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Abstract: We consider the Moore-Gibson-Thompson equation
which arises, e.g., as a linearization of a model for wave propaga-
tion in viscous thermally relaxing fluids. This third order in time
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behaviors for their solutions that depend on the physical param-
eters in the equation. These range from non-existence and insta-
bility to exponential stability (in time). It will be shown that by
neglecting diffusivity of the sound coefficient there arises a lack of
existence of a semigroup associated with the linear dynamics. More
specifically, the corresponding linear dynamics consists of three dif-
fusions: two backward and one forward. When diffusivity of the
sound is positive, the linear dynamics is described by a strongly
continuous semigroup which is exponentially stable when the ratio
of sound speed×relaxation parameter

sound diffusivity
is sufficiently small, and unstable in

the complementary regime.
The theoretical estimates proved in the paper are confirmed by

numerical validation.
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1. Introduction

Investigations on nonlinear propagation of sound in the situation of high ampli-
tude waves have put forth extensive literature on physically well-based partial
differential models, see, e.g., Crighton (1979), Coulouvrat (1992), Hamilton and
Blackstock (1987), Kuznetsov (1971), Makarov and Ochmann (1997), Tjøtta
(2001), or Westervelt (1963). This still highly active field of research is driven
by a wide range of applications such as the medical and industrial use of high in-
tensity ultrasound in lithotripsy, thermotherapy, ultrasound cleaning and sono-
chemistry.

The classical models of nonlinear acoustics are Kuznetsov’s equation, the
Westervelt equation, and the KZK (Kokhlov-Zabolotskaya-Kuznetsov) equa-
tion. For a mathematical well-posedness analysis of several types of initial
boundary value problems for these nonlinear second order in time PDEs we refer
to, e.g., Kaltenbacher and Lasiecka (2009, 2011, 2012), Kaltenbacher, Lasiecka
Veljović (2011), Rozanova-Pierrat (2008). Motivated mainly by the fact that
the use of classical Fourier’s law leads to an infinite signal speed paradox, the
use of several other constitutive relations for the heat flux within the derivation
of nonlinear acoustic wave equations has been considered (see Jordan, 2009,
and the references therein). Among these is the Maxwell-Cattaneo law, whose
combination with the usual balance equations (conservation of mass, momen-
tum and energy) as well as the equation of state, leads to a third order in time
PDE model. A crucial prerequisite for investigating the fully nonlinear third
order PDE is a thorough understanding of the well-posedness and asymptotic
behavior of its linearization. Since this linearized version appears in a slightly
different setting in Moore & Gibson (1960) and Thompson (1972) (see equation
(11.84) on p. 556 therein), we call it here Moore-Gibson-Thompson equation,
while the fully nonlinear version will be referred to as the Jordan-Moore-Gibson-
Thompson equation.

The aim of this paper is to provide results for this linearized case under
different relevant scenarios for the equation parameters. Numerical calculations
presented in Section 6 confirm the theoretical results and quantitative estimates.

It should be noted that the analysis of the third order equations is very
different from that of the second order, where a positive diffusivity coefficient
provides a regularizing effect. This is no longer true in the third order equations
which are of hyperbolic type, thus requiring a very different type of analysis than
the one pertaining to second order in time equations.

1.1. PDE model

Models for thermo-viscous flow in compressible fluid relate the following quan-
tities:

• the acoustic particle velocity ~v which, since assumed to be irrotational,
can be expressed via a scalar acoustic velocity potential ψ in ~v = −∇ψ;
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• the acoustic pressure p, where p = p0 + p∼ with ∇p0 = 0;

• the mass density ̺ = ̺0 + ̺∼ with ̺t = 0;

• the temperature θ;

• the heat flux ~q;

• the specific entropy η;

and they are based on the following relations:

• the conservation of mass, momentum and energy:

̺t +∇(̺~v) = 0 , (1)

̺
(

~vt +∇(~v · ~v)
)

