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Abstract: In this paper we identify those shifts (continuous
functions) of the term structure of interest rates, against which a
given bond portfolio (BP) is immunized. The set of such shifts
(IMMU) happens to be an (m − 1)-dimensional linear subspace in
an m-dimensional linear space of all admissible shifts. In the proof
we use triangular (Lagrange) functions, by means of which we build a
base for IMMU. How this IMMU space varies in response to changes
in the cash flow generated by bond portfolio, BP, is also discussed
in the last section of the paper.

Keywords: immunization, bond portfolio, Lagrange functions

1. Introduction

Consider an investor who, possessing C dollars today, must achieve an invest-
ment goal of L dollars (L > C), q years from now by means of a purchase of
appropriately selected bond portfolio BP. If not successful he/she will incur a
severe penalty, while achieving more than L dollars will result in no rewards.
Such investors are called bond immunizers. By the term structure of interest
rates one understands a schedule of spot interest rates, which is estimated from
the yields of all coupon-bearing bonds, available on the financial market (M)
under consideration.

The standard immunization problem relies on the construction of such a
bond portfolio BP with the present value of C dollars that the single liability to
pay L dollars q years from now by means of BP will be secured. Having built
such a portfolio, the investor protects (hedges) own investment in bonds against
a loss in its value at time q. The loss is caused by unfavorable changes in the
term structure of interest rates s(t) due to various random market forces.
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The new term structure may clearly be written down as s∗(t) = s(t) + a(t),
with a(t) standing for a shift/movement/shock of the term structure s(t), which
can be flat, rising, declining, humped, or twisted. The classical results refer to
flat shifts a(t) only and they go back as far as to the pioneering work of Macaulay
(1938), Redington (1952), and Fisher (1971). In the subsequent period many
duration models were investigated in the literature. A short description of these
models is given by Soto (2001). Another approach to immunization strategy
has been developed by Leibowitz and Weinberger (1982-83). Specifically, con-
tingent immunization consists of forming a bond portfolio with a duration longer
or shorter than the investor’s planning period, depending on interest rate expec-
tations, in order to take advantage of the manager’s ability to forecast interest
rate movements as long as their forecasts are successful, but switches to a pure
immunization strategy should the stop loss limit be encountered. The contin-
gent immunization was then implemented in many situations for different term
structures of interest rates (e.g., Diaz et al., 2009).

In the present paper, we cover all types of continuous term structures s(t),
although the continuity assumption is nowhere explicitly used, with the only as-
sumption referring to shifts a(t) of s(t), by supposing that they are continuous
functions on a certain interval [t0, T ]. No specific stochastic or deterministic
model is employed here, as is the case in many other publications, see, e.g.,
Bansal and Zhou (2002). Consequently, we are not exposed to any model mis-
specification risk. In this sense our approach is similar to the one presented by
Zheng (2006-2007).

In this paper we do not solve the standard immunization problem, but simply
want to identify those shifts of the term structure of interest rates that our bond
portfolio BP is already protected against loss of its value at time q.

Such a problem has rarely been stated, despite the fact that it has some
similarity to the standard immunization problem. It was already dealt with by
Rzadkowski and Zaremba (2010) for two classes of shifts, namely polynomials
and continuous functions, with two examples, illustrating the employed method-
ologies. More specifically, we stated this problem in two different mathematical
settings. The basis for these two classes of shift spaces (IMMU) consisted of
monomials. It turned out, however, that computed coefficients of the elements
of the bases were very different as to the orders of their magnitudes. This caused
some inconvenience in the calculation.

For dealing with continuous shifts we employed a Hilbert space (a notion
borrowed from the mathematical discipline of functional analysis) approach,
which made it possible for us to identify each of the two functions, provided
they had the same values at specified instances of time t0, t1, t2, . . . , tm .

In this paper we offer an alternative approach to this problem, by employing
the triangular functions (tent functions). Sometimes, these triangular func-
tions are called the Lagrange functions, because they occur in the formula for
the Lagrange polynomials. Triangular functions play also an important role in
functional analysis as examples of the so called Schauder bases (see Schauder,
1928; Semadeni, 1982). These functions seem to be well suited to represent all
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kinds of continuous shifts. Thomas Ho (1992) also uses triangular functions
for modeling the shifts in the term structure. As previously, in the paper by
Rza̧dkowski and Zaremba (2010), we solve our problem with the help of The-
orem 1 from Rza̧dkowski and Zaremba (2000). A similar approach has been
presented by Barber (1999) (see also Barber, 2013).

