# QUADRATIC INEQUALITIES FOR FUNCTIONALS IN $l^{\infty}$

Gerd Herzog and Peer Chr. Kunstmann

Communicated by Alexander Gomilko

**Abstract.** For a class of operators T on  $l^{\infty}$  and T-invariant functionals  $\varphi$  we prove inequalities between  $\varphi(x)$ ,  $\varphi(x^2)$  and the upper density of the sets

$$P_r := \{ n \in \mathbb{N}_0 : \varphi((T^n x) \cdot x) > r \}.$$

Applications are given to Banach limits and integrals.

**Keywords:** Banach algebras of bounded functions, operator-invariant functionals, Banach limits.

Mathematics Subject Classification: 47B37, 47B48, 47B60.

## 1. INTRODUCTION

Let  $\Gamma$  be a nonempty set and let  $l^{\infty}(\Gamma, \mathbb{R})$  denote the real Banach algebra of all bounded functions  $x : \Gamma \to \mathbb{R}$  endowed with the supremum norm  $\|\cdot\|$ . Let  $\mathcal{A}$  be a closed subalgebra of  $l^{\infty}(\Gamma, \mathbb{R})$  containing the unit  $e, e(\gamma) = 1$  ( $\gamma \in \Gamma$ ). Moreover let  $\mathcal{A}$ be ordered by the cone  $K := \{x \in \mathcal{A} : x(\gamma) \ge 0 \ (\gamma \in \Gamma)\}$ , that is  $x \le y :\Leftrightarrow y - x \in K$ . Let  $K^*$  denote the dual cone of K, that is  $K^* := \{\varphi \in \mathcal{A}^* : \varphi(x) \ge 0 \ (x \in K)\}$ . For  $x \in \mathcal{A}$  and a continuous function  $h : \overline{x(\Gamma)} \to \mathbb{R}$  we have  $h \circ x \in \mathcal{A}$  and for short we set  $h(x) := h \circ x$ . Next, let  $T : \mathcal{A} \to \mathcal{A}, T \neq 0$  be a linear operator such that

$$\forall x, y \in \mathcal{A} : T(x \cdot y) = (Tx) \cdot (Ty). \tag{1.1}$$

Note that T is monotone as  $Tx = (T\sqrt{x}) \cdot (T\sqrt{x}) \ge 0$   $(x \in K)$ , thus T is continuous. In particular  $Te = (Te) \cdot (Te)$ , thus  $0 \le Te \le e$  and T has operator norm |||T||| = ||Te|| = 1. We set

$$\mathcal{B}(T) := \{ \varphi \in K^* : \varphi(e) = 1, \ \varphi \circ T = \varphi \}.$$

@ 2021 Authors. Creative Commons CC-BY 4.0

For  $\varphi \in \mathcal{B}(T)$  and  $x \in \mathcal{A}$  we are interested in the size of the sets

$$P_r := \{ n \in \mathbb{N}_0 : \varphi((T^n x) \cdot x) > r \},\$$

and we will prove inequalities between  $\varphi(x)$ ,  $\varphi(x^2)$  and the upper density of  $P_r$ .

As an introducing example let  $\mathcal{A} = l^{\infty}(\mathbb{N}, \mathbb{R})$  and let S denote the left shift operator  $Sx = (x_{k+1})_{k \in \mathbb{N}}$ . Recall that a functional  $L \in (l^{\infty}(\mathbb{N}, \mathbb{R}))^*$  is called a Banach limit if it has the following three properties:

$$L \in K^*$$
,  $L(e) = 1$ ,  $L \circ S = L$ .