= −∇p+
(4µv

3
+ ζv

)

∆~v , (2)

̺θ(ηt + ~v · ∇η) = −∇ · ~q + T : D, (3)

where D = 1

2
(∇~v + (∇~v)T ), T = −pI+ 2µV D+ λ(∇ · ~v)I

• the (non-isentropic) state equation

p∼ = ρ0c
2

{

ρ∼
ρ0

+
B

2A

(

ρ∼
ρ0

)2

+
γ − 1

χc2
(η − η0)

}

, (4)

where ζV = λ + 2

3
µV is the bulk viscosity, µV the shear viscosity, c the

speed of sound, B/A the parameter of nonlinearity, χ the coefficient of
volume expansion.

Closing this system by Fourier’s law for the heat flux

~q = −K∇θ (5)

with the thermal conductivity K, subtracting the time derivative of (1) from the
divergence of (2) as well as inserting (4), (3), and neglecting third and higher
order terms in the fluctuating quantities ~v, p∼, ̺∼, we obtain the Kuznetsov
equation

ψtt − c2∆ψ − δ∆ψt =

(

1

c2
B

2A
(ψt)

2 + |∇ψ|2
)

t

, (6)

where δ is the diffusivity of the sound, see, e.g., Coulouvrat (1992), Kuznetsov
(1971), for details.

Motivated by the exhibited infinite signal speed paradox, versions of this
nonlinear acoustic wave equation have been recently developed that are based
on a replacement of Fourier’s law by the Maxwell-Cattaneo law

τ q̇ + ~q = −K∇θ, (7)

where the dot ˙ denotes the material derivative (which becomes just the time
derivative if the convective term is neglected) and τ is a positive constant ac-
counting for relaxation. An analogous procedure to the one leading to (6) then
yields
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τψttt + ψtt − c2∆ψ − b∆ψt =

(

1

c2
B

2A
(ψt)

2 + |∇ψ|2
)

t

, (8)

where b = δ + τc2, see Jordan (2009).

In what follows we shall consider the linearized version of equation (8) writ-
ten in a more general abstract form. This will lead to an abstract third order
in time equation which is driven by a selfadjoint positive operator A defined on
a Hilbert space H

τuttt + αutt + c2Au+ bAut = 0. (9)

It is interesting to notice that the third order in time model has very different
characteristics from the familiar second order equation (τ = 0, α > 0). The well-
posedness of solutions fails, Fattorini (1983), even in the simplest case when
b = 0 – see Theorem 1.1 in Subsection 1.2. Thus, the structural damping is
essential for the well-posedness of third order systems. As we know, for second
order (in time) equations the presence of the structural damping is irrelevant
for well-posedness, it does, however, play a role in asymptotic behavior and
regularity of solutions. Instead, for the third order equations structural damping
(b > 0) is critical for the well-posedness. More specifically, it does affect both
well-posedness and stability. Our main goal is to provide a complete analysis
and classification of parameters leading to both well-posedness and stability of
the abstract model under consideration.

More precisely, exponential stability of the trajectories depends on the criti-
cal parameter sound speed×relaxation parameter

sound diffusivity
which is required to be small enough

with respect to a natural damping α in the system. More specifically, exponen-

tial stability requires γ ≡ α − τc2

b > 0. In the complementary region of the
parameters the system is unstable (γ < 0) or marginally stable (γ = 0). The
theoretical findings and estimates are supported by numerical calculations that
reveal spectral properties of the system.

