0 (“tunable” DOS,

a = 0.5). Upper curve: h/w = 0.02, middle curve h/w = 0.01, lower curve h/w = 0.

4. Ferromagnetic ordering in the model: the influence of DOS form

Let us calculate the ground state energy of the system described by effective
Hamiltonian (3) in the case of n < 1:

E0 =
1

2N

∑

ks

∫ ∞

−∞
[tk(n) + E]f(E)Js

k(E)dE, (12)

where f(E) is the Fermi distribution, Js
k(E) is the spectral density of the Green

function. We argue that a shape of non-interacting DOS (which corresponds to
some lattice structure) substantially influences the critical electron concentra-
tion n1, at which ferromagnetic ordering occurs as well as concentration n2, at
which magnetic moment becomes saturated. By the numerical calculations of the
ground state energy on the base of expression (12) and subsequent minimization we
have investigated the condition of ferromagnetism stabilization for various DOS.
In particular, the numerical analysis has been done for DOS that corresponds to
the simple cubic (sc) lattice [23], for DOS that corresponds to body-centered cubic
(bcc) lattice [24] as well as for the “tunable” DOS ρ(ε) = c

√
w2 − ε2/(w+aε) with

c = (1 +
√

1− a2)/(πw). Changing the shape-controlling parameter a, one can
modify DOS continuously and obtain both the semi-elliptical DOS (a = 0) and
one with peak near the band-edge (a → 1), corresponding to a fcc lattice with
next-nearest-neighbor hopping [25]. Our results n1 = 0.36 and n2 = 0.62 for sc
lattice agree with the result of paper [26]. The spectral density approximation
(SDA) [27, 28] gives the following results: n1 = 0.34, n2 = 0.68 for sc lattice and
n1 = 0.52, n2 = 0.68 for bcc lattice. Our results for bcc lattice are n1 = 0.55
and n2 = 0.64 and also agree with paper [29]. In the case of “tunable” DOS
with a peak near the band-edge we have n1 = 0.20 and n2 = 0.31 for a = 0.3,
n1 = 0.09 and n2 = 0.15 for a = 0.5. With an increase in parameter a the critical
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concentration of ferromagnetism onset decreases. Therefore, the existence of the
peak near the band-edge in electronic DOS favors the ferromagnetic ordering in
accordance with Ref. [25]. In the case of strong electron correlation at n = 1
(when the shifts of subband center vanish) the ferromagnetic ordering is stabilized
only by the interatomic exchange (independently of DOS used). At semi-elliptical
DOS the saturated ferromagnetic state above n = 0.59 is realized. If zJeff/w > 0
then the stability of ferromagnetic state rises because the energy difference of the
paramagnetic and ferromagnetic ground states increases, otherwise ordering is re-
alized due to spin-dependent shifts of subband center. The correlated hopping
leads to the narrowing of the band and suppresses the “translational” mechanism
of ferromagnetism. In the magnetic field the changes of magnetization become
smooth, the value of m depends on the chosen DOS form and correlated hopping
substantially (Fig. 1b).

5. Electronic conductivity in the strong interaction limit

With the use of the method of papers [30, 31], we calculate the xx-component
of static electronic conductivity

σ =
e2τz

2Na


∑

ijs

tij(n)〈Xs0
i X0s

j 〉+
∑

ijs

t̃ij(n)〈X2s
i Xs2

j 〉

 , (13)