Let  $\mathcal{L}$  denote the set of all Banach limits. In this case we have  $\mathcal{L} = \mathcal{B}(S)$ . More general, let  $\sigma : \mathbb{N} \to \mathbb{N}$  be any function and let  $T_{\sigma} : l^{\infty}(\mathbb{N}, \mathbb{R}) \to l^{\infty}(\mathbb{N}, \mathbb{R}), T_{\sigma}x = (x_{\sigma(k)})_{k \in \mathbb{N}}$ . Clearly  $T_{\sigma}$  satisfies (1.1). In [5] sufficient conditions for  $\mathcal{B}(T_{\sigma}) \cap \mathcal{L} \neq \emptyset$  are given. The dilation operator

$$T_{\sigma}x = (x_1, x_1, x_2, x_2, x_3, x_3, x_4, x_4, \ldots) \quad (x \in l^{\infty}(\mathbb{N}, \mathbb{R}))$$

is an example with  $\emptyset \neq \mathcal{B}(T_{\sigma}) \cap \mathcal{L} \neq \mathcal{L}$ , see [1].

As a second example let  $\mathcal{A} = C_{2\pi}(\mathbb{R}, \mathbb{R})$  or  $\mathcal{A} = R_{2\pi}(\mathbb{R}, \mathbb{R})$  be the Banach algebra of all  $2\pi$ -periodic continuous or regulated functions  $x : \mathbb{R} \to \mathbb{R}$ , respectively. In both cases  $\mathcal{A}$  is a closed unital subalgebra of  $l^{\infty}(\mathbb{R}, \mathbb{R})$ . Let  $\tau \in \mathbb{R}$ , and let  $T_{\tau} : \mathcal{A} \to \mathcal{A}$  be the translation operator  $(T_{\tau}x)(t) = x(t+\tau)$ . Then  $T_{\tau}$  satisfies (1.1), and the functional

$$x \mapsto \varphi(x) = \frac{1}{2\pi} \int_{0}^{2\pi} x(t) dt$$

is in  $\mathcal{B}(T_{\tau})$ .

#### 2. MAIN RESULTS

For a set  $M \subseteq \mathbb{N}_0$  the upper density of M is defined as

$$\overline{D}(M) := \limsup_{n \to \infty} \frac{|M \cap \{0, \dots, n\}|}{n+1}.$$

If M is infinite and  $M = \{n_j : j \in \mathbb{N}\}\$  with  $(n_j)_{j \in \mathbb{N}}$  strictly increasing, the upper density of M is

$$\overline{D}(M) = \limsup_{j \to \infty} \frac{j}{n_j}.$$

For finite sets clearly  $\overline{D}(M) = 0$ . We define the function  $\rho: l^{\infty}(\mathbb{N}, \mathbb{R}) \to \mathbb{R}$  by

$$\rho(x) := \limsup_{\lambda \to 1+} (\lambda - 1) \sum_{k=1}^{\infty} \frac{x_k}{\lambda^k}.$$

Note that  $\rho$  is a sublinear functional on  $l^{\infty}(\mathbb{N}, \mathbb{R})$ .

**Theorem 2.1.** Let  $T : \mathcal{A} \to \mathcal{A}$  be a linear operator with property (1.1), let  $\varphi \in \mathcal{B}(T)$ ,  $x \in \mathcal{A}$  and  $r \in \mathbb{R}$ . Then

$$\varphi(x)^2 \le \rho\big((\varphi((T^n x) \cdot x))_{n \in \mathbb{N}}\big) \le (1 - \overline{D}(P_r))r + \overline{D}(P_r)\varphi(x^2).$$

In particular, if  $r < \varphi(x)^2$  then

$$0 < \frac{\varphi(x)^2 - r}{\varphi(x^2) - r} \le \overline{D}(P_r).$$

The following result specifies the quantity  $\rho((\varphi((T^n x) \cdot x))_{n \in \mathbb{N}})$  from Theorem 2.1 in some special cases.

**Theorem 2.2.** If under the assumptions of Theorem 2.1 the sequence

$$\left(\frac{1}{n}\sum_{k=1}^{n}T^{k}x\right)_{n\in\mathbb{N}}$$

has a weakly convergent subsequence, then it is norm convergent, and

$$\rho\big((\varphi((T^n x) \cdot x))_{n \in \mathbb{N}}\big) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \varphi((T^k x) \cdot x).$$

In the proof of Theorem 2.1 we use the following lemma (which was proved for Banach limits in [3]).