2. Problem formulation

Let BP be a bond portfolio, constructed from debt instruments available on a
given financial market M. Let, moreover, t0 stand for the very moment when
an investor bought BP, while t1, t2, . . . , tm = T comprise all instances from the
interval [t0, T ], representing the life span (expressed in years) for portfolio BP,
when either BP generates payments at ti, 1 ≤ i ≤ m (in the form of coupons
or par values), or the owner of BP is required to pay his/her liabilities (q is one
of the instances t1, t2, . . . , tm).

In addition, let s(t) denote the term structure of interest rates on this market,
which, for the clarity of presentation, is assumed to be a continuous function
defined on [t0, T ]. We want to identify all such continuous shifts a(t) of s(t)
that portfolio BP is already immunized against.

Since the bond portfolio BP generates payments at instances t1, t2, . . . , tm =
T , its present and futures values (for t ≥ t1) under the new term structure
s∗(t) = s(t) + a(t) will not depend on a(t0).

Now, we recall from functional analysis the so-called triangular functions
(tent functions, Lagrange functions) on the interval [t0, T ]. Each of these tri-
angular functions S0(t), S1(t), . . . , Sm(t) is equal to zero everywhere except for
a certain subinterval of [t0, T ]. Strictly speaking, the first S0(t) and the last
Sm(t) are given by (see Fig. 1)

Figure 1. Triangular functions S0(t) and Sm(t)
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S0(t) =
t− t1

t0 − t1
, t ∈ [t0, t1] and S0(t) = 0 for t ∈ [t1, tm], (1)

Sm(t) =
t− tm−1

tm − tm−1
, t ∈ [tm−1, tm] and Sm(t) = 0 for t ∈ [t0, tm−1]. (2)

The remaining (m − 2) triangular functions Sk(t), k 6= 0,m (see Fig. 2),
whose graphs have the shape of a triangle, are defined as follows:

Sk(t) =
t− tk−1

tk − tk−1
, t ∈ [tk−1, tk],

Sk(t) =
t− tk+1

tk − tk+1
, t ∈ [tk, tk+1]. (3)

Figure 2. Triangular function Sk(t)

These functions have a very useful property, namely each function f(t),
continuous and piecewise linear (i.e., linear in any subinterval [tk, tk+1]) defined
on [t0, T ] with f(ti) = fi , 0 ≤ i ≤ m is the following linear combination of
(Sk(t)):

f(t) = f0S0(t) + f1S1(t) + · · ·+ fmSm(t). (4)

In this paper we will be having in mind the following:

Fact 1 Each continuous function f(t) defined on [t0, T ] with f(ti) = fi can be
approximated by the linear combination (4).
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3. Solution of the problem

We start by invoking Theorem 1 from Rza̧dkowski and Zaremba (2000), which
can be formulated as the following:

Fact 2 If q denotes a future date, when a single liability of L dollars has to be
discharged by the accumulated value of the inflows generated by bond portfolio
BP, then the payment of L dollars at time q will be guaranteed (immunization
will be secured) provided the following necessary and sufficient condition (we
assume that t0 = 0), having nothing to do with the kind of dynamics (determin-
istic or stochastic), as well as the shape of the continuous term structure s(t) of
interest rates, but referring solely to its continuous shifts a(t), holds:

a(q)q =

m∑

i=1

wia(ti)ti, with wi =
cke

−s(tk)tk

m∑
i=1

cie−s(ti)ti

(5)

meaning the weight of the coupon ck, 1 ≤ k ≤ m.

Looking at (5), one can see that what really matters in Equation (5) are
the values of a(t) at instances t1, t2, . . . , tm only, that is, a(ti). This observation
inspires us to define a new notion below.

Definition 1 We shall say that a function f(t) represents a function g(t), or
that f(t) is a representation of g(t), if and only if f(ti) = g(ti) for all instances
t1, t2, . . . , tm when a given bond portfolio promises to pay cash (coupons or par
values).