1.2. Main results

Let A be a self-adjoint positive operator on H with a dense domain D(A) ⊂ H.
We consider the following third order in time abstract evolution equation defined
on H, where H is a real Hilbert space:

τuttt + αutt + c2Au+ bAut = 0, (10)

with the initial conditions given by

u(0) = u0, ut(0) = u1, utt(0) = u2. (11)

This can be rewritten as a first order abstract system of the form

Ut(t) = AU(t), t > 0, U(0) = U0 = (u0, u1, u2) ∈ H, (12)
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where H ≡ D(A1/2)×D(A1/2)×H endowed with the graph norm

|U0|
2

H ≡ |A1/2u0|
2

H + |A1/2u1|
2

H + |u2|
2

H

which corresponds to

|U(t)|2H = |A1/2u(t)|2H + |A1/2ut(t)|
2

H + |utt(t)|
2

H

and

U ≡





u
ut
utt



 ; A =





0 I 0
0 0 I

−c2τ−1A −bτ−1A −ατ−1I



 . (13)

Our goal is to discuss the well-posedness and asymptotic stability of the
model defined in (10). Notice first that with τ = 0 the model reduces to a
classical wave equation with (b > 0) structural damping – which corresponds to
an analytic semigroup. However, τ > 0 makes the model of hyperbolic type and
the well-posedness is no longer valid unless the parameters are appropriately
selected. In what follows we shall assume that τ > 0, b ≥ 0.

Related models have been recently considered in Fernandez, Lizama, Poblete
(2010, 2011). In Fernandez, Lizama, Poblete (2010), maximal regularity for the
problem with zero Cauchy data was established. This result corresponds, how-
ever, to an analytic version of the model, which in our case corresponds to
either τ = 0 or the operator A assumed bounded on H. In Fernandez, Lizama,
Poblete (2011), the well-posedness of a “hyperbolic” version is considered. Here,
however, the results obtained display the “loss” of regularity of transient solu-
tions with respect to the regularity of initial conditions. Thus, the results of
Fernandez, Lizama, Poblete (2011) do not lead to generation of a semigroup.

Our results, instead, show that such a loss does not occur. In fact, the
model generates a strongly continuous group in a topological setting of both
H (Theorem 1.2) and H1 (Theorem 1.4) spaces. Moreover, we prove that the
group is exponentially stable when γ > 0, c > 0. In the complementary region of
the parameters γ ≥ 0, c > 0 and also γ > 0, c = 0, it is demonstrated in Section
6 that the semigroup is not exponentially stable. Thus, the results obtained are
complete and optimal.

Notation: (u, v) ≡ (u, v)H. |u|2 ≡ |u|2H, Aθ, θ ∈ [0, 1] denote fractional
powers of A; see, e.g., Pazy (1983).

Theorem 1.1 Let b = 0, α ∈ R and A an unbounded operator (in addition to
being self-adjoint and positive on H). Then the resulting system (10) is ill-posed
in the sense that it does not generate a strongly continuous semigroup on the
state space H.

Theorem 1.2 Let b > 0, α ∈ R. The system given in (10) generates a strongly
continuous group on H.
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Our next result describes exponential decay for the energy. It turns out that
the latter depends on the values of certain parameters.

Let us introduce the parameter γ ≡ α− c2τ
b and define the following energies:

E(t) ≡
b

2
|A1/2(ut + c2b−1u)|2 +

τ

2
|utt + c2b−1ut|

2 +
c2

2b
γ|ut|

2, (14)

E0(t) ≡
α

2
|ut|

2 +
c2

2
|A1/2u|2. (15)

Theorem 1.3 Let b > 0 and α > 0, c > 0

• If γ > 0, there exist ω > 0, C > 0 such that Ê(t) = E(t) + E0(t) satisfies:

Ê(t) ≤ Ce−ωtÊ(0), t > 0.

• If γ = 0, the energy E(t) remains constant.

Corollary 1.1 Under the assumptions of Theorem 1.3 the semigroup eAt is
exponentially stable on H.

Proof. This follows from the equivalence of the norm generated by Ê(t) and
that of H .