**Lemma 2.3.** Let  $\varphi \in K^*$ ,  $\varphi(e) = 1$ , and let  $h : \mathbb{R} \to \mathbb{R}$  be convex. Then

$$\forall x \in \mathcal{A} : \varphi(h(x)) \ge h(\varphi(x)).$$

*Proof.* Let  $t_0 := \varphi(x)$ . As h is convex it is continuous, hence  $h(x) \in \mathcal{A}$ , and there is a supporting straight line  $t \mapsto h(t_0) + \alpha(t - t_0)$  such that

$$h(t) \ge h(t_0) + \alpha(t - t_0) \quad (t \in \mathbb{R}).$$

Hence

$$\varphi(h(x)) \ge \varphi(h(t_0)e + \alpha(x - t_0e)) = h(\varphi(x)).$$

**Remark 2.4.** If  $\varphi(x) \neq 0$  in Theorem 2.1 we can set  $r(\alpha) := \alpha \varphi(x)^2$  ( $\alpha < 1$ ) and obtain the scaled inequality

$$\varphi(x)^2 \le \frac{D(P_{r(\alpha)})}{1 - \alpha + \alpha \overline{D}(P_{r(\alpha)})} \varphi(x^2) \quad (\alpha < 1),$$

which is an improvement of  $\varphi(x)^2 \leq \varphi(x^2)$  coming from Lemma 2.3. If in addition  $x \in K$  we have  $\varphi(x^2) \leq \varphi(x) ||x||$  and obtain

$$\varphi(x) \le \frac{D(P_{r(\alpha)})}{1 - \alpha + \alpha \overline{D}(P_{r(\alpha)})} \|x\| \quad (\alpha < 1).$$

We will now give the proofs of Theorem 2.1 and Theorem 2.2.

*Proof.* Recall that |||T||| = 1. By (1.1) we have

$$\varphi((T^{n+m}x)\cdot(T^mx)) = \varphi(T^m((T^nx)\cdot x)) = \varphi((T^nx)\cdot x) \quad (n,m\in\mathbb{N}_0).$$
(2.1)

Moreover note that  $(y, z) \mapsto \varphi(y \cdot z)$  is a semi-definite bilinear form on  $\mathcal{A}$ , and therefore the Cauchy–Schwarz inequality is valid:

 $\varphi(y\cdot z)^2 \leq \varphi(y^2)\varphi(z^2) \quad (y,z\in \mathcal{A}).$ 

In particular, for  $x \in \mathcal{A}$  and  $n \in \mathbb{N}_0$  we have

$$|\varphi((T^n x) \cdot x)| \le \sqrt{\varphi((T^n x) \cdot (T^n x))} \sqrt{\varphi(x^2)} = \varphi(x^2).$$
(2.2)

By Lemma 2.3, we have for  $x \in \mathcal{A}$  and  $\lambda > 1$ :

$$\begin{split} \left(\varphi((I-T/\lambda)^{-1}x)\right)^2 &\leq \varphi(((I-T/\lambda)^{-1}x) \cdot ((I-T/\lambda)^{-1}x)) \\ &= \varphi\left(\sum_{n=0}^{\infty} \frac{T^n x}{\lambda^n} \cdot \sum_{n=0}^{\infty} \frac{T^n x}{\lambda^n}\right) \\ &= \sum_{n,m=0}^{\infty} \frac{1}{\lambda^{n+m}}\varphi((T^n x) \cdot (T^m x)) \\ &= \sum_{n=0}^{\infty} \frac{1}{\lambda^{2n}}\varphi((T^n x) \cdot (T^n x)) \\ &+ 2\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\lambda^{n+2m}}\varphi((T^{n+m}x) \cdot (T^m x)) \\ &\stackrel{(2.1)}{=} \frac{1}{1-1/\lambda^2}\varphi(x \cdot x) + 2\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\lambda^{n+2m}}\varphi((T^n x) \cdot x) \\ &= \frac{1}{1-1/\lambda^2}\varphi(x \cdot x) \\ &+ 2\left(\sum_{m=0}^{\infty} \frac{1}{\lambda^{2m}}\right)\left(\sum_{n=1}^{\infty} \frac{1}{\lambda^n}\varphi((T^n x) \cdot x)\right) \\ &= \frac{1}{1-1/\lambda^2}\varphi(x \cdot x) + \frac{2}{1-1/\lambda^2}\sum_{n=1}^{\infty} \frac{1}{\lambda^n}\varphi((T^n x) \cdot x). \end{split}$$