where the first sum is the conductivity of lower (0−s)-subband, the second sum
is the conductivity of upper (↑↓ −s̄)-subband. Here the magnetization of the
system is an important parameter which is calculated by the method of Sect. 4
separately for n < 1 and n > 1. As one can see from Fig. 2a, due to the corre-
lated hopping of electrons the conductivity provided by carriers in upper subband
is substantially lower than the conductivity, provided by carriers from lower sub-
band. This effect is a manifestation of the electron–hole asymmetry, inherent to
real transition metal compounds. Other important feature is the change of current
carrier type from metallic to semiconducting type in the vicinity of n = 2/3, 4/3
and from semiconducting type to metallic one at n = 1 at an increase in band
filling. The increase in the correlated hopping will shift maxima of the conduc-
tivity closer to the half-filling. External magnetic field changes the concentration
dependence of σ qualitatively (see Fig. 2b). The higher is the electron concen-
tration, the less pronounced is the effect of applied magnetic field. At a small
concentration of electrons the band is fully polarized, in such a ferromagnetic sys-
tem the conductivity is considerably lower than in the paramagnetic state. If
electron concentration rises, the decrease in magnetization leads to the increase
in conductivity, σ approaches its value in the paramagnetic state. The position
of conductivity maximum changes from n = 2/3 in the saturated ferromagnetic
state (Fig. 2b, middle curve) to n = 0.5 in the ferromagnetic state (Fig. 2b, lower
curve). The form of electronic density of states has a substantial effect on the
concentration dependence of static conductivity (Fig. 3a). At simple rectangular
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Fig. 2. (a) The concentration dependences of static electronic conductivity for val-

ues of the correlated hopping τ1 = τ2 = 0.1. Curve 1 corresponds to the tempera-

ture Θ/w = 0.01, curve 2 to Θ/w = 0.1, curve 3 to Θ/w = 0.2; (b) the concentra-

tion dependences of the electronic conductivity in the magnetic field at temperature

Θ/w = 0.02, zJeff/w = 0.02, τ1 = τ2 = 0. The upper curve corresponds to h/w = 0,

the middle one to h/w = 0.005, the lower curve to h/w = 0.02.

Fig. 3. (a) The concentration dependences of conductivity at various DOS forms.

Curve 1 corresponds to sc lattice, curve 2 corresponds to the rectangular DOS, curve 3

to semi-elliptical DOS, and 4 to bcc lattice. (b) The effective mass of current carriers

with spin up (upper curves) and down (lower curves) as a function of the external mag-

netic field. Curves 2 correspond to zJeff/w = 0, Θ/w = 0.02, curves 1 to zJeff/w = 0,

Θ/w = 0.05, curves 3 to zJeff/w = 0.05, Θ/w = 0.02.

DOS the maximum of the conductivity in the lower Hubbard band corresponds to
n = 2/3, while for semi-elliptical DOS, one with asymmetry [32] with respect to
the band center, DOS for simple cubic or body-centered cubic lattices the max-
imum of conductivity moves. This can be explained by the behavior of kinetic
energy at change of electron concentration for various forms of DOS. Concentra-
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tion dependence of kinetic energy and effect of correlation (through the correlation
narrowing of the band and effective mass enhancement) on the position of ground
energy minimum (and thus conductivity maximum) allows us to interpret the
differences of conductivity concentration dependences for various forms of DOS.
We have obtained that effective mass of heavy carriers can increase substantially
with the increase in electron concentration. Besides, in the paramagnetic states
the carriers in upper subband with masses m̃eff = h̄/(2a2|t̃(n)|) are much heavier
than the carriers in lower subbands with masses meff = h̄/(2a2|t(n)|), the effective
mass increases stepwise at the point n = 1. The rise in magnetization leads to
the rise of difference in effective masses of spin-up and spin-down current carriers
(Fig. 3b). The results shown in Fig. 3b qualitatively agree with the corresponding
plot of paper [33], where the Gutzwiller approximation has been used to calculate
effective masses of current carriers. The correlated hopping, favoring localization,
shifts effective masses up. Different possible scenarios of meff(h) dependence are
shown in Fig. 3b. At high temperature meff changes monotonically while at low
temperature the system goes unstable towards the transition to polarized state.
Direct exchange interaction can stabilize ferromagnetically polarized state in the
less than half-filled band even in a weak magnetic field.

6. Discussion and conclusion

In this paper we have used a model with correlated hopping of electrons to
study the metal–insulator transition, ferromagnetic ordering, and static conduc-
tivity of Mott–Hubbard material. The single-electron Green function and quasi-
-particle energy spectrum of the model have been calculated using a variant of
the generalized Hartree–Fock approximation. These allow us to describe metal–
insulator transitions as well as stabilization of magnetic orderings in the gen-
eralized Hubbard model (with electron–hole asymmetry). In the ferromagnetic
state the translational shifts of the spin subband centers have been calculated
self-consistently and appear to depend substantially on the DOS form. Numerical
calculation of the ground state energy at different forms of DOS corresponding
to some types of crystal lattice has been performed, magnetization and critical
concentration for ferromagnetism stabilization has been found.

