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Abstract. For a class of operators T" on [*° and T-invariant functionals ¢ we prove inequalities
between ¢(z), p(x?) and the upper density of the sets

P.:={neNp:o(T"z) - z) > r}.

Applications are given to Banach limits and integrals.
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1. INTRODUCTION

Let T" be a nonempty set and let [°°(T",R) denote the real Banach algebra of all
bounded functions z : I' — R endowed with the supremum norm || - ||. Let A be
a closed subalgebra of {*°(I", R) containing the unit e, e(y) = 1 (v € T"). Moreover let .4
be ordered by the cone K :={z € A:z(y) >0 (yeD)}, thatise <y:=y—z € K.
Let K* denote the dual cone of K, that is K* := {p € A* : p(z) > 0 (x € K)}. For
x € A and a continuous function h : 2(I') — R we have hoxz € A and for short we set
h(zx) := hox. Next, let T: A — A, T # 0 be a linear operator such that

Ve,yec A: T(x-y) = (Tz)- - (Ty). (1.1)
Note that T is monotone as Tz = (T'v/z) - (T'v/x) > 0 (z € K), thus T is contin-
uous. In particular Te = (Te) - (Te), thus 0 < Te < e and T has operator norm
Tl = |Te|| = 1. We set
B(T)={peK*:p(e)=1, poT = p}.
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For ¢ € B(T) and x € A we are interested in the size of the sets
P.:={neNy:p(T"z) z)>r},

and we will prove inequalities between o(z), ¢(2?) and the upper density of P,.

As an introducing example let A = [*°(N, R) and let S denote the left shift operator
Sz = (Zk+1)ken- Recall that a functional L € (I°°(N,R))* is called a Banach limit if
it has the following three properties:

LeK*, Le)=1, LoS=0L.

Let £ denote the set of all Banach limits. In this case we have £ = B(S). More general,
let 0 : N — N be any function and let 75 : [*°(N,R) — I*°(N,R), Tox = (T 1)) ren-
Clearly T, satisfies (1.1). In [5] sufficient conditions for B(T,) N L # @ are given.
The dilation operator

T,z = (x1,x1, T2, T, T3, T3, Ta, Ta,...) (x €IC(N,R))

is an example with () #£ B(T,) N L # L, see [1].

As a second example let A = Co,(R,R) or A = R, (R,R) be the Banach algebra
of all 2m-periodic continuous or regulated functions x : R — R, respectively. In both
cases A is a closed unital subalgebra of [*°(R,R). Let 7 € R, and let T>- : A — A be
the translation operator (T,x)(t) = x(t+ 7). Then T satisfies (1.1), and the functional

2

1 27
x = o(x)=— [ x(t)dt
/

is in B(T%).

2. MAIN RESULTS

For a set M C Ny the upper density of M is defined as

— M nA{0,...
D(M) := limﬁsup %_;_1’””

If M is infinite and M = {n; : j € N} with (n;);en strictly increasing, the upper
density of M is .
D(M) = lim sup g
j—roo T

For finite sets clearly D(M) = 0. We define the function p : [*°(N,R) — R by

k

ESS

ai
z) ;= limsup(A — 1
p(x) := limsup( )I;A

Note that p is a sublinear functional on [*°(N, R).
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Theorem 2.1. Let T : A — A be a linear operator with property (1.1), let ¢ € B(T),
x € Aandr eR. Then

p(2)* < p((p((T"x) - 2))nen) < (L= D(P)r + D(P)p(z?).
In particular, if r < p(x)? then

o) =7

o) = < D)

0<

The following result specifies the quantity p((¢((T"x) - #))nen) from Theorem 2.1
in some special cases.

Theorem 2.2. If under the assumptions of Theorem 2.1 the sequence

1
n
k=1 neN

has a weakly convergent subsequence, then it is norm convergent, and
1 n
: k
p((((T"2) - 2))nen) = lim =3~ @ ((T¥2) - ).
k=1

In the proof of Theorem 2.1 we use the following lemma (which was proved for
Banach limits in [3]).

Lemma 2.3. Let p € K*, p(e) =1, and let h : R = R be convex. Then
Ve e A:p(h(x)) = h(p(z)).

Proof. Let to := ¢(x). As h is convex it is continuous, hence h(z) € A, and there is
a supporting straight line t — h(tg) + a(t — to) such that

h(t) > h(to) + a(t —to) (t € R).
Hence
¢(h(z)) = (h(to)e + a(z —toe)) = h(p(z)).
O]

Remark 2.4. If ¢(z) # 0 in Theorem 2.1 we can set r(a) := ap(z)? (o < 1) and
obtain the scaled inequality

2 « 5(-Pr((y))

2
T l—a+ Ozb(PT(a))sO(x ) (a < 1)’

p(x)
which is an improvement of p(x)? < ¢(2?) coming from Lemma 2.3. If in addition
x € K we have p(2?) < ¢(z)||z| and obtain

b(Pr(oc)>
11—« + QE(PT(Q))

p(r) < [zl (a <1).
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We will now give the proofs of Theorem 2.1 and Theorem 2.2.