We have

$$\varphi((I - T/\lambda)y) = (1 - 1/\lambda)\varphi(y) \quad (y \in \mathcal{A}, \lambda > 1),$$

thus

$$\varphi(x)^2 = (1 - 1/\lambda)^2 \left(\varphi((I - T/\lambda)^{-1}x)\right)^2,$$

which together with the previous calculations yields

$$\begin{aligned} \varphi(x)^2 &\leq \frac{\lambda - 1}{\lambda + 1} \varphi(x \cdot x) + 2\frac{\lambda - 1}{\lambda + 1} \sum_{n=1}^{\infty} \frac{1}{\lambda^n} \varphi((T^n x) \cdot x) \\ &\leq 2\frac{\lambda - 1}{\lambda + 1} \sum_{n=0}^{\infty} \frac{1}{\lambda^n} \varphi((T^n x) \cdot x) \\ &\leq 2\frac{\lambda - 1}{\lambda + 1} \left( \sum_{n \in P_r} \frac{1}{\lambda^n} \varphi((T^n x) \cdot x) + r \sum_{n \notin P_r} \frac{1}{\lambda^n} \right) \\ &= 2\frac{\lambda - 1}{\lambda + 1} \left( \sum_{n \in P_r} \frac{1}{\lambda^n} (\varphi((T^n x) \cdot x) - r) + r \sum_{n=0}^{\infty} \frac{1}{\lambda^n} \right) \\ &= \frac{2r\lambda}{\lambda + 1} + 2\frac{\lambda - 1}{\lambda + 1} \sum_{n \in P_r} \frac{1}{\lambda^n} (\varphi((T^n x) \cdot x) - r). \end{aligned}$$
(2.3)

As  $\lambda \to 1+$  we obtain (see (2.3))

$$\varphi(x)^2 \le \rho\big((\varphi((T^n x) \cdot x))_{n \in \mathbb{N}}\big) \le r + \limsup_{\lambda \to 1+} 2\frac{\lambda - 1}{\lambda + 1} \sum_{n \in P_r} \frac{1}{\lambda^n} (\varphi((T^n x) \cdot x) - r).$$

If  $|P_r| < \infty$  (then  $\overline{D}(P_r) = 0$ ) we get

$$\varphi(x)^2 \le \rho \big( (\varphi((T^n x) \cdot x))_{n \in \mathbb{N}} \big) \le r = (1 - \overline{D}(P_r))r + \overline{D}(P_r)\varphi(x^2).$$

Thus, let  $P_r = \{n_j : j \in \mathbb{N}\}$  with  $(n_j)_{j \in \mathbb{N}}$  strictly increasing. Let  $\varepsilon > 0$ . Then

$$\exists j_0 \in \mathbb{N} \ \forall j \ge j_0: \ \frac{j}{n_j} \le \overline{D}(P_r) + \varepsilon,$$

and

$$\sum_{j=j_0}^{\infty} \frac{1}{\lambda^{n_j}} \leq \sum_{j=j_0}^{\infty} \frac{1}{\lambda^{j/(\overline{D}(P_r)+\varepsilon)}} \leq \frac{1}{1-\lambda^{-1/(\overline{D}(P_r)+\varepsilon)}}.$$

We now have

$$\begin{split} &\frac{2r\lambda}{\lambda+1} + 2\frac{\lambda-1}{\lambda+1}\sum_{n\in P_r}\frac{1}{\lambda^n}(\varphi((T^nx)\cdot x) - r)\\ &\stackrel{(2.2)}{\leq}\frac{2r\lambda}{\lambda+1} + \left(2\frac{\lambda-1}{\lambda+1}\sum_{j=1}^{\infty}\frac{1}{\lambda^{n_j}}\right)(\varphi(x^2) - r)\\ &\stackrel{\leq}{\leq}\frac{2r\lambda}{\lambda+1} + 2\frac{\lambda-1}{\lambda+1}\left(\sum_{j=1}^{j_0-1}\frac{1}{\lambda^{n_j}} + \frac{1}{1-\lambda^{-1/(\overline{D}(P_r)+\varepsilon)}}\right)(\varphi(x^2) - r), \end{split}$$

