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Abstract. For a class of operators T on l∞ and T -invariant functionals ϕ we prove inequalities
between ϕ(x), ϕ(x2) and the upper density of the sets

Pr := {n ∈ N0 : ϕ((T nx) · x) > r}.

Applications are given to Banach limits and integrals.
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1. INTRODUCTION

Let Γ be a nonempty set and let l∞(Γ,R) denote the real Banach algebra of all
bounded functions x : Γ → R endowed with the supremum norm ‖ · ‖. Let A be
a closed subalgebra of l∞(Γ,R) containing the unit e, e(γ) = 1 (γ ∈ Γ). Moreover let A
be ordered by the cone K := {x ∈ A : x(γ) ≥ 0 (γ ∈ Γ)}, that is x ≤ y :⇔ y − x ∈ K.
Let K∗ denote the dual cone of K, that is K∗ := {ϕ ∈ A∗ : ϕ(x) ≥ 0 (x ∈ K)}. For
x ∈ A and a continuous function h : x(Γ)→ R we have h ◦ x ∈ A and for short we set
h(x) := h ◦ x. Next, let T : A → A, T 6= 0 be a linear operator such that

∀x, y ∈ A : T (x · y) = (Tx) · (Ty). (1.1)

Note that T is monotone as Tx = (T
√
x) · (T√x) ≥ 0 (x ∈ K), thus T is contin-

uous. In particular Te = (Te) · (Te), thus 0 ≤ Te ≤ e and T has operator norm
|||T ||| = ‖Te‖ = 1. We set

B(T ) := {ϕ ∈ K∗ : ϕ(e) = 1, ϕ ◦ T = ϕ}.
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For ϕ ∈ B(T ) and x ∈ A we are interested in the size of the sets

Pr := {n ∈ N0 : ϕ((Tnx) · x) > r},

and we will prove inequalities between ϕ(x), ϕ(x2) and the upper density of Pr.
As an introducing example let A = l∞(N,R) and let S denote the left shift operator

Sx = (xk+1)k∈N. Recall that a functional L ∈ (l∞(N,R))∗ is called a Banach limit if
it has the following three properties:

L ∈ K∗, L(e) = 1, L ◦ S = L.

Let L denote the set of all Banach limits. In this case we have L = B(S). More general,
let σ : N → N be any function and let Tσ : l∞(N,R) → l∞(N,R), Tσx = (xσ(k))k∈N.
Clearly Tσ satisfies (1.1). In [5] sufficient conditions for B(Tσ) ∩ L 6= ∅ are given.
The dilation operator

Tσx = (x1, x1, x2, x2, x3, x3, x4, x4, . . .) (x ∈ l∞(N,R))

is an example with ∅ 6= B(Tσ) ∩ L 6= L, see [1].
As a second example let A = C2π(R,R) or A = R2π(R,R) be the Banach algebra

of all 2π-periodic continuous or regulated functions x : R→ R, respectively. In both
cases A is a closed unital subalgebra of l∞(R,R). Let τ ∈ R, and let Tτ : A → A be
the translation operator (Tτx)(t) = x(t+τ). Then Tτ satisfies (1.1), and the functional

x 7→ ϕ(x) = 1
2π

2π∫

0

x(t)dt

is in B(Tτ ).

2. MAIN RESULTS

For a set M ⊆ N0 the upper density of M is defined as

D(M) := lim sup
n→∞

|M ∩ {0, . . . , n}|
n+ 1 .

If M is infinite and M = {nj : j ∈ N} with (nj)j∈N strictly increasing, the upper
density of M is

D(M) = lim sup
j→∞

j

nj
.

For finite sets clearly D(M) = 0. We define the function ρ : l∞(N,R)→ R by

ρ(x) := lim sup
λ→1+

(λ− 1)
∞∑

k=1

xk
λk
.

Note that ρ is a sublinear functional on l∞(N,R).
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Theorem 2.1. Let T : A → A be a linear operator with property (1.1), let ϕ ∈ B(T ),
x ∈ A and r ∈ R. Then

ϕ(x)2 ≤ ρ
(
(ϕ((Tnx) · x))n∈N

)
≤ (1−D(Pr))r +D(Pr)ϕ(x2).

In particular, if r < ϕ(x)2 then

0 < ϕ(x)2 − r
ϕ(x2)− r ≤ D(Pr).

The following result specifies the quantity ρ
(
(ϕ((Tnx) · x))n∈N

)
from Theorem 2.1

in some special cases.
Theorem 2.2. If under the assumptions of Theorem 2.1 the sequence

(
1
n

n∑

k=1
T kx

)

n∈N

has a weakly convergent subsequence, then it is norm convergent, and

ρ
(
(ϕ((Tnx) · x))n∈N

)
= lim
n→∞

1
n

n∑

k=1
ϕ((T kx) · x).