Proof. Recall that [|T]| = 1. By (1.1) we have
(T M) - (T™x)) = p(T™((T"x) - 7)) = p((T"x) -x) (n,m € Np).  (2.1)

Moreover note that (y, z) — (y- z) is a semi-definite bilinear form on .4, and therefore
the Cauchy—Schwarz inequality is valid:

oy 2)? <p(y)e(z%) (y,2 € A).
In particular, for x € A and n € Ny we have
p((T"2) - )| < Vo(T) - (Tx))\/p(2?) = p(a?). (2.2)

By Lemma 2.3, we have for z € A and A > 1:

e(((1 - T/A ) ((I—T/A)_lx))

CEREn

— Z /\n+m (T"z) - (T™x))
,m=0

IN

(o((I =T/ '2))”

::Ejvn )+ (T"0))

+2 Z Z >\n+2m @((T”erm) (T™x))

m=0n=1
(2.1) 1 ”
= 1/)\29033 $+2ZZ)\n+2m (T"z) - )
m=0n=1
1

71_1”2@(:5.@

(S4) S o)

1 _11/A2s0(:c~x) +T 77 _21/A2 Z%nso((T"w) "),

‘We have
(I =T/Ny) =1 -1/ Nep(y) (yeAN>1),

thus

p()? = (1= 1/0)2(o((I - T/N) @),
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which together with the previous calculations yields

A—1
2270 2—§
#(2) —A+1‘p(x ? 2 )\” ')

1
aa )

n¢ P,
A+1

1
7 )= ”Zm>
2rA

/\—i—lJr )\_A,_ln;r)\n(w((Tn ) )*'r).

Z
< 2% ( IEXY An (2.3)

As A — 1+ we obtain (see (2.3))

2 n A—1 1 "
oo < (A7) 2 nes) <7+ w235 3 S A7) ) =)

If |P,| < co (then D(P,) = 0) we get
p()? < p((p((T"x) - 2))nen) <7 = (1= D(P,))r + D(Py)p(z?).

Thus, let P, = {n; : j € N} with (n;);en strictly increasing. Let € > 0. Then

J

J

Jjo e NVj > jo: = < D(P) +e¢,

and
oo

1 1
> - <y —— < 5 :
L £\ = = \j/(D(Py)+e) T 1 — \—1/(D(P.)+e)

J=Jo J=Jo

We now have
2rA\ A—1 1
— 4+ 2— T 'z —
P /\+1nZ€P 3o W(T"2) - 2) =)

(2<2) 2r\ (2) )
= 3r AL ) —r

2r )\ Jo ! 1
A1 1 )\ +1 /\”ﬂ — A1/ (D(Pr)+e)

(p(®) —7),
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and from

A—1
lim

Jim =7 =a (a>0)

we conclude that

Sl
—
=
SN~—
_|_
(O
S—
—
S
—
=
(]
S—
|
!
N—

A—1 1
li 2—— — T2 - 2) — 1) <
o+ lim sup 23— > o (P((T72) - 2) =) <7 (

As £ — 0+ we obtain

r + lim sup 2u E i((,0((T"96) x) —71) < (1= D(P.))r+ D(P.)p(x?),
rolr A+1 AT
+ ne P,

and summing up
p(@)? < p((e((T"x) - ))nen) < (1= D(P))r + D(Br)p(a?).
If in addition r < p(z)? (hence r < ¢(z)? < ¢(z?)) then
0< ZE%:: <D(P,). O
Proof. To prove Theorem 2.2 we show in a first step that
Vy € I°(N,R) 3L € L: p(y) = L(y),

which is clear if y is convergent. Recall that p is sublinear on [°°(N,R) and let
¢(N,R) denote the subspace of all convergent sequences. Then p(z) = limpg_00 2k
(x € ¢(N,R)). Let y € I*°(N,R) \ ¢(N,R). According to Hahn-Banach’s Theorem there
exists L € (I°°(N,R))* such that L(z) = p(x) (z € ¢(N,R)),

—p(—z) < L(z) < p(z) (z € I(N,R)),

and

L(y) = inf{p(y + ) — p(z) : @ € ¢(N,R)} = p(y).
Clearly L(e) = 1 and L(z) > —p(—z) > 0 (x € K). To see that L(Sz) = L(x)
(z € I°°(N,R)) consider

N Tjot1 — Tk a1 — Tk
A-1 S [N D (T D N

<(A-1 <2||;|) -0 (A= 1+4).