and from

$$\lim_{\lambda \to 1+} \frac{\lambda - 1}{1 - \lambda^{-1/\alpha}} = \alpha \quad (\alpha > 0)$$

we conclude that

$$r + \limsup_{\lambda \to 1+} 2\frac{\lambda - 1}{\lambda + 1} \sum_{n \in P_r} \frac{1}{\lambda^n} (\varphi((T^n x) \cdot x) - r) \le r + (\overline{D}(P_r) + \varepsilon)(\varphi(x^2) - r).$$

As  $\varepsilon \to 0+$  we obtain

$$r + \limsup_{\lambda \to 1+} 2\frac{\lambda - 1}{\lambda + 1} \sum_{n \in P_r} \frac{1}{\lambda^n} (\varphi((T^n x) \cdot x) - r) \le (1 - \overline{D}(P_r))r + \overline{D}(P_r)\varphi(x^2),$$

and summing up

$$\varphi(x)^2 \le \rho \left( (\varphi((T^n x) \cdot x))_{n \in \mathbb{N}} \right) \le (1 - \overline{D}(P_r))r + \overline{D}(P_r)\varphi(x^2).$$

If in addition  $r < \varphi(x)^2$  (hence  $r < \varphi(x)^2 \le \varphi(x^2))$  then

$$0 < \frac{\varphi(x)^2 - r}{\varphi(x^2) - r} \le \overline{D}(P_r).$$

*Proof.* To prove Theorem 2.2 we show in a first step that

$$\forall y \in l^{\infty}(\mathbb{N}, \mathbb{R}) \; \exists L \in \mathcal{L} : \rho(y) = L(y),$$

which is clear if y is convergent. Recall that  $\rho$  is sublinear on  $l^{\infty}(\mathbb{N}, \mathbb{R})$  and let  $c(\mathbb{N}, \mathbb{R})$  denote the subspace of all convergent sequences. Then  $\rho(x) = \lim_{k \to \infty} x_k$   $(x \in c(\mathbb{N}, \mathbb{R}))$ . Let  $y \in l^{\infty}(\mathbb{N}, \mathbb{R}) \setminus c(\mathbb{N}, \mathbb{R})$ . According to Hahn-Banach's Theorem there exists  $L \in (l^{\infty}(\mathbb{N}, \mathbb{R}))^*$  such that  $L(x) = \rho(x)$   $(x \in c(\mathbb{N}, \mathbb{R}))$ ,

$$-\rho(-x) \le L(x) \le \rho(x) \quad (x \in l^{\infty}(\mathbb{N}, \mathbb{R})),$$

and

$$L(y) = \inf\{\rho(y+x) - \rho(x) : x \in c(\mathbb{N}, \mathbb{R})\} = \rho(y)$$

Clearly L(e) = 1 and  $L(x) \ge -\rho(-x) \ge 0$   $(x \in K)$ . To see that L(Sx) = L(x)  $(x \in l^{\infty}(\mathbb{N}, \mathbb{R}))$  consider

$$\left| (\lambda - 1) \sum_{k=1}^{\infty} \frac{x_{k+1} - x_k}{\lambda^k} \right| = \left| (\lambda - 1) \left( \frac{x_1}{\lambda} + (\frac{1}{\lambda} - 1) \sum_{k=2}^{\infty} \frac{x_k}{\lambda^{k-1}} \right) \right|$$
$$\leq (\lambda - 1) \left( \frac{2\|x\|}{\lambda} \right) \to 0 \quad (\lambda \to 1+).$$