With the motivation coming from the nonlinear model, we shall also consider
solutions that exhibit more regularity. In fact, we will be able to show that with
b > 0 the model defined in (12) generates a strongly continuous semigroup on
the space

H1 ≡ D(A)×D(A1/2)×H

endowed with the norm; for U = (u0, u1, u2),

|U |2H1
≡ |Au0|

2

H + |A1/2u1|
2

H + |u2|
2

H,

which on the trajectories corresponds to

|U(t)|2H1
≡ |Au(t)|2H + |A1/2ut(t)|

2

H + |utt(t)|
2

H.

Theorem 1.4 Let the sound diffusivity parameter b > 0. The operator A given
in (13) generates a strongly continuous group eAt on the space H1.

A straightforward corollary of Theorem 1.4 is the well-posedness of the nonho-
mogeneous problem:

Corollary 1.2 Consider a nonhomogeneous equation driven by a forcing term
f ∈ L1(0, T ;H) with an arbitrary T > 0.

τuttt + αutt + c2Au+ bAut = f (16)

with the initial data (u0, u1, u2) ∈ H1, and let b > 0.
Then, (u, ut, utt) ∈ C([0, T ];H1).
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Remark 1.1 It is interesting to notice the particular role played by the sound
diffusivity coefficient b. While in the second order in time equations such damp-
ing leads to analytic semigroups, for the third order equation this damping is
responsible for just well-posedness of the equation. The asymptotic decay de-
pends, instead, on a damping parameter α and large values of the structural
damping b (compensating for τ). This is a new feature of the abstract equations
not seen in other models involving structural damping. The figures presented in
Section 6 demonstrate this qualitative behavior.

The remainder of the paper is devoted to the proofs of the main theorems
(Sections 2–5), as well as numerical simulations of the spectrum to illustrate the
theoretical results (Section 6).

2. Proof of Theorem 1.1

Under the conditions of Theorem 1.1 we are led to consider

U ≡





u
ut
utt



 ; A =





0 I 0
0 0 I

−c2τ−1A 0 −ατ−1I



 .

We shall consider the eigenvalue problem for A

(A− λI)U = 0.

This leads to the consideration of the operator valued characteristic polynomial

f(λ,A) ≡ (λ3 + ατ−1λ2)I + c2τ−1A.

Let ν2n, φn be eigenvalues and eigenfunctions of A:

Aφn = ν2nφn, n = 1, 2 . . . , ν2n → ∞.

To simplify the analysis, we consider A as a perturbation of

A0 ≡





0 I 0
0 0 I

−c2τ−1A 0 0





by

P ≡





0 0 0
0 0 0
0 0 −ατ−1I



 .

Clearly, A = A0 + P with P ∈ L(H). Thus, the question of generation of
the semigroup reduces, via Perturbation Theorem, Pazy (1983), to the one of
generation by A0.
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On the other hand, the characteristic polynomial associated with A0 has a
simplified form

f0(λ,A) ≡ λ3I + c2τ−1A .

Inspecting the roots of the equation

f0(λ, ν
2

n) = λ3 + c2τ−1ν2n = 0,

one sees that two branches of infinitely many eigenvalues have positive real
parts. This violates the necessary condition for generation of the semigroup,
as long as A is unbounded (ν2n → ∞). Thus, the necessary condition for the
generation of a strongly continuous semigroup is violated, Pazy (1983), page 51.
In fact, this is a special case of a general negative k-th order result, when k ≥ 3
— see Fattorini (1983), p. 99.

In the particular case under consideration, the procedure can also be directly
applied to the eigenvalue equation

f(λ, ν2n) = λ2(λ+ τ−1α) + c2τ−1ν2n = 0 (17)

for A. Abbreviating a = ατ−1, µn = c2τ−1ν2n and inserting λ = x + ıy, yields
the two equations

x3 − 3xy2 + ax2 − ay2 + µn = 0

y(3x2 − y2 + 2ax) = 0

for the real and imaginary part, respectively, of (17), which, in addition to the

real solutions y = 0, x < 0 (x = −µ
1/3
n when α = 0), leads to solutions with

y2 = 3x2 + 2ax and real parts x satisfying

f̃(x) = 8x3 + 8ax2 + 2a2x− µn = 0 .