In the proof of Theorem 2.1 we use the following lemma (which was proved for
Banach limits in [3]).
Lemma 2.3. Let ϕ ∈ K∗, ϕ(e) = 1, and let h : R→ R be convex. Then

∀x ∈ A : ϕ(h(x)) ≥ h(ϕ(x)).

Proof. Let t0 := ϕ(x). As h is convex it is continuous, hence h(x) ∈ A, and there is
a supporting straight line t 7→ h(t0) + α(t− t0) such that

h(t) ≥ h(t0) + α(t− t0) (t ∈ R).

Hence
ϕ(h(x)) ≥ ϕ(h(t0)e+ α(x− t0e)) = h(ϕ(x)).

Remark 2.4. If ϕ(x) 6= 0 in Theorem 2.1 we can set r(α) := αϕ(x)2 (α < 1) and
obtain the scaled inequality

ϕ(x)2 ≤ D(Pr(α))
1− α+ αD(Pr(α))

ϕ(x2) (α < 1),

which is an improvement of ϕ(x)2 ≤ ϕ(x2) coming from Lemma 2.3. If in addition
x ∈ K we have ϕ(x2) ≤ ϕ(x)‖x‖ and obtain

ϕ(x) ≤ D(Pr(α))
1− α+ αD(Pr(α))

‖x‖ (α < 1).



440 Gerd Herzog and Peer Chr. Kunstmann

We will now give the proofs of Theorem 2.1 and Theorem 2.2.

Proof. Recall that |||T ||| = 1. By (1.1) we have

ϕ((Tn+mx) · (Tmx)) = ϕ(Tm((Tnx) · x)) = ϕ((Tnx) · x) (n,m ∈ N0). (2.1)

Moreover note that (y, z) 7→ ϕ(y ·z) is a semi-definite bilinear form on A, and therefore
the Cauchy–Schwarz inequality is valid:

ϕ(y · z)2 ≤ ϕ(y2)ϕ(z2) (y, z ∈ A).

In particular, for x ∈ A and n ∈ N0 we have

|ϕ((Tnx) · x)| ≤
√
ϕ((Tnx) · (Tnx))

√
ϕ(x2) = ϕ(x2). (2.2)

By Lemma 2.3, we have for x ∈ A and λ > 1:

(
ϕ((I − T/λ)−1x)

)2 ≤ ϕ(((I − T/λ)−1x) · ((I − T/λ)−1x))

= ϕ

( ∞∑

n=0

Tnx

λn
·
∞∑

n=0

Tnx

λn

)

=
∞∑

n,m=0

1
λn+mϕ((Tnx) · (Tmx))

=
∞∑

n=0

1
λ2nϕ((Tnx) · (Tnx))

+ 2
∞∑

m=0

∞∑

n=1

1
λn+2mϕ((Tn+mx) · (Tmx))

(2.1)= 1
1− 1/λ2ϕ(x · x) + 2

∞∑

m=0

∞∑

n=1

1
λn+2mϕ((Tnx) · x)

= 1
1− 1/λ2ϕ(x · x)

+ 2
( ∞∑

m=0

1
λ2m

)( ∞∑

n=1

1
λn
ϕ((Tnx) · x)

)

= 1
1− 1/λ2ϕ(x · x) + 2

1− 1/λ2

∞∑

n=1

1
λn
ϕ((Tnx) · x).

We have
ϕ((I − T/λ)y) = (1− 1/λ)ϕ(y) (y ∈ A, λ > 1),

thus
ϕ(x)2 = (1− 1/λ)2(ϕ((I − T/λ)−1x)

)2
,
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which together with the previous calculations yields

ϕ(x)2 ≤ λ− 1
λ+ 1ϕ(x · x) + 2λ− 1

λ+ 1

∞∑

n=1

1
λn
ϕ((Tnx) · x)

≤ 2λ− 1
λ+ 1

∞∑

n=0

1
λn
ϕ((Tnx) · x)

≤ 2λ− 1
λ+ 1


∑

n∈Pr

1
λn
ϕ((Tnx) · x) + r

∑

n/∈Pr

1
λn




= 2λ− 1
λ+ 1

(∑

n∈Pr

1
λn

(ϕ((Tnx) · x)− r) + r

∞∑

n=0

1
λn

)

= 2rλ
λ+ 1 + 2λ− 1

λ+ 1
∑

n∈Pr

1
λn

(ϕ((Tnx) · x)− r).