How to find a handy representation of a function a(t) defined on [t0, T ] by
means of the triangular functions? Upon setting a(tk) = ak, 1 ≤ k ≤ m, we can
do it by creating a function b(t) via the formula

b(t) =
m∑

k=1

akSk(t), (6)

where, as always, Sk(t) stands for the kth triangular function.

Lemma 1 For all specified above instances t1, t2, . . . , tm = T one has Si(ti) = 1
and Si(tk) = 0, i 6= k. Moreover, b(t) is a piecewise linear representation of
a(t).

Proof The equalities Si(ti) = 1 and Si(tk) = 0, i 6= k follow directly from
(1)-(3). To demonstrate that b(tk) = ak, we can employ the relationship (6), to

conclude that b(tk) =
m∑
i=1

aiSi(tk) = akSk(tk) = ak . Finally, b(t) is piecewise

linear because all Si(t) are piecewise linear. The proof is complete. ✷
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From now on, we will be often replacing functions (shifts) a(t) with b(t)
satisfying (6). Our nearest goal is to identify all shifts a(t) of the term structure
of interest rates s(t), or equivalently, all linear combinations b(t) of triangular
functions Si(t), for which (5) holds.

Our initial assumption that q, the instant when the liability to pay L dollars
has to be discharged, is one of the points t1, t2, . . . , tm, say tn, will simplify a
little bit our reasoning. In fact, by virtue of Lemma 1, one will have a(q) =
a(tn) = b(tn) = an, a(ti) = b(ti) = ai, 1 ≤ i ≤ m, and consequently (5) can be
rewritten in the form of a single (easy to solve) linear equation

qan =

m∑

i=1

witiai, (7)

Here, ai, 1 ≤ i ≤ m, stand for the unknown variables to be identified, q and
ti are exogenous variables, while the weights wi have more complex nature
because they depend both on endogenous factors, such as coupons, and the
term structure, which is an exogenous complex factor.

If we knew that for all expected (likely to occur) shifts a(t) one would have
a(q) 6= 0, which is the case with parallel movements of the term structure when
a(t) ≡ λ, then we might define the notion of duration via the formula

D =

m∑

i=1

wi

ai

a(q)
ti, (8)

and formulate an easy to prove (based on Fact 2) sufficient and necessary con-
dition for immunization in the form given by the following:

Corollary 1 Let q denote a future date when a single liability to pay L dol-
lars has to be discharged by means of a bond portfolio BP. In addition, let
t1, t2, . . . , tm be instants when the bonds belonging to BP promise to pay coupons.
Then, the portfolio BP is immunized against all such shocks/shifts a(t) of s(t)
for which D = q.

When we cannot ensure that a(q) 6= 0 , we prefer to treat (5) as our suf-
ficient and necessary condition for immunization. Let us note that Equation
(5) remains the same if we replace a(t) with α · a(t), which means that the
immunization against shift a(t) implies immunization against α · a(t), and vice
versa. In case of parallel movements (a(t) = λ), this new notion reduces to the
classical concept of duration.

How can we better characterize those shifts a(t) which will make no harm
to the value of our bond portfolio at time q when the liability to pay L dollars
has to be discharged ? Denote the set of such shifts by IMMU. To prove that
IMMU is a linear space, let us recall this notion.
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Definition 2 A set V of elements (called also vectors) is a linear space if the
sum of each two elements a ∈ V and b ∈ V also belongs to V (a+ b ∈ V ), and
for any real number r, and any vector a ∈ V the product of r and a belongs to
V as well (r · a ∈ V ).

Fact 3 The set IMMU of all shifts against which a given bond portfolio BP is
immunized against loss at time q is a linear space.

To prove this, it suffices to check whether the sum of two arbitrary shifts,
which satisfy (5), verifies (5), too. But this observation is trivial, similarly as
trivial is implication that (5) holds for r · a(t) if and only if it holds for a(t) .

Definition 3 A set of vectors v1, v2, . . . , vk from a linear space V (for example
IMMU) is said to be linearly independent if α1v1 + α2v2 + · · ·+ αkvk 6= 0 ∈ V

whenever real numbers αi ∈ V are not all equal to 0 ∈ R.

Definition 4 A set of vectors v1, v2, . . . , vk from a linear space V is said to be a
base for V if those vectors are linearly independent and, additionally, each vector
v ∈ V is a linear combination of them, that is, v = α1v1 + α2v2 + · · ·+ αkvk.