For sufficiently small 0 < c = c(µ0) < 1, independent of n, we have

f̃(cµ1/3
n ) = (8c3 − 1)µn + 8ac2µ2/3

n + 2a2cµ1/3
n < 0

(note that for c small enough f̃(cµ1/3) ≤ f̃(cµ
1/3
0

) for all µ ≥ µ0.) On the other
hand,

f̃(µ1/3
n ) = 7µn + 8aµ2/3

n + 2a2µ1/3
n > 0 .

Hence, there exists a root x ∈ [cµ
1/3
n , µ

1/3
n ] for each n, which implies existence

of infinitely many eigenvalues having positive real parts.
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3. Proof of Theorem 1.2

Let b > 0 and without loss of generality we normalize τ = 1. It is convenient to
introduce the following variable:

z ≡ ut + c2b−1u. (18)

Consequently, ut = z − c2b−1u, and

uttt = −αutt − bAz

utt = zt − c2b−1ut = zt − c2b−1[z − c2b−1u]

ztt = uttt + c2b−1utt

= −(α− c2b−1)utt − bAz

= −γzt + γc2b−1[z − c2b−1u]− bAz. (19)

With this notation we introduce the vector

Y ≡





A1/2u

A1/2z
zt





and we consider Z ≡ H ×H ×H. The original model can now be rewritten in
operator form as:

Yt(t) = BY (t), Y (0) = Y0 ∈ Z

where the matrix operator B with a natural domain takes the form:

B ≡





−c2b−1I I 0

0 0 A1/2

−γc4b−2A−1/2 −bA1/2 + γc2b−1A−1/2 −γI



 , (20)

D(B) = {Y = (y1, y2, y3) ∈ Z; y1 ∈ H, y2 ∈ D(A1/2), y3 ∈ D(A1/2)}.

The operator matrix B can be represented as a bounded perturbation of B0,
i.e.: B = B0 +K where

B0 ≡





−c2b−1I I 0
0 0 A1/2

0 −bA1/2 −γI



 ,

and the bounded perturbation denoted by K is given by

K ≡





0 0 0
0 0 0

−γc4b−2A−1/2 γc2b−1A−1/2 0



 . (21)
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Moreover, B0 = B1 + PB , where the perturbation PB is bounded on Z and
given by

PB ≡





−c2b−1I I 0
0 0 0
0 0 −γI



 (22)

and

B1 ≡ A1/2





0 0 0
0 0 I
0 −bI 0



 (23)

and D(B1) = D(B) ≡ H × D(A1/2) × D(A1/2). We shall topologize Z with a
weighted inner product

(Y, Ŷ )Z ≡ (y1, ŷ1)H + b(y2, ŷ2)H + (y3, ŷ3)H. (24)

Thus we have the following decomposition

Lemma 3.1 Let b > 0, τ = 1. Then

B = B1 + PB +K,

where B,B1, PB,K are given by (20), (23), (22), (21), respectively, with the
following properties

• B1 : D(B1) ⊂ Z → Z is skew-adjoint, hence maximally dissipative on Z.

• PB and K are bounded on Z.

• If, in addition A has compact resolvent on H then K is compact on Z.

Proof. The first statement follows from the obvious fact that the operator




0 0 0
0 0 I
0 −bI 0



 (25)

is skew-adjoint with respect to the weighted inner product (24), hence B1 is
skew-adjoint, therefore maximally dissipative generator of a group.
The boundedness of PB and K follows from the fact that each entry of the
corresponding matrix operators represent bounded operators in L(H).
The third statement follows from the fact that A−1/2 is compact on H.

The well-posedness on Z is an immediate consequence of the fact that B
is a bounded perturbation of a maximally dissipative operator B1. Standard
semigroup theory implies thatB itself generates a strongly continuous semigroup
on Z. On the other hand, it is evident that the topology on Z is equivalent (since
b > 0) to the topology on H . This completes the proof of Theorem 1.2.