Thus  $\rho(Sx - x) = \rho(x - Sx) = 0$ , and therefore L(Sx - x) = 0  $(x \in l^{\infty}(\mathbb{N}, \mathbb{R}))$ . If now y is in addition almost convergent in the sense of Lorentz [4], then

$$\rho(y) = L(y) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} y_k.$$

Thus, Theorem 2.2 is proved if we can show that  $y = (\varphi((T^n x) \cdot x))_{n \in \mathbb{N}}$  is almost convergent. Under the assumptions of Theorem 2.2 the Mean Ergodic Theorem (see for example [2, Chapter 8.1]) proves that

$$\left(\frac{1}{n}\sum_{k=1}^{n}T^{k}x\right)_{n\in\mathbb{N}}$$

is convergent in norm towards a fixed point u of T. As |||T||| = 1 we have

$$\left\|\frac{1}{n}\sum_{k=m}^{n+m-1}T^{k}x-u\right\| \leq \left\|\frac{1}{n}\sum_{k=1}^{n}T^{k}x-u\right\| \quad (n,m\in\mathbb{N}).$$

Thus

$$\frac{1}{n}\sum_{k=m}^{n+m-1}T^kx\to u\quad (n\to\infty)$$

uniformly in  $m \in \mathbb{N}$ . Therefore

$$\frac{1}{n}\sum_{k=m}^{n+m-1}\varphi((T^kx)\cdot x)\to\varphi(u\cdot x)\quad (n\to\infty)$$

uniformly in  $m \in \mathbb{N}$ , that is  $(\varphi((T^n x) \cdot x))_{n \in \mathbb{N}}$  is almost convergent.

### 3. APPLICATIONS AND EXAMPLES

For  $x \in l^{\infty}(\mathbb{N}, \mathbb{R})$  let

$$q(x) := \lim_{j \to \infty} \inf_{m \in \mathbb{N}_0} \frac{1}{j} \sum_{k=m+1}^{j+m} x_k, \quad p(x) := \lim_{j \to \infty} \sup_{m \in \mathbb{N}_0} \frac{1}{j} \sum_{k=m+1}^{j+m} x_k.$$

According to Sucheston [6]

$$\min\{L(x): L \in \mathcal{L}\} = q(x), \quad \max\{L(x): L \in \mathcal{L}\} = p(x),$$

thus, as  $\mathcal{L}$  is convex, we have

$$\{L(x): L \in \mathcal{L}\} = [q(x), p(x)] \quad (x \in l^{\infty}(\mathbb{N}, \mathbb{R})).$$

From Theorem 2.1 we obtain the following corollary for the shift operator S. Corollary 3.1. Let  $x \in l^{\infty}(\mathbb{N}, \mathbb{R})$  with  $[q(x), p(x)] \neq \{0\}$ . Then  $p(x^2) > 0$  and

$$\overline{D}(\{n \in \mathbb{N}_0 : p((S^n x) \cdot x) > 0\}) \ge \frac{\max\{q(x)^2, p(x)^2\}}{p(x^2)} > 0.$$

If in addition  $x \in K$ , then

$$\overline{D}(\{n \in \mathbb{N}_0 : p((S^n x) \cdot x) > 0\}) \ge \frac{p(x)}{\|x\|}$$

Proof. Set

$$Q := \{ n \in \mathbb{N}_0 : p((S^n x) \cdot x) > 0 \}.$$

For some  $L \in \mathcal{L}$  we have

$$|L(x)| = \max\{|q(x)|, |p(x)|\} > 0.$$

Consider Theorem 2.1 with  $P_0$  corresponding to  $\varphi = L$  and T = S. We have  $P_0 \subseteq Q$ and

$$0 < \max\{q(x)^2, p(x)^2\} = L(x)^2 \le \overline{D}(P_0)L(x^2) \le \overline{D}(Q)p(x^2).$$
  
on  $x \in K$ , then  $0 < q(x) < p(x)$  and  $p(x^2) < p(x)||x||$ .

If in addition  $x \in K$ , then  $0 \le q(x) \le p(x)$  and  $p(x^2) \le p(x) ||x||$ .

For our second corollary let  $\mathcal{A} = C_{2\pi}(\mathbb{R}, \mathbb{R})$ . Application of Theorem 2.1 to  $T = T_{\tau}$  $(\tau \in \mathbb{R})$  and  $\varphi$  from the introduction leads to the following inequalities.