It is well known from linear algebra that each finite base has the same number
of vectors. Besides, each set of n < k linearly independent vectors in V can be
extended to a base, by simply adding properly chosen (k−n) vectors. We shall
say that a linear space V is said to be k-dimensional if a certain base of V
consists of k vectors.

It is a nice experience to prove that the triangular functions are indepen-
dent vectors (functions) in the sense of Definition 3 in the set of all continuous
functions defined on [t1, T ]. Define V S as the set of all linear combinations
m∑
i=1

aiSi(t) of m triangular functions defined on [t1, T ]. By the definition of V S ,

they form a base for V S , because they are independent and span the entire
space V S .

Corollary 2 The linear space IMMU of all shifts, against which our bond
portfolio BP is immunized, is an (m− 1)-dimensional linear subspace in V S.

The proof follows from the observation that the set of solutions of the single
linear equation (7) is (m− 1)-dimensional.

Example 1 Let our bond portfolio BP be reduced to a single bond B paying
10 coupons ci = 10, 1 ≤ i ≤ 10, at instances t1 = 0.5, t2 = 1, t3 = 1.5, t3 =
2, . . . , t9 = 4.5, t10 = 5; plus the par value of c10 = 100, at maturity (t10 = 5).
Assume that the term structure of interest rates∗ s(t) = 0.065 − 0.0005t, and
the liability of L dollars (the present value of L equals the value of B) has to
be discharged q = 3.5 years from now. Our goal is to determine the linear
space IMMU by specifying its (m−1) base vectors (shifts) by means of Lagrange
functions; see (10a)-(10e).
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Table 1. Numerical results of Example 1

i ti s(ti) ci PV (ci) weights w(ti) · ti
1 0.5 0.0648 10 9.6814 0.0615 0.03073
2 1 0.0645 10 9.3754 0.0595 0.05951
3 1.5 0.0643 10 9.0812 0.0576 0.08647
4 2 0.0640 10 8.7985 0.0559 0.11170
5 2.5 0.0638 10 8.5268 0.0541 0.13532
6 3 0.0635 10 8.2655 0.0525 0.15740
7 3.5 0.0633 10 8.0142 0.0509 0.17806

8 4 0.0630 10 7.7724 0.0493 0.19735
9 4.5 0.0628 10 7.5399 0.0479 0.21538
10 5 0.0625 110 80.4777 0.5109 2.55431

Solution. We will be looking for m − 1 base shifts ai(t), 1 ≤ i ≤ 9, each
of them in the form of

∑
ajSj(t) , against which bond B is immunized at time

q = 3.5. We will identify the first of these shifts, a1(t), and then the second,
third, fourth, and so on, each one in two steps. To determine a1(t), in the first

step we solve the equation 3.5·a7 =
10∑
i=1

witiai (compare (7)) with ai standing for

a1(ti) and next, making use of identity (4), we will find the resulting base shift

(10a). To solve 3.5·a7 =
10∑
i=1

witiai, let us start with the numerical computations

given in Table 1 to arrive at the following equation:

3.5a7 =

0.03073a1 + 0.05951a2 + 0.08647a3 + 0.11170a4 + 0.13532a5 + 0.15740a6

+0.17806a7 + 0.19735a8 + 0.21538a9 + 2.55431a10,

which is equivalent to

0.03073a1 + 0.05951a2 + 0.08647a3 + 0.11170a4 + 0.13532a5 + 0.15740a6

− 3.3219a7 + 0.19735a8 + 0.21538a9 + 2.55431a10 = 0. (9)

Our idea is to assume that just two of the coefficients ai are different from
0, and then solve (9). This method of solving (9) could be implemented in
several ways, but we select such a way of solution of (9), which will appear as
advantageous in our later investigations.