Remark 3.1 The stability of eBt depends on the lower order perturbations PB+
K. We will show exponential decay by deriving energy estimates in the next
section.
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4. Proof of Theorem 1.3

The proof of Theorem 1.3 follows through several lemmas.

Remark 4.1 Recalling that γ ≡ α − c2τ
b , we have that E(t) ≥ 0 for γ ≥ 0.

Thus Ê(t) is equivalent in norm to the one induced by

|utt(t)|
2 + |A1/2ut(t)|

2 + |A1/2u(t)|2.

In fact, the evolution (u(t), ut(t), utt(t)) ≡ St(u0, u1, u2) defines a continuous
flow on

H ≡ D(A1/2)×D(A1/2)×H.

Step 1: The energy dissipation.

Lemma 4.1 The following identity holds

d

dt
E(t) + γ|utt|

2 = 0. (26)

Thus, when γ ≥ 0, the problem is dissipative with a strict dissipation when
γ > 0. Instead, when γ = 0, the problem is conservative. This is to say:

• E(t) + γ
∫ t

0
|utt|

2ds = E(0), γ > 0

• E(t) = E(0), γ = 0.

Proof. Step 1: Multiply (10) by utt and integrate by parts. This gives

d

dt

[

τ |utt|
2 + b|A1/2ut|

2 + 2c2(Au, ut)
]

+2α|utt|
2 − 2c2|A1/2ut|

2 = 0. (27)

Step 2: Multiply (10) by ut and integrate by parts to obtain

d

dt

[

c2|A1/2u|2 + α|ut|
2 + 2τ(utt, ut)

]

+2b|A1/2ut|
2 − 2τ |utt|

2 = 0. (28)

Step 3. Combine the equalities and perform some algebraic manipulations
to complete squares,

d

dt

[

τ |utt|
2 + b|A1/2ut|

2 + 2c2(Au, ut)

+
c2

b
(c2|A1/2u|2 + α|ut|

2 + 2τ(utt, ut))
]

+2(α−
τc2

b
)|utt|

2 = 0. (29)

Using notation (14), we obtain the claimed equality.
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Step 2: Equipartition of the energy. Recall that multiplying the original
equation by ut and integrating by parts leads to:

b|A1/2ut|
2 = τ |utt|

2 −
d

dt

[1

2
α|ut|

2 +
1

2
c2|A1/2u|2 + τ(utt, ut)

]

, (30)

see (28).

Step 3: Boundedness of the energy. Our first goal is to establish the
boundedness of the total energy E(t) + E0(t) where

E0(t) ≡
1

2
α|ut(t)|

2 +
1

2
c2|A1/2u(t)|2.

From Lemma 4.1 and (30) we conclude that

d

dt
E(t) +

γ

2τ

d

dt
E0(t) +

1

2
γ|utt|

2 +
1

2
γbτ−1|A1/2ut|

2 = −
γ

2

d

dt
(utt, ut). (31)

In particular, with C denoting a generic constant (independent of t), the fol-
lowing inequality holds for all s < t

Lemma 4.2 Let γ ≥ 0. Then the total energy is bounded for all times.

E(t) +
γ

2τ
E0(t) +

1

2
γ

∫ t

s

[|utt|
2 + bτ−1|A1/2ut|

2]dz

≤ E(s) +
γ

2τ
E0(s) + Cγ,τ,b,α[E(t) + E(s)] ≤ Cγ,b,τ,α[E(s) + E0(s)]. (32)

This means that the total energy is bounded in time by the initial total energy.
Our goal is to show that the energy is exponentially decaying provided γ > 0.

In view of Lemma 4.2 it only remains to provide an estimate for
∫ T

0
|A1/2u|2dt.