(2.3)

As λ→ 1+ we obtain (see (2.3))

ϕ(x)2 ≤ ρ
(
(ϕ((Tnx) · x))n∈N

)
≤ r + lim sup

λ→1+
2λ− 1
λ+ 1

∑

n∈Pr

1
λn

(ϕ((Tnx) · x)− r).

If |Pr| <∞ (then D(Pr) = 0) we get

ϕ(x)2 ≤ ρ
(
(ϕ((Tnx) · x))n∈N

)
≤ r = (1−D(Pr))r +D(Pr)ϕ(x2).

Thus, let Pr = {nj : j ∈ N} with (nj)j∈N strictly increasing. Let ε > 0. Then

∃j0 ∈ N ∀j ≥ j0 : j

nj
≤ D(Pr) + ε,

and
∞∑

j=j0

1
λnj
≤
∞∑

j=j0

1
λj/(D(Pr)+ε)

≤ 1
1− λ−1/(D(Pr)+ε)

.

We now have

2rλ
λ+ 1 + 2λ− 1

λ+ 1
∑

n∈Pr

1
λn

(ϕ((Tnx) · x)− r)

(2.2)
≤ 2rλ

λ+ 1 +


2λ− 1

λ+ 1

∞∑

j=1

1
λnj


 (ϕ(x2)− r)

≤ 2rλ
λ+ 1 + 2λ− 1

λ+ 1



j0−1∑

j=1

1
λnj

+ 1
1− λ−1/(D(Pr)+ε)


 (ϕ(x2)− r),
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and from
lim
λ→1+

λ− 1
1− λ−1/α = α (α > 0)

we conclude that

r + lim sup
λ→1+

2λ− 1
λ+ 1

∑

n∈Pr

1
λn

(ϕ((Tnx) · x)− r) ≤ r + (D(Pr) + ε)(ϕ(x2)− r).

As ε→ 0+ we obtain

r + lim sup
λ→1+

2λ− 1
λ+ 1

∑

n∈Pr

1
λn

(ϕ((Tnx) · x)− r) ≤ (1−D(Pr))r +D(Pr)ϕ(x2),

and summing up

ϕ(x)2 ≤ ρ
(
(ϕ((Tnx) · x))n∈N

)
≤ (1−D(Pr))r +D(Pr)ϕ(x2).

If in addition r < ϕ(x)2 (hence r < ϕ(x)2 ≤ ϕ(x2)) then

0 < ϕ(x)2 − r
ϕ(x2)− r ≤ D(Pr).

Proof. To prove Theorem 2.2 we show in a first step that

∀y ∈ l∞(N,R) ∃L ∈ L : ρ(y) = L(y),

which is clear if y is convergent. Recall that ρ is sublinear on l∞(N,R) and let
c(N,R) denote the subspace of all convergent sequences. Then ρ(x) = limk→∞ xk
(x ∈ c(N,R)). Let y ∈ l∞(N,R) \ c(N,R). According to Hahn-Banach’s Theorem there
exists L ∈ (l∞(N,R))∗ such that L(x) = ρ(x) (x ∈ c(N,R)),

−ρ(−x) ≤ L(x) ≤ ρ(x) (x ∈ l∞(N,R)),

and
L(y) = inf{ρ(y + x)− ρ(x) : x ∈ c(N,R)} = ρ(y).

Clearly L(e) = 1 and L(x) ≥ −ρ(−x) ≥ 0 (x ∈ K). To see that L(Sx) = L(x)
(x ∈ l∞(N,R)) consider

∣∣∣∣∣(λ− 1)
∞∑

k=1

xk+1 − xk
λk

∣∣∣∣∣ =
∣∣∣∣∣(λ− 1)

(
x1
λ

+ ( 1
λ
− 1)

∞∑

k=2

xk
λk−1

)∣∣∣∣∣

≤ (λ− 1)
(

2‖x‖
λ

)
→ 0 (λ→ 1+).

Thus ρ(Sx − x) = ρ(x − Sx) = 0, and therefore L(Sx − x) = 0 (x ∈ l∞(N,R)).
If now y is in addition almost convergent in the sense of Lorentz [4], then

ρ(y) = L(y) = lim
n→∞

1
n

n∑

k=1
yk.
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Thus, Theorem 2.2 is proved if we can show that y = (ϕ((Tnx) · x))n∈N is almost
convergent. Under the assumptions of Theorem 2.2 the Mean Ergodic Theorem (see
for example [2, Chapter 8.1]) proves that

(
1
n

n∑

k=1
T kx

)

n∈N

is convergent in norm towards a fixed point u of T . As |||T ||| = 1 we have
∥∥∥∥∥

1
n

n+m−1∑

k=m
T kx− u

∥∥∥∥∥ ≤
∥∥∥∥∥

1
n

n∑

k=1
T kx− u

∥∥∥∥∥ (n,m ∈ N).