**Corollary 3.2.** Let  $x \in \mathcal{A}$  and  $r < \varphi(x)^2$ . Then

$$0 < \frac{\left(\frac{1}{2\pi} \int_{0}^{2\pi} x(t)dt\right)^{2} - r}{\frac{1}{2\pi} \int_{0}^{2\pi} x(t)^{2}dt - r} \le \overline{D}\left(\left\{n \in \mathbb{N}_{0} : \frac{1}{2\pi} \int_{0}^{2\pi} x(t+n\tau)x(t)dt > r\right\}\right).$$

**Remark 3.3.** In Corollary 3.2 the sequence

$$\left(\frac{1}{n}\sum_{k=1}^{n}T^{k}x\right)_{n\in\mathbb{N}}$$

has a norm convergent subsequence (according to Arzelà-Ascoli's Theorem) and Theorem 2.2 applies. In particular this sequence is convergent, its limit function is  $\tau$ -periodic and  $2\pi$ -periodic, hence constant  $\varphi(x)$  if  $\tau/\pi \notin \mathbb{Q}$ . In this case

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \varphi((T^k x) \cdot x) = \varphi(x)^2,$$

and we have equality in the first inequality of Theorem 2.1.

Consider  $x(t) = 5/(2 + \sin(t))$ . Then Corollary 3.2 gives

$$\frac{\frac{25}{3} - r}{\frac{50}{\sqrt{27}} - r} \le \overline{D}\left(\left\{n \in \mathbb{N}_0 : \frac{1}{2\pi} \int_0^{2\pi} \frac{25}{(2 + \sin(t + n\tau))(2 + \sin(t))} dt > r\right\}\right).$$

For  $\tau = \sqrt{2}$  and r = 8 numerically this inequality reads  $0.205 \le 0.570$ . The following Figure 1 shows  $\varphi((T^n x) \cdot x)$  for  $n = 1, \dots, 1000$ .



As another example let  $\mathcal{A} = C_{2\pi}(\mathbb{R},\mathbb{R})$  and  $T : \mathcal{A} \to \mathcal{A}$  the dilation operator (Tx)(t) = x(2t). In this case the functional

$$x \mapsto \varphi(x) = \frac{1}{2\pi} \int_{0}^{2\pi} x(t) dt$$

is in  $\mathcal{B}(T)$  as well. This situation has an extremal property:

$$\forall x, y \in \mathcal{A} : \varphi((T^n x) \cdot y) \to \varphi(x)\varphi(y)$$

(if  $x \in K$  the Mean Value Theorem for Integrals leads to a sequence of Riemann sums converging to  $\varphi(x)\varphi(y)$ ). In particular

$$\forall x \in \mathcal{A} : \varphi((T^n x) \cdot x) \to \varphi(x)^2.$$

Again we have equality in the first inequality of Theorem 2.1, now for each  $x \in \mathcal{A}$ , and moreover

$$\overline{D}(P_r) = 1 \ (r < \varphi(x)^2), \quad \overline{D}(P_r) = 0 \ (r > \varphi(x)^2)$$

for each  $x \in \mathcal{A}$ .

#### REFERENCES

- N.N. Avdeev, E.M. Semenov, A.S. Usachev, Banach limits and a measure on the set of 0-1-sequences, Mat. Zametki 106 (2019), 784–787.
- [2] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Cham, 2015.
- [3] M. Krüppel, Eine Ungleichung für Banach-Limites beschränkter Zahlenfolgen, Rostock. Math. Kolloq. 48 (1995), 75–79.
- [4] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
- [5] E.M. Semenov, F.A. Sukochev, Invariant Banach limits and applications, J. Funct. Anal. 259 (2010), 1517–1541.
- [6] L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308–311.

Gerd Herzog (corresponding author) gerd.herzog2@kit.edu

Karlsruhe Institute for Technology Institute for Analysis D-76128 Karlsruhe, Germany

Peer Chr. Kunstmann peer.kunstmann@kit.edu

Karlsruhe Institute for Technology Institute for Analysis D-76128 Karlsruhe, Germany

Received: November 20, 2020. Accepted: January 23, 2021.