Step 4: Reconstruction of
∫ T

0
|A1/2u|2dt . In order to derive exponential

decays one needs to reconstruct the time integral of |A1/2u|2. For this we apply
the multiplier u, which leads to

b

2

d

dt
|A1/2u|2 + c2|A1/2u|2 = α|ut|

2 +
d

dt
[
τ

2
|ut|

2 − τ(utt, u)−α(ut, u)]. (33)

Integrating in time (33) gives

b

2
|A1/2u(t)|2 + c2

∫ t

s

|A1/2u|2

=
b

2
|A1/2u(s)|2 + α

∫ t

s

|ut|
2 +

[τ

2
|ut|

2 − τ(utt, u)− α(ut, u)
]t

s

≤ α

∫ t

s

|A1/2ut|
2 + CE(t) + CE0(t) + CE(s) + CE0(s)

≤ C[E(t) + E0(t) + E(s) + E0(s)] ≤ C[E(0) + E0(0)] = Ê(0) , (34)
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where the last inequality holds by Lemma 4.2. Combining (34) and Lemma 4.2
we obtain

1

2
γ

∫ t

s

[|utt|
2 + bτ−1|A1/2ut|

2]dz + c2
∫ t

s

|A1/2u|2 ≤ C[E(0) + E0(0)],

which implies

∫ T

0

[E(t) + E0(t)] ≤ Cγ,b,α,τ,c[E(0) + E0] <∞,

proving exponential decays on the strength of Theorem 4.1, p.116, Pazy (1983),
which generalizes (from p = 2 to 1 ≤ p <∞ ) the result of R. Datko (1970).

5. Proof of Theorem 1.4

The proof relies on a suitable decomposition of the state that is compatible with
the topology generated by H1.

To this end we introduce the following variables

z ≡ ut + c2b−1u

as in the previous section (see (18)) and

v ≡ Au+ b−1zt.

Consequently, ut = z − c2b−1u and, instead of (19), we get

utt = zt − c2b−1ut = zt − c2b−1[z − c2b−1u]

uttt = ztt − c2b−1[zt − c2b−1ut] = ztt − c2b−1[zt − c2b−1[z − c2b−1u]]

vt = (Au + b−1zt)t = b−1[−uttt − αutt − c2Au] + b−1ztt

= −b−1αutt − b−1c2Au+ c2b−2[zt − c2b−1z + c4b−2u]

= −c2b−1v + [2c2b−2 − αb−1]zt − b−3c4[z − c2b−1u] + αc2b−2[z − c2b−1u]

= −c2b−1v+[2c2b−2−αb−1]zt+γc
2b−2[z−c2b−1u]. (35)

With this notation we introduce the vector

Y ≡





v
A1/2z
zt





and we consider Z ≡ H ×H ×H. The original model can now be rewritten in
operator form as:

Yt(t) = DY (t), Y (0) = Y0 ∈ Z
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where the matrix operatorD with a natural domain takes the formD = D0+K1

with

D0 ≡





−c2b−1I 0 (2c2b−2 − αb−1)I

0 0 A1/2

0 −bA1/2 −γI





D(D) = D(D0) = {Y = (y1, y2, y3) ∈ Z; y1 ∈ H, y2 ∈ D(A1/2), y3 ∈ D(A1/2)}

and K1 is a suitable bounded (respectively compact if A−1 is compact) pertur-
bation comprised of lower order terms resulting from the decomposition (5) and
is given by

K1 ≡





−γc4b−3A−1 γc2b−2A−1/2 γc4b−4A−1

0 0 0

−γc4b−2A−1 γc2b−1A−1/2 γc4b−3A−1



 . (36)

The same argument as in the proof of Theorem 1.2 applies to inference that
D0 generates a continuous group on Z. Indeed, D0 is a bounded perturbation
of the same operator B1 as introduced in the proof of Theorem 1.2. Since K1

is also bounded on Z (in fact compact when A−1 is compact), the entire D is
a bounded perturbation of a skew adjoint operator on Z. This proves that D
is the generator of a group on Z. On the other hand, direct inspection reveals
that with the given change of variables defined by Y , we have that Y ∈ Z is
equivalent to U ∈ H1.