∗We use here the same term structure as in the examples from the paper by Rza̧dkowski
and Zaremba (2000)
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Namely, we first set a1 = a1(t1) = a1(0.5) = 1 and then calculate a2 =
a1(t2) = a1(1) = −0.51632 because (see Table 1)

a2 =
−w(t1)t1
w(t2)t2

=
−0.03073

0.051632
= −0.51632 (10)

with the remaining 8 = 10− 2 unknown variables being equal to 0. This is the
end of step 1. At step 2 we make use of the property of triangular functions
stated in identity (4) which enables us to express the first base shift in the form

a1(t) = 1 · S1(t)− 0.51632 · S2(t). (10a)

In the same manner we will be determine the remaining base shifts

a2(t) = 1 · S1(t)− 0.35536 · S3(t), a3(t) = 1 · S1(t)− 0.27509 · S4(t),
(10b)

a4(t) = 1 · S1(t)− 0.22708 · S5(t), a5(t) = 1 · S1(t)− 0.19522 · S6(t),
(10c)

a6(t) = 1 · S1(t)− 0.17258 · S7(t), a7(t) = 1 · S1(t)− 0.15570 · S8(t),
(10d)

a8(t) = 1 · S1(t)− 0.14267 · S9(t), a9(t) = 1 · S1(t)− 0.01203 · S10(t).
(10e)

To better illustrate the mechanism of determining the above base functions,
let us demonstrate in detail how we have, for example, derived the formula for
the fourth base vector (shift) a4(t) = 1 · S1(t)− 0.22708 · S5(t); in an analogous
fashion one could prove the validity of the remaining seven formulas.

Searching for the fourth solution of equation (10), a4(t), in step 1 we solve as

always the equation 3.5 ·a7 =
10∑
i=1

witiai, with ai standing for a4(ti), 1 ≤ i ≤ 10,

and then make use of identity (4), by letting a1 = a4(t1) = a4(0.5) = 1 and
compute

a5 = a4(t5) = a4(2.5) =
−w(t1)t1
w(t5)t5

=
−0.03073

0.13532
= −0.22708 (11)

from Table 1, with the remaining eight coefficients ai = a4(ti) = 0. In the
second step, based on identity (4), we conclude that

a4(t) = 1 · S1(t)− 0.22708 · S5(t).

Summing up, we shall say that the set IMMU of all shifts, against which
bond B is immunized, consists of such continuous functions a(t), which are
represented in the sense of Definition 1 by all the possible linear combinations
of the above nine base shifts (10a)-(10e), defined on the interval [0, 5].
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Table 2. Numerical results of Example 2

i ti s(ti) ci PV (ci) w(ti) w(ti) · ti
1 0.5 0.0648 10 9.6814 0.0606 0.03028
2 1 0.0645 10 9.3754 0.0586 0.05865
3 1.5 0.0643 10 9.0812 0.0568 0.08521
4 2 0.0640 10 8.7985 0.0550 0.11007
5 2.5 0.0638 10 8.5268 0.0533 0.13334
6 3 0.0635 10 8.2655 0.0517 0.15511
7 3.5 0.0633 10 8.0142 0.0501 0.17546

8 4 0.0630 13 10.1042 0.0632 0.25282
9 4.5 0.0628 10 7.5399 0.0472 0.21224
10 5 0.0625 110 80.4777 0.5034 2.51706

4. Continuity properties of the linear space IMMU

Since all entries in Table 1 depend in a continuous way on instances
t1, t2, . . . , tm = T , and the cash flow c1, c2, . . . , cm, as well as the term structure
s(t) of interest rates, the resulting equation (7) depends continuously on these
parameters, too. As a result of this, the solutions of (7) and the resulting base
vectors (shifts) a1(t), a2(t), . . . , am(t), constructed by us earlier, will also vary
in a continuous fashion with these parameters.

In this section, we want to describe more broadly the continuous dependence
of these base shifts with respect to the cash flow c1, c2, . . . , cm.

To explain what we precisely have in mind, let us consider Example 2, when
the cash flow from Example 1 is slightly modified by adding a single inflow at
t8 = 4. It will appear that this change will have an effect on the base vector
a7(t) only, while the remaining base vectors (shifts) a1(t)−a6(t) and a8(t), a9(t)
will not change at all.

Example 2 Let portfolio BP generate the same payments as bond B in Exam-
ple 1 did, plus a single payment of $3 at time t8 = 4 , with all other data being
the same.