The concentration dependence of σ has peculiarities inherent to transi-
tion metal compounds. We found the changes of current carrier type around
n = 2/3, 1, 4/3. In the limiting case of the absence of correlated hopping our re-
sults for the static conductivity agree with the concentration dependences obtained
in the composite operator method [3], exact diagonalization [5], and Monte Carlo
simulation [6] results. In the magnetic field static conductivity reflects the changes
of single electron energy spectrum through correlation narrowing of the band and
shift of subband center. The changes of concentration dependences of magnetiza-
tion at changes of temperature lead to σ(n) dependence with maxima at quarter
and three-quarter fillings in distinction with paramagnetic ones. Effective masses
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of quasi-particles appear to be spin-dependent and substantially vary with mag-
netic field. These results are in agreement with the analysis of papers [33, 34] and
experimental data [35] for heavy-fermion compounds.

We argue that the correlated hopping leads to the energy bands narrowing
and insulating state stabilization, the decrease in shifts of spin-subbands centers
and suppresses the translational mechanism of ferromagnetic ordering and leads
to the increase in effective masses. The form of electronic density of states has
a substantial effect on concentration dependences of both static conductivity and
system magnetization. Taking into account the correlated hopping, which is inher-
ent to real narrow band materials, allows us to describe electron–hole asymmetry
which is observed in real materials.

Acknowledgments

Authors are grateful to Prof. J. SpaÃlek and Prof. I.V. Stasyuk for the enlight-
ening discussions. Partial support from Ukrainian Fund for Fundamental Research
and Marie Curie TOK program is gratefully acknowledged.

References

[1] J. Hubbard, Proc. R. Soc. A 276, 238 (1963).

[2] W. Brenig, Z. Phys. 89, 187 (1992).

[3] W. Mancini, D. Villiani, Phys. Lett. A 261, 357 (1999).

[4] J.E. Hirsch, Phys. Rev. B 59, 6256 (1999); ibid. 62, 14131 (2000).

[5] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[6] D.J. Scalapino, S.R. White, S.C. Zhang, Phys. Rev. Lett. 68, 2830 (1992).

[7] P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, World Scien-

tific, Singapore 1999.

[8] Band-Ferromagnetism. Ground State and Finite-Temperature Phenomena, Eds.

K. Babershke, M. Donath, W. Nolting, Springer, Berlin 2001.

[9] N.F. Mott, Metal–Insulator Transitions, Taylor and Francis, London 1990.

[10] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[11] J.M. Honig, J. SpaÃlek, Chem. Mater. 10, 2910 (1998).

[12] A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13

(1996).

[13] L. Didukh, Fiz. Tverd. Tela 19, 1217 (1977) (in Russian).

[14] S. Kivelson, W.-P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 58, 1899

(1987).

[15] R. Micnas, J. Ranninger, S. Robaszkiewicz, Phys. Rev. B 39, 11653 (1989).

[16] H.Q. Lin, J.E. Hirsch, Phys. Rev. B 52, 16155 (1995).

[17] A. Montorsi, M. Rasetti, Phys. Rev. Lett. 66, 1383 (1991).

[18] L. Arrachea, A.A. Aligia, Phys. Rev. Lett. 73, 2240 (1994).

[19] L. Didukh, Acta Phys. Pol. B 31, 3097 (2000).



644 Yu. Skorenkyy et al.

[20] L. Didukh, J. Phys. Stud. 1, 241 (1997) (in Ukrainian).

[21] K.A. Chao, J. Spalek, A.M. Oles, J. Phys C 10, L271 (1977).

[22] G. Kotliar, M. Rozenberg, in: The Hubbard Model, Ed. D. Baeriswyl, Plenum

Press, New York 1995, p. 155.

[23] T. Tonegava, Prog. Theor. Phys. 56, 1293 (1974).

[24] J. Jelitto, J. Phys. Chem. Solids 30, 609 (1969).
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