Thus
1
n

n+m−1∑

k=m
T kx→ u (n→∞)

uniformly in m ∈ N. Therefore

1
n

n+m−1∑

k=m
ϕ((T kx) · x)→ ϕ(u · x) (n→∞)

uniformly in m ∈ N, that is (ϕ((Tnx) · x))n∈N is almost convergent.

3. APPLICATIONS AND EXAMPLES

For x ∈ l∞(N,R) let

q(x) := lim
j→∞

inf
m∈N0

1
j

j+m∑

k=m+1
xk, p(x) := lim

j→∞
sup
m∈N0

1
j

j+m∑

k=m+1
xk.

According to Sucheston [6]

min{L(x) : L ∈ L} = q(x), max{L(x) : L ∈ L} = p(x),

thus, as L is convex, we have

{L(x) : L ∈ L} = [q(x), p(x)] (x ∈ l∞(N,R)).

From Theorem 2.1 we obtain the following corollary for the shift operator S.
Corollary 3.1. Let x ∈ l∞(N,R) with [q(x), p(x)] 6= {0}. Then p(x2) > 0 and

D({n ∈ N0 : p((Snx) · x) > 0}) ≥ max{q(x)2, p(x)2}
p(x2) > 0.

If in addition x ∈ K, then

D({n ∈ N0 : p((Snx) · x) > 0}) ≥ p(x)
‖x‖ .
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Proof. Set
Q := {n ∈ N0 : p((Snx) · x) > 0}.

For some L ∈ L we have

|L(x)| = max{|q(x)|, |p(x)|} > 0.

Consider Theorem 2.1 with P0 corresponding to ϕ = L and T = S. We have P0 ⊆ Q
and

0 < max{q(x)2, p(x)2} = L(x)2 ≤ D(P0)L(x2) ≤ D(Q)p(x2).

If in addition x ∈ K, then 0 ≤ q(x) ≤ p(x) and p(x2) ≤ p(x)‖x‖.
For our second corollary let A = C2π(R,R). Application of Theorem 2.1 to T = Tτ

(τ ∈ R) and ϕ from the introduction leads to the following inequalities.

Corollary 3.2. Let x ∈ A and r < ϕ(x)2. Then

0 <

(
1

2π
∫ 2π

0 x(t)dt
)2
− r

1
2π
∫ 2π

0 x(t)2dt− r

≤ D





n ∈ N0 : 1

2π

2π∫

0

x(t+ nτ)x(t)dt > r






 .

Remark 3.3. In Corollary 3.2 the sequence
(

1
n

n∑

k=1
T kx

)

n∈N

has a norm convergent subsequence (according to Arzelà-Ascoli’s Theorem) and
Theorem 2.2 applies. In particular this sequence is convergent, its limit function is
τ -periodic and 2π-periodic, hence constant ϕ(x) if τ/π /∈ Q. In this case

lim
n→∞

1
n

n∑

k=1
ϕ((T kx) · x) = ϕ(x)2,

and we have equality in the first inequality of Theorem 2.1.

Consider x(t) = 5/(2 + sin(t)). Then Corollary 3.2 gives

25
3 − r

50√
27 − r

≤ D





n ∈ N0 : 1

2π

2π∫

0

25
(2 + sin(t+ nτ))(2 + sin(t))dt > r






 .

For τ =
√

2 and r = 8 numerically this inequality reads 0.205 ≤ 0.570. The following
Figure 1 shows ϕ((Tnx) · x) for n = 1, . . . , 1000.
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Fig. 1. ϕ((T nx) · x) for n = 1, . . . , 1000

As another example let A = C2π(R,R) and T : A → A the dilation operator
(Tx)(t) = x(2t). In this case the functional

x 7→ ϕ(x) = 1
2π

2π∫

0

x(t)dt

is in B(T ) as well. This situation has an extremal property:

∀x, y ∈ A : ϕ((Tnx) · y)→ ϕ(x)ϕ(y)

(if x ∈ K the Mean Value Theorem for Integrals leads to a sequence of Riemann sums
converging to ϕ(x)ϕ(y)). In particular

∀x ∈ A : ϕ((Tnx) · x)→ ϕ(x)2.

Again we have equality in the first inequality of Theorem 2.1, now for each x ∈ A, and
moreover

D(Pr) = 1 (r < ϕ(x)2), D(Pr) = 0 (r > ϕ(x)2)

for each x ∈ A.
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