Solution. Repeating the same line of reasoning as the one in Example 1
and using the figures calculated in Table 2, one arrives at

3.5a7 =

0.03028a1 + 0.05865a2 + 0.08521a3 + 0.11007a4 + 0.13334a5 + 0.15511a6

+0.17546a7 + 0.25282a8 + 0.21224a9 + 2.51706a10,
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which is equivalent to

0.03028a1 + 0.05865a2 + 0.08521a3 + 0.11007a4 + 0.13334a5 + 0.15511a6

− 3.325a7 + 0.25282a8 + 0.21224a9 + 2.51706a10 = 0. (12)

Proceeding in exactly the same way as in Example 1, we are led to base
shifts ai(t), almost the same as shifts ai(t) in Example 1. Strictly speaking,
letting as usual a1 = a1(t1) = a1(0.5) = 1 and ai = a1(ti) = 0, 3 ≤ i ≤ 10, we
solve (12) for a2 = a1(t2) = a1(1) obtaining

a2 = −0.51632 =
−0.03028

0.05865
= a2. (13)

Since (13) gives rise to the same result of calculation as (10) did, the first
base function a1(t) remains exactly the same as a1(t) was before the cash flow
c1, c2, . . . , cm has been modified, that is,

a1(t) = a1 · S1(t) + a2 · S2(t) = 1 · S1(t)− 0.51632 · S2(t). (14a)

Continuing in this way of reasoning, we identify the remaining eight base
functions:

a2(t) = 1 · S1(t)− 0.35536 · S3(t), a3(t) = 1 · S1(t)− 0.27509 · S4(t),
(14b)

a4(t) = 1 · S1(t)− 0.22708 · S5(t), a5(t) = 1 · S1(t)− 0.19522 · S6(t),
(14c)

a6(t) = 1 · S1(t)− 0.17258 · S7(t), a7(t) = 1 · S1(t)− 0.11977 · S8(t),
(14d)

a8(t) = 1 · S1(t)− 0.14267 · S9(t), a9(t) = 1 · S1(t)− 0.01203 · S10(t),
(14e)

which, with the exception of a7(t), appear to be exactly the same as their
counterparts in Example 1. The question arises: why is a7(t) different? The
intuition tells us that this is probably so, because the formula for a7(t) involves
the shift S8(t), the only one among all the base shifts (Si(t)), which captures
the greater than previously ($10) payment of $13 at t8 = 4.

Remark 1 The natural question arises: why the result of calculation performed
and shown in (14) must have been the same as the one performed and shown in
(10)? Going further in this direction, one might ask why the base shifts shown
in (10a)-(10e) are the same, except for one of them, as those in (14a)-(14e).
Fortunately, the answer is not really very difficult.

As far as the first question is concerned, all we have to demonstrate is to
show the identity

a2 =
−w(t1)t1
w(t2)t2

=
−w(t1)t1
w(t2)t2

= a2,
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which is equivalent to the relationship w(t2)
w(t2)

= w(t1)
w(t1)

, and explain why this is so.

By the definition, w(t1) = PV (c1)
PV (BP ) , w(t1) = PV (c1)

PV (B) , with PV (c1) = PV (c1),

because c1 = c1 = 10, so that w(t1)
w(t1)

= PV (B)
PV (BP ) . Similarly, PV (c2) = PV (c2) and

w(t2) =
PV (c2)
PV (BP ) , w(t2) =

PV (c2)
PV (B) , so that w(t2)

w(t2)
= PV (B)

PV (BP ) . The first question

has thus been answered.

Remark 2 When proving that the first base shift a1(t) remains the same as
a1(t) was before the cash flow c1, c2, . . . , cm has been modified, we relied exclu-
sively on the following two equalities:

PV (c1) = PV (c1) and PV (c2) = PV (c2).

Therefore, the above reasoning can be extended over to the remaining base vec-
tors (shifts) aj(t), j 6= 1, as long as PV (c1) = PV (c1) and PV (cj+1) =
PV (cj+1).

In other words, as long as the payments generated by a bond portfolio BP
are not modified at instances t1 and tj+1 (equivalently c1 = c1, cj+1 = cj+1),
the base vector aj(t) for IMMU will remain the same for the new space IMMU
corresponding to the new cash flow, that is, aj(t) = aj(t).

For example, since in Example 2 the payments generated by BP at instances
t1 and t8+1 are the same ( c1 = c1 = 10, c9 = c9 = 10), the base vector a8(t) for
IMMU will remain the same for the new space IMMU, that is, a8(t) = a8(t).
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