Thus p(Sz — x) = p(z — Sz) = 0, and therefore L(Sz — z) = 0 (z € [*°(N,R)).
If now y is in addition almost convergent in the sense of Lorentz [4], then

Ll
p(y) = L(y) =nlggoﬁkz_lyk.
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Thus, Theorem 2.2 is proved if we can show that y = (p((T"z) - x))nen is almost
convergent. Under the assumptions of Theorem 2.2 the Mean Ergodic Theorem (see
for example [2, Chapter 8.1]) proves that

1 n
" k=1 neN

is convergent in norm towards a fixed point u of T. As |||T']|| = 1 we have

n+m 1 n
1
Z TFe —ul| < fZTkx—u (n,m € N).
"=
Thus
1 n+m-—1
— TF: — -
- k:zm xr—=u (n— o0)
uniformly in m € N. Therefore
1 n+m—1
. Y. e((Th2) @) = p(u-a) (n— o)
k=m
uniformly in m € N, that is (o((T™z) - z))nen is almost convergent. O
3. APPLICATIONS AND EXAMPLES
For x € [*°(N,R) let
Jjtm Jjtm
g(z):= lim inf - Z Tk, = lim sup - Z Tk

Jj—00 meNy j Jj—o00 mGNo

k=m+1 k=m+1

According to Sucheston [6]
min{L(z): L € L} = q(x), max{L(z):L € L} =p(z),
thus, as £ is convex, we have
{L(x): L € L} = [q(z),p(x)] (x € I™(N,R)).
From Theorem 2.1 we obtain the following corollary for the shift operator S.

Corollary 3.1. Let x € [*°(N,R) with [q(x),p(x)] # {0}. Then p(x?) > 0 and

max{q(z)?, p(z)*}
p(x?)

D({n € Ny :p((S"z) z)>0}) > > 0.
If in addition x € K, then

D({n € Ny : p((S"2) - 2) > 0}) > pﬁ)
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Proof. Set
Q:={neNy:p((S"z)-z) > 0}.

For some L € £ we have

|L(x)] = max{]|q(x)], |p(x)[} > 0.

Consider Theorem 2.1 with Py corresponding to ¢ = L and T'= 5. We have Py C @
and
0 < max{q(z)?,p(x)*} = L(x)* < D(Py)L(2*) < D(Q)p(z?).

If in addition z € K, then 0 < ¢(z) < p(z) and p(z?) < p(z)||z|. O

For our second corollary let A = Co, (R, R). Application of Theorem 2.1 to T' = T’
(7 € R) and ¢ from the introduction leads to the following inequalities.

Corollary 3.2. Let z € A and v < ¢(z)?. Then

(% fozﬂ x(t)dt)2 -7

% 027r x(t)?dt — r

0<

27
— 1
<D nGNO:Z—/x(t+n7)x(t)dt>r
™
0

Remark 3.3. In Corollary 3.2 the sequence

1 n
n
k=1 neN
has a norm convergent subsequence (according to Arzela-Ascoli’s Theorem) and

Theorem 2.2 applies. In particular this sequence is convergent, its limit function is
7-periodic and 27-periodic, hence constant ¢(z) if 7/7 ¢ Q. In this case

D e(Thr) - ) = (),

1
lim —
n—oo M
k=1
and we have equality in the first inequality of Theorem 2.1.
Consider z(t) = 5/(2 + sin(¢)). Then Corollary 3.2 gives

27

25

3" - p nENo'—l/ 25 dt > r
50 _ .. — o 2 + sin(t + n7))(2 + sin(t
EIR 0( ( )( ()

For 7 = v/2 and r = 8 numerically this inequality reads 0.205 < 0.570. The following
Figure 1 shows ¢((T"z) - z) for n = 1,...,1000.
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Fig. 1. ¢((T"z)-z) forn=1,...,1000

As another example let A = Co(R,R) and T : A — A the dilation operator
(T'z)(t) = x(2t). In this case the functional

2
x— (r) = % /x(t)dt
0

is in B(T') as well. This situation has an extremal property:

Vo,y € A o((T"x) - y) = p(2)p(y)

(if x € K the Mean Value Theorem for Integrals leads to a sequence of Riemann sums
converging to ¢(x)e(y)). In particular

Ve e A: o(T"z) - x) — o(x)>

Again we have equality in the first inequality of Theorem 2.1, now for each z € A, and
moreover

D(P;) =1 (r <¢(2)?), D(P:)=0(r>ep()?

for each x € A.
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