6. Spectral computations

The figures presented here illustrate the behavior of the spectrum of the operator
A as depending on the parameters c2 (sound speed), α ≥ 0 (viscous damping),
b ≥ 0 (sound diffusivity), a parameter n → ∞ representing the natural modes
of an elliptic operator, i.e., λn = n2 where λn are the eigenvalues of A. Taking
τ = 1, the Mathematica software package (by Wolfram) was used to derive a
symbolic form of the solutions to the characteristic polynomial associated with
the operator A in terms of the parameters. This approach made it possible
to create a parametric plot showing the variation in the eigenvalues as one
parameter varied while the other three parameters remained fixed at prescribed
values as indicated in the captions of the respective figures. As we recall, the

parameter critical for stability is γ = α − τc2

b , so we consider four different
ranges for it.

• Figure 1: Corresponds to the values α = b = 1, n = 5. Hence, γc = 1− c2.
As the values of c vary from 0 to 1, the real eigenvalues corresponding
to the mode n = 5 vary from 0 to −1. The real parts of the complex
conjugate eigenvalues vary, instead, from − 1

2
to 0. The values of c = 0

and c = 1 (hence γc = 0) produce eigenvalues with real parts equal zero
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– marginal stability regions. Indeed, when γc = 0, the wave part of the
operator B (or B0) is unstable (marginally stable). Instead, when c = 0,
then the diffusional part of the flow represented by the first entry in the
matrix B (or B0) is unstable.

• Figure 2: Corresponds to the values α = c = 0.5, n = 5. Hence γb =
1

2
− 1

4b ,
with b varying, b ∈ (0, 2). Strong instability (real parts of eigenvalues
positive) occurs when b < 1

2
or γb < 0.

• Figure 3: Corresponds to the values b = c = 1

2
, n = 5. Thus, γα = α− 1

2
,

with α varying, α ∈ (0, 1). Strong instability corresponding to the wave
operator occurs when α < 1

2
or γα < 0.

• Figure 4: Corresponds to the values α = c = 1, b = 2. Then, γn = 1

2
with

values n ranging, n ∈ (0.1, 8). The numbers n represent natural modes of
the elliptic operator A. Fig. 4 clearly displays the behavior of a damped
equation with the spectrum located on two branches of hyperbolas. The
real parts of the corresponding eigenvalues converge to − 1

2
γ = − 1

4
, while

the diffusive part has the accumulation point (with respect to running n)

at − c2

b = −0.5. This picture reveals characteristics of a full spectrum
of the operator B as combing a hyperbolic part with a diffusive part.
Clearly, the overall stability depends on the values encoded by the matrix
K, which, however, is responsible for the finite dimensional behavior only.

As seen below, the spectrum of the generator A reveals a hyperbolic behavior
with stability exhibited when γ > 0 and c > 0. This confirms the findings of
Theorem 1.3.

-1.5 -0.5 0.5
Re

-4

-2

2

4
Im

Figure 1. Variation in the spectrum as c varies from 0 (circles) to 1 (dots) with
α = b = 1, n = 5; γc = 1 − c2.
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Figure 2. Variation in the spectrum as b varies from 0 (circles) to 2 (dots) with
α = c = 0.5, n = 5; γb = 1

2
−

1

4b
.

-1.5 -0.5 0.5
Re

-4

-2

2

4
Im

Figure 3. Variation in the spectrum as α varies from 0 (circles) to 1 (dots)
with b = c = 0.5, n = 5; γα = α −

1

2
.

-1.5 -0.5 0.5
Re

-4
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2
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Figure 4. Variation in the spectrum as n varies from 0.1 (circles) to 8 (dots)
with α = c = 1, b = 2; γn = 1

